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Abstract

For any small involutive quantaloid Q we define, in terms of symmetric
quantaloid-enriched categories, an involutive quantaloid Rel(Q) of
Q-sheaves and relations, and a category Sh(Q) of Q-sheaves and functions;
the latter is equivalent to the category of symmetric maps in the former. We
prove that Rel(Q) is the category of relations in a topos if and only if Q is a
modular, locally localic and weakly semi-simple quantaloid; in this case we
call Q a Grothendieck quantaloid. It follows that Sh(Q) is a Grothendieck
topos whenever Q is a Grothendieck quantaloid. Any locale L is a Grothen-
dieck quantale, and Sh(L) is the topos of sheaves on L. Any small quantaloid
of closed cribles is a Grothendieck quantaloid, and if Q is the quantaloid
of closed cribles in a Grothendieck site (C, J) then Sh(Q) is equivalent to
the topos Sh(C, J). Any inverse quantal frame is a Grothendieck quantale,
and if O(G) is the inverse quantal frame naturally associated with an étale
groupoid G then Sh(O(G)) is the classifying topos of G.

1 Introduction

A topos arising as the category of left adjoints in a locally ordered category, is
the subject of P. Freyd and A. Scedov’s [1990] study of allegories. More precisely,
an allegory A is a modular locally ordered 2-category whose hom-posets have
binary intersections; taking left adjoints (also known as “maps”) in an allegory
A thus produces a category Map(A); and the interesting case is where the latter
category is in fact a topos. Thus, in Freyd and Scedrov’s own words, allegories
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“are to binary relations between sets as categories are to functions between sets”.
In practice, those interesting allegories arise most often as universal constructions
on much smaller sub-allegories which are easier to describe explicitly. Freyd and
Scedrov [1990] (but see also [Johnstone, 2002, A3]) give several theorems to this
effect.

In [1982], R. Walters proved that any small site (C, J) gives rise to a small quan-
taloid R(C, J) in such a way that the topos Sh(C, J) is equivalent to the category
of Cauchy-complete symmetric R(C, J)-enriched categories and functors. But
the latter category is further equivalent to the category of all symmetric R(C, J)-
categories and left adjoint distributors, and the quantaloid SymDist(R(C, J)) of all
symmetric R(C, J)-enriched categories and all distributors is modular. In other
words, the topos Sh(C, J) is the category of maps in the allegory of symmetric
R(C, J)-enriched categories and distributors— which thus qualifies as an “inter-
esting” allegory.

In this paper we shall explain more precisely how “sheaves via quantaloid-
enrichment” fit with “toposes via allegories”. To that end, we define in Section
2, for any involutive quantaloid Q, a new involutive quantaloid Rel(Q), to be
thought of as the locally posetal 2-category of “Q-sheaves and relations”, and a
new category Sh(Q), to be thought of as the category of “Q-sheaves and func-
tions”. The objects of Rel(Q), resp. Sh(Q), are particular symmetric quantaloid-
enriched categories, and the morphisms are distributors, resp. functors; the re-
lation between the two is that Sh(Q) is the category of symmetric left adjoints in
Rel(Q). For appropriate Q, these Q-sheaves are, among the Q-orders of [Stubbe,
2005b], precisely the symmetric ones.

We show in Section 3 that, if Q = R(C, J), then Sh(Q) is equivalent to Sh(C, J)
and Rel(Q) is equivalent to Rel(Sh(C, J)); thus we recover and refine Walters’
[1982] insight. More generally, we prove in Section 4 that Rel(Q) is equivalent to
Rel(T ) for some Grothendieck topos T (and thus Sh(Q) is equivalent to T ) if and
only if Q is a modular, locally localic and weakly semi-simple quantaloid; we call
these Grothendieck quantaloids. In other words, these Grothendieck quantaloids
are precisely those for which the Q-sheaves and relations form an “interesting
allegory”. Locales and inverse quantal frames [Resende, 2007, 2012] are exam-
ples of Grothendieck quantales. If L is a locale, then Sh(L) is in fact the topos
of sheaves on L. And if O(G) is the inverse quantal frame associated to an étale
groupoid G [Resende, 2007], then it follows from [Heymans and Stubbe, 2009b;
Resende, 2012] that Sh(O(G)) is the classifying topos of that groupoid.

2 Sheaves on an involutive quantaloid

The new notions that we will present at the end of this section draw heavily on
the theory of quantaloid-enriched categories. For self-containedness we present
some preliminaries in the first couple of subsections. For more details and for the
many appropriate historical references we refer to [Stubbe, 2005a; Heymans and
Stubbe, 2011].
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Enrichment, involution and symmetry

A quantaloid Q is, by definition, a category enriched in the symmetric monoidal
closed category Sup of complete lattices and supremum-preserving functions;
and a homomorphism F : Q //R of quantaloids is a Sup-enriched functor. An invo-

lution on a quantaloid Q is a homomorphism (−)o : Qop //Q which is the iden-
tity on objects and satisfies f oo = f for any morphism f in Q. The pair (Q, (−)o)
is then said to form an involutive quantaloid; we shall often simply speak of “an
involutive quantaloid Q”, leaving the notation for the involution understood.
When both Q and R are involutive quantaloids, then we say that F : Q //R is a
homomorphism of involutive quantaloids when it is a homomorphism such that
F( f o) = (F f )o .

Whenever a morphism f : A // B in a quantaloid (or in a locally ordered cat-
egory, for that matter) is supposed to be a left adjoint, we write f ∗ for its right
adjoint. A symmetric left adjoint in an involutive quantaloid Q is a left adjoint
whose right adjoint is its involute: f ∗ = f o. Precisely as we write Map(Q) for the
category of left adjoints in Q, we write SymMap(Q) for the category of symmetric
left adjoints.

A category A enriched in a quantaloid Q consists of a set A0 of objects, each
x ∈ A0 having a type ta ∈ Q0, and for any x, y ∈ A0 there is a hom-arrow
A(y, x) : tx // ty in Q, subject to associativity and unit requirements: A(z, y) ◦
A(y, x) ≤ A(z, x) and 1tx ≤ A(x, x) for all x, y, z ∈ A0. A functor F : A // B

between such Q-categories is an object-map x 7→ Fx such that tx = t(Fx) and
A(y, x) ≤ B(Fy, Fx) for all x, y ∈ A. Such a functor is smaller than a functor
G : A // B if 1tx ≤ B(Fx, Gx) for every x ∈ A. With obvious composition one
gets a locally ordered 2-category Cat(Q) of Q-categories and functors.

For two objects x, y ∈ A, the hom-arrows A(y, x) and A(x, y) go in oppo-
site directions. Hence, to formulate a notion of “symmetry” for Q-categories, it
is far too strong to require A(y, x) = A(x, y). Instead, at least for involutive
quantaloids, a Q-category A is symmetric when A(x, y) = A(y, x)o for every two
objects x, y ∈ A [Betti and Walters, 1982]. We shall write SymCat(Q) for the full
sub-2-category of Cat(Q) determined by the symmetric Q-categories (in which
the local order is in fact symmetric, but not anti-symmetric).

A distributor Φ : A ❝ // B between Q-categories consists of arrows

Φ(y, x) : tx // ty in Q, one for each (x, y) ∈ A0 × B0, subject to two action re-
quirements: B(y′, y) ◦ Φ(y, x) ≤ Φ(y′, x) and Φ(y, x) ◦ A(x, x′) ≤ Φ(y, x′) for
all y, y′ ∈ B0 and x, x′ ∈ A0. The composite of such a distributor with another
Ψ : B ❝ // C is written as Ψ ⊗ Φ : A ❝ // C, and its elements are

(Ψ ⊗ Φ)(z, x) =
∨

y∈B0

Ψ(z, y) ◦ Φ(y, x)

for x ∈ A0 and z ∈ C0. Parallel distributors can be compared elementwise, and in
fact one gets a (large) quantaloid Dist(Q) of Q-categories and distributors. Each
functor F : A // B determines an adjoint pair of distributors: B(−, F−) : A ❝ // B,

with elements B(y, Fx) for (x, y) ∈ A0 × B0, is left adjoint to B(F−,−) : B ❝ // A

in the quantaloid Dist(Q). These distributors are said to be represented by F. More
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generally, a (necessarily left adjoint) distributor Φ : A ❝ // B is representable if there

exists a (necessarily essentially unique) functor F : A // B such that
Φ = B(−, F−). This amounts to a 2-functor

Cat(Q) //Map(Dist(Q)) :
(

F : A // B

)

7→
(

B(−, F−) : A ❝ // B

)

. (1)

We write SymDist(Q) for the full subquantaloid of Dist(Q) determined by the
symmetric Q-categories. It is easily verified that the involution f 7→ f o on the
base quantaloid Q extends to the quantaloid SymDist(Q): explicitly, if Φ : A ❝ // B

is a distributor between symmetric Q-categories, then so is Φo : B ❝ // A, with el-

ements Φo(a, b) := Φ(b, a)o . And if F : A // B is a functor between symmetric
Q-categories, then the left adjoint distributor represented by F has the particular
feature that it is a symmetric left adjoint in SymDist(Q). That is to say, the functor
in (1) restricts to the symmetric situation as

SymCat(Q) // SymMap(SymDist(Q)) :
(

F : A // B
)

7→
(

B(−, F−) : A ❝ // B
)

,

(2)
obviously giving a commutative diagram

Cat(Q) // Map(Dist(Q))

SymCat(Q) //

incl.

OO

SymMap(SymDist(Q))

incl.

OO

The full embedding SymCat(Q) →֒ Cat(Q) has a right adjoint functor:

SymCat(Q) ⊥

incl.
))

(−)s

ii Cat(Q).

This symmetrisation sends a Q-category A to the symmetric Q-category As whose
objects (and types) are those of A, but for any two objects x, y the hom-arrow is
As(y, x) := A(y, x) ∧ A(x, y)o. A functor F : A // B is sent to Fs : As

// Bs : a 7→
Fa. It is a result of [Heymans and Stubbe, 2011] that the inclusion
SymMap(SymDist(Q)) //Map(Dist(Q)) admits a right adjoint that makes the dia-
gram

Cat(Q) //

(−)s

��

Map(Dist(Q))

��

SymCat(Q) // SymMap(SymDist(Q))

commute if and only if, for each family ( fi : X // Xi, gi : Xi
// X)i∈I of morphisms
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in Q,

∀j, k ∈ I : fk ◦ gj ◦ f j ≤ fk

∀j, k ∈ I : gj ◦ f j ◦ gk ≤ gk

1X ≤
∨

i∈I

gi ◦ fi



















=⇒ 1X ≤
∨

i∈I

(gi ∧ f oi ) ◦ (g
o
i ∧ fi).

Such an involutive quantaloid Q is said to be Cauchy-bilateral. We will encounter
examples of Cauchy-bilateral quantaloids further on in this paper.

Presheaves, Cauchy-completion and symmetric-completion

A (contravariant) presheaf on A is a distributor into A whose domain is a one-
object category with an identity hom-arrow. Writing ∗X for the one-object
Q-category whose single object ∗ has type X ∈ Q0 and whose single hom-arrow
is the identity 1X, a presheaf is then typically written as φ : ∗X

❝ // A. The set
of presheaves on A is written P(A): it is a Q-category when we define that
t(φ : ∗X

❝ // A) = X and P(A)(ψ, φ) = [ψ, φ] (this being a lifting in the quan-
taloid Dist(Q), i.e. the value at φ of the right adjoint to composition with ψ). The
Yoneda embedding of A into P(A) is the fully faithful functor of Q-enriched cate-
gories YA : A //P(A) that sends a ∈ A to the representable presheaf A(−, a) : ∗ta
❝ // A. In fact, this procedure extends to a functor P : Cat(Q) //Cat(Q), which

is the free cocompletion KZ-doctrine on the category of Q-categories. (A covariant
presheaf on A is a distributor φ : A ❝ // ∗X; they are not of much importance in this
paper.)

A Q-category A is said to be Cauchy complete when each left adjoint distributor
with codomain A is represented by a functor [Lawvere, 1973], that is, when for
each Q-category B the functor in (1) determines an equivalence of ordered sets

Cat(Q)(B, A) ≃ Map(Dist(Q))(B, A).

This clearly implies that the functor in (1) restricts to a biequivalence of locally or-
dered 2-categories between Catcc(Q), the full subcategory of Cat(Q) determined
by the Cauchy complete Q-categories, and Map(Dist(Q)). Moreover, the full in-
clusion of Catcc(Q) in Cat(Q) admits a left adjoint:

Catcc(Q) ⊥

full incl.

55

(−)cc
uu

Cat(Q). (3)

That is to say, each Q-category A has a Cauchy completion Acc: it is the full subcat-
egory of the presheaf category P(A) whose objects are the left adjoint presheaves
on A. The Yoneda embedding YA : A //P(A) factors through Acc, and the dis-

tributor induced by YA : A // Acc turns out to be an isomorphism in Dist(Q).
Therefore the quantaloid Dist(Q) is equivalent to its full subquantaloid Distcc(Q)
whose objects are the Cauchy complete Q-categories. As a result, there is an
equivalence of locally ordered 2-categories

Catcc(Q) ≃ Map(Distcc(Q)) ≃ Map(Dist(Q)). (4)
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The Cauchy completion can of course be applied to a symmetric Q-category
(assuming that Q is involutive), but the resulting Cauchy complete category need
not be symmetric anymore: the functor (−)cc : Cat(Q) //Cat(Q) does not restrict
to SymCat(Q) in general. However, its very definition suggests the following
modification [Heymans and Stubbe, 2011]: a symmetric Q-category A is symmet-
rically complete if, for any symmetric Q-category B, the functor in (2) determines
an equivalence of symmetrically ordered sets

SymCat(Q)(B, A) ≃ SymMap(SymDist(Q))(B, A).

This implies that the functor in (2) restricts to a biequivalence between
SymCatsc(Q), the full subcategory of SymCat(Q) of its symmetrically complete
objects, and SymMap(SymDist(Q)). Moreover, the full inclusion of SymCatsc(Q)
in SymCat(Q) admits a left adjoint:

SymCatsc(Q) ⊥

full incl.

55

(−)sc
uu

SymCat(Q). (5)

Explicitly, for a symmetric Q-category A, its symmetric completion Asc is the full
subcategory of the Cauch completion Acc (and thus also a full subcategory of the
presheaf category P(A)) determined by the symmetric left adjoint presheaves.
For similar reasons as above, there is an equivalence of involutive quantaloids
between SymDist(Q) and its full subquantaloid SymDistsc(Q) of symmetrically
complete Q-categories, and therefore also an equivalence of categories

SymCatsc(Q) ≃ SymMap(SymDistsc(Q)) ≃ SymMap(SymDist(Q)). (6)

Importantly, a result of [Heymans and Stubbe, 2011] says that, if Q is a Cauchy-
bilateral quantaloid, then the symmetric-completion and the Cauchy-completion
of any symmetric Q-category coincide, and the symmetrisation of a Cauchy com-
plete Q-category is symmetrically complete. In fact, there is a distributive law of
the monad (−)cc : Cat(Q) //Cat(Q) over the comonad (−)s : Cat(Q) //Cat(Q).
This means in particular that there is a commutative diagram of adjunctions as
follows:

Catcc(Q)

(−)s

��

Map(Distcc(Q))

(−)s

��

Map(Dist(Q))

(−)s

��

SymCatsc(Q)

incl.

SS

⊢

SymMap(SymDistsc(Q))

incl.

SS

⊢

SymMap(SymDist(Q))

incl.

SS

⊢

The equal signs in this diagram are the equivalences of (4) and (6); the bottom row
is fully included in the top row, and can be obtained from it by ‘symmetrisation’.



Grothendieck quantaloids for allegories of enriched categories 867

Universal constructions

An idempotent in a quantaloid Q is, of course, an endomorphism e : A // A such

that e2 = e. Such an idempotent is said to split in Q when there exists a diagram

A

qp = e
��

p
//

B

1B = pq

rr

q
oo (7)

in Q. If E is a class of idempotents in a quantaloid Q, then we write QE for
the quantaloid obtained by splitting the idempotents in E . An explicit descrip-
tion goes as follows: the objects of QE are the elements of E , and QE (e, f ) =
{x : A // B | f ◦ x = x = x ◦ e} whenever e : A // A and f : B // B are in E . Com-
position and local suprema in QE are as in Q, but the identity on an idempotent
e is, obviously, e : e // e itself. If all identities in Q are in E , then there is a fully
faithful homomorphism of quantaloids

I : Q //QE :
(

x : A // B
)

7→
(

x : 1A
// 1B

)

which is the universal splitting in Q of idempotents in E . Spelled out, this means
that if F : Q //R is a homomorphism of quantaloids, and the images of all idem-
potents in E split in R, then there is an essentially unique homomorphism
F : QE

//R such that F ◦ I = F. Moreover, if F is fully faithful then so is F.

WhenQ is an involutive quantaloid, then we say that an idempotent e : A // A
in Q is symmetric when eo = e. It is straightforward that QE is then involutive
too: the involute of x ∈ QE (e, f ) is computed as in Q, for the symmetry of e and
f make sure that xo ∈ QE ( f , e). As before, it is surely the case that, whenever
all identities in Q are in E , the involutive quantaloid QE has a universal property
for the splitting of idempotents. Noting however that I : Q //QE preserves the
involution, we can point out a slightly more subtle universal property. Say that
the splitting in the diagram in (7) is symmetric when q = po. If F : Q //R is a
homomorphism of involutive quantaloids and the images of all idempotents in
E split symmetrically in R, then there is an essentially unique homomorphism
F : QE

//R of involutive quantaloids such that F ◦ I = F; in other words, if F

preserves the involution then so does F. And again, if F is fully faithful then so is
F.

In any quantaloid Q, products and sums are the same thing, so they are usu-
ally referred to as direct sums. We write A = ⊕i∈I Ai for the direct sum of a family
(Ai)i of objects of Q, with injections si : Ai

// A and projections pi : A // Ai; in
fact, for A to be the direct sum of the (Ai)i, it is a necessary and sufficient condi-
tion that pi ◦ sj = δij and

∨

i si ◦ pi = 1A. In these equations, δij : Aj
// Ai is the

“Kronecker delta”: it is the identity morphism when i = j and the zero mor-
phism otherwise. The universal direct sum completion of a small quantaloid
Q exists, and can explicitly be described as the quantaloid Matr(Q) of matri-
ces over Q. An object in Matr(Q) is a Q-typed set, i.e. a set A together with
a type function t : A //Q0, and a morphism between two such Q-typed sets is

a matrix M : A // B, i.e. a family M(b, a) : ta // tb of morphisms in Q, one for
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each (a, b) ∈ A × B. Of course, matrices can be composed: for M : A // B and

N : B // C we have N ◦ M : A // C with elements

(N ◦ M)(c, a) :=
∨

b∈B

N(c, b) ◦ M(b, a).

The identity on a Q-typed set A is the matrix ∆A : A // A all of whose elements
are “Kronecker deltas”. With elementwise supremum, this makes Matr(Q) a
quantaloid; and whenever Q is involutive, so is Matr(Q) (for elementwise in-
volution). There is a fully faithful homomorphism

J : Q //Matr(Q) :
(

f : X // Y
)

7→
(

( f ) : {X} // {Y}
)

sending a morphism to the matrix between singletons in the obvious way (which
preserves the involution on Q whenever there is one), which is the universal
direct sum completion of Q.

Any Q-typed set A determines a Q-category A by putting A0 = A and
A(a′ , a) = ∆A(a

′, a): this is precisely a discrete Q-category in the sense that the
hom-arrow between two different objects is a zero morphism and every endo-
hom-arrow is an identity morphism. A matrix between Q-typed sets is easily
seen to be precisely a distributor between discrete Q-categories, so the quantaloid
Matr(Q) is precisely the full subquantaloid of Dist(Q) of discrete Q-categories.
A discrete Q-category is obviously symmetric, so whenever Q is an involutive
quantaloid, Matr(Q) can also be considered as full involutive subcategory of
SymDist(Q). Furthermore, a monad in Matr(Q) is exactly a Q-category, and (as-
suming that Q is involutive) a symmetric monad is a symmetric Q-category. In
other words, both Dist(Q) and SymDist(Q) can be constructed from Matr(Q) by
splitting a particular class of idempotents:

- Dist(Q) = Matr(Q)E for E the class of monads in Matr(Q),

- SymDist(Q) = Matr(Q)E for E the class of symmetric monads in Matr(Q).

Composing the various universal constructions we thus find how Dist(Q) and
SymDist(Q) can be considered as completions of Q itself.

For any involutive quantaloid Q′ it is a matter of fact that the process of
splitting all monads in Q′ can be broken down in two steps: first split all sym-
metric monads in Q′, then split all anti-symmetric monads in the thusly obtained
quantaloid. (A monad m : X // X in an involutive quantaloid is said to be anti-
symmetric when m ∧ mo = 1X.) Applying this to Q′ = Matr(Q) for a small invo-
lutive quantaloid Q, this exhibits how Dist(Q) is also a completion of SymDist(Q).

All this goes to show that both Dist(Q) and SymDist(Q) lead a “double life”.
On the one hand, they are concretely constructed quantaloids: their objects are
(symmetric) Q-categories, and their morphisms are distributors. This makes it
possible to compute with individual objects and morphisms of Dist(Q)
(or SymDist(Q)). But on the other hand, Dist(Q) and SymDist(Q) are universal
constructions on Q: first add all direct sums to Q, then split either all monads or
only the symmetric ones. These universal properties thus say something about
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the collection of all objects and morphisms of Dist(Q) or SymDist(Q). The first ap-
proach is clearly rooted in the theory of quantaloid-enriched categories, whereas
the second approach is close in spirit to allegory theory. Indeed, quoting P. John-
stone [2002, p. 138], “many allegories of interest may be generated by idempotent-
splitting processes from quite small full sub-allegories”. Of course, Dist(Q) or
SymDist(Q) need not be allegories (neither of them is necessarily modular, see
further), but they are both generated by universal processes from a quite small
full sub-quantaloid, namely from Q itself.

Orders and sheaves over a base quantaloid

We now have everything ready to state the central definitions with which we
shall work in this paper. First we recall a definition first given in [Stubbe, 2005b]:

Definition 2.1 Given a small quantaloid Q and a set E of idempotents in Q, we define

Ord(Q, E) := Catcc(QE ) and Idl(Q, E) := Distcc(QE )

for, respectively, the locally ordered 2-category of (Q, E)-orders and order functions,
and the quantaloid of (Q, E)-orders and ideal relations. If E is taken to be the set of all
idempotents in Q, then we write Qsi instead of QE , Ord(Q) instead of Ord(Q, E), and
Idl(Q) instead of Idl(Q, E); we then simply speak of Q-orders (and order functions and
ideal relations).

Next we present a new definition, intended as “symmetric” version of the
previous definition. Because the term “symmetric Q-order” is technically inad-
equate (it suggests a Q-order with a symmetric hom, quod non), and the term
“Q-set” already means something related-but-different in the literature (see e.g.
[Higgs, 1973; Fourman and Scott, 1979; Borceux, 1994; Mulvey and Nawaz, 1995;
Gylys, 2001; Johnstone, 2002; and others]), we opt to speak of “Q-sheaves”:

Definition 2.2 Given a small involutive quantaloid Q and a set E of symmetric idem-
potents in Q, we define

Sh(Q, E) := SymCatsc(QE ) and Rel(Q, E) := SymDistsc(QE )

for, respectively, the category of (Q, E)-sheaves and functions, and the quantaloid of
(Q, E)-sheaves and relations. If E is taken to be the set of all symmetric idempotents
in Q, then we write Qssi instead of QE , Sh(Q) instead of Sh(Q, E), and Rel(Q) instead
of Rel(Q, E); we then simply speak of Q-sheaves (and functions and relations).

We shall explain at the end of Section 3 how, for so-called small quantaloids of
closed cribles, the symmetry condition in the above definition is in fact equivalent
to an appropriate discreteness condition.

From the general theory on (symmetric) Q-categories that we explained in the
previous subsections, we can now conclude that:
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Proposition 2.3 For any small quantaloid Q and any set E of idempotents in Q, there
is a biequivalence of locally ordered 2-categories

Ord(Q, E) ∼ // Map(Idl(Q, E)) :
(

F : A // B

)

7→
(

B(−, F−) : A ❝ // B

)

.

For any small involutive quantaloid Q and any set E of symmetric idempotents in Q,
there is an equivalence of categories

Sh(Q, E) ∼ // SymMap(Rel(Q, E)) :
(

F : A // B

)

7→
(

B(−, F−) : A ❝ // B

)

.

If Q is an involutive quantaloid and E a set of symmetric idempotents such that QE is
Cauchy-bilateral, then both squares in

Ord(Q, E)

(−)s

��

∼ // Map(Idl(Q, E))

(−)s

��

Sh(Q, E) ∼ //

incl.

SS

⊢

SymMap(Rel(Q, E))

incl.

SS

⊢

commute, and the bottom row is obtained by “symmetrising” the top row.

Here is yet another result of the general theory of Q-categories:

Proposition 2.4 For any small (resp. involutive) quantaloid Q and any set E of (resp.
symmetric) idempotents in Q, there is an equivalence of (resp. involutive) quantaloids

Idl(Q, E) ≃ Dist(QE ), resp. Rel(Q, E) ≃ SymDist(QE ).

This proposition explains an important subtlety: each (Q, E)-order (or (Q, E)-
sheaf) is Morita equivalent to a (symmetric) QE -category. This fact has often been
used (implicitly) to forget about Cauchy completeness altogether: several defini-
tions of “sheaf on an involutive quantaloid” that can be found in the literature,
amount (in one form or another) to stating that a sheaf is a symmetric category,
and a morphism of sheaves is a left adjoint distributor. (An example that springs
to mind, is the formalism of projection matrices, on which we shall comment in
more detail in Section 4.) However, we have deliberately opted to include the re-
quirement of Cauchy (or symmetric) completeness in the definition of “sheaf” on
a quantaloid Q, for it expresses precisely the “gluing condition” that one expects
of such a notion (as well illustrated by [Walters, 1981]). But of course it comes in
handy that, modulo Morita equivalence, this completeness can be swiped under
the carpet.

The whole of Section 3 is devoted to showing that the topos of sheaves on a
site (C, J) is equivalent to Sh(Q) when Q = R(C, J) is the small quantaloid of
closed cribles in (C, J).
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3 Sheaves on a site

For any small involutive quantaloid Q we stated in Definition 2.2 and Proposition
2.3 that

Sh(Q) := SymCatsc(Qssi) ≃ SymMap(SymDist(Qssi)).

Walters [1982] showed that, for a small site (C, J),

Sh(C, J) ≃ SymCatcc(R(C, J)) ≃ Map(SymDist(R(C, J))),

where R(C, J) is the so-called small quantaloid of closed cribles (which Walters orig-
inally called the bicategory of relations) constructed from (C, J). In this section we
shall show that sheaves on a small site (C, J) (in the topos-theoretic sense) corre-
spond with sheaves on the small involutive quantaloid R(C, J) (in the sense of
our Definition 2.2).

More precisely, we shall prove that, if Q = R(C, J) is a small quantaloid of
closed cribles, then for any set E of symmetric idempotents in Q containing the
identities, SymDist(Q) and SymDist(QE ) are equivalent modular quantaloids; and
because each left adjoint in a modular quantaloid is necessarily a symmetric left
adjoint, it follows that Sh(Q, E) is equivalent to Map(SymDist(Q)), which in turn
is equivalent to Sh(C, J) by Walters’ [1982] result. To give our proof, we shall use
the axiomatic description of R(C, J) due to [Heymans and Stubbe, 2012], for it
allows us to prove our claim via elementary computations in involutive quan-
taloids, much in the line of Freyd and Scedrov’s [1990] work on allegories (see
also [Johnstone, 2002]). In the next subsection we recall the necessary results
from our earlier work.

Axioms for a small quantaloid of closed cribles

First we recall some definitions:

Definition 3.1 A quantaloid Q is:

1. locally localic if, for all objects X and Y, Q(X, Y) is a locale,

2. map-discrete if, for any left adjoints f : X // Y and g : X // Y in Q, f ≤ g
implies f = g,

3. weakly tabular if, for every q : X // Y in Q,

q =
∨

{

f g∗
∣

∣

∣
( f , g) : X // Y is a span of left adjoints such that f g∗ ≤ q

}

,

4. map-tabular if for every q : X // Y in Q there is a span ( f , g) : X // Y of left
adjoints in Q such that f g∗ = q and f ∗ f ∧ g∗g = 1dom( f ),

5. weakly modular if, for every pair of spans of left adjoints in Q, say ( f , g) : X // Y

and (m, n) : X // Y, we have f g∗ ∧ mn∗ ≤ f (g∗n ∧ f ∗m)n∗,
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6. tabular if it is involutive and if for every q : X // Y in Q there exists a span

( f , g) : X // Y of left adjoints in Q such that f go = q and f o f ∧ gog = 1dom( f ),

7. modular if it is involutive and if for any f : X // Y, g : Y // Z and h : X // Z in
Q we have g f ∧ h ≤ g( f ∧ goh) (or equivalently, g f ∧ h ≤ (g ∧ h f o) f ).

The notions of modularity1 and tabularity are cited from Freyd and Scedrov
[1990] who give them in the context of allegories2. Weak modularity, weak tabu-
larity and map-tabularity were introduced in [Heymans and Stubbe, 2012] with
the specific aim to axiomatise small quantaloids of closed cribles.

There are many useful relations between several of these notions; we recall
some of these in the next lemma.

Lemma 3.2 1. In any modular quantaloid, all left adjoints are symmetric left ad-
joints.

2. Any modular quantaloid is map-discrete.

3. Any locally localic and modular quantaloid is Cauchy-bilateral.

4. A small quantaloid Q is weakly tabular if and only if Dist(Q) is map-tabular.

5. A small quantaloid Q is locally localic and modular if and only if Matr(Q) is
modular.

The first two statements in the above lemma appear in [Freyd and Scedrov, 1990;
Johnstone, 2002], the third is quoted from [Heymans and Stubbe, 2011], and the
two other statements come from [Heymans and Stubbe, 2012]. Also the following
result appears in the latter reference.

Theorem 3.3 For a small quantaloid Q, the following conditions are equivalent:

1. Q is a small quantaloid of closed cribles, i.e. there exists a small site such that
Q ≃ R(C, J),

1In fact, J. Riguet [1948, p. 120] discovered much earlier what he called the Dedekind formula (in
French, la relation de Dedekind) for relations between sets: if R ⊆ E × F, S ⊆ F × G and T ⊆ E × G,
then SR ∩ T ⊆ (S ∩ TRo)(R ∩ SoT) (where Ro is the opposite relation of R, etc.). Whereas it
is obvious that the Dedekind formula implies the modular law, it is not difficult to see that the
converse holds too: SR ∩ T = (SR ∩ T) ∩ (SR ∩ T) ⊆ (SR ∩ T) ∩ (S ∩ TRo)R ⊆ (S ∩ TRo)((S ∩
TRo)o(SR ∩ T) ∩ R) ⊆ (S ∩ TRo)(SoT ∩ R). All this can, of course, be done in any involutive
locally ordered 2-category, and indeed Riguet certainly understood that the importance of the
Dedekind formula went beyond the calculus of relations: he explains that the term relation de
Dedekind was deliberately so chosen because “elle contient comme cas particulier la relation entre
idéaux dans un anneau découverte par Dedekind”.

2Freyd and Scedrov [1990] define an allegory A to be a locally posetal 2-category, equipped with
an involution A // Aop : f 7→ f o (which fixes the objects, reverses the arrows, and preserves the
local order), in which the modular law holds. Johnstone [2002] calls an allegory geometric when
its hom-posets are complete lattices and composition distributes over arbitrary suprema. Thus, a
geometric allegory is exactly the same thing as a modular quantaloid.
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2. putting, for X ∈ Map(Q),

J(X) :=
{

S is a sieve on X
∣

∣

∣
1X =

∨

s∈S

ss∗
}

defines a Grothendieck topology J on Map(Q) for which Q ∼= R(Map(Q), J),

3. Q is locally localic, map-discrete, weakly tabular and weakly modular.

In this case, Q carries an involution, sending q : Y // X to

qo :=
∨

{

g f ∗
∣

∣

∣
( f , g) : Y // X is a span of left adjoints such that f g∗ ≤ q

}

,

which makes Q also modular.

Splitting symmetric idempotents

In this subsection we study the properties of the involutive quantaloid SymDist(Q)
when Q is a small quantaloid of closed cribles.

First we point out two useful conditions to determine whether a (small or
large) involutive quantaloid Q′ has symmetric splittings for its symmetric idem-
potents. The first lemma can be found in [Freyd and Scedrov, 1990, 2.162; John-
stone, 2002, Lemma A3.3.3] and the second is a corollary of [Freyd and Scedrov,
1990, 2.166 and 2.169; Johnstone, 2002, A3.3.6 and A3.3.12]. For completeness’
sake we shall give proofs here too, specifically adapted to the situation at hand.

Lemma 3.4 If Q′ is a modular quantaloid, then each splitting of a symmetric idempotent
is necessarily a symmetric splitting.

Proof : First observe that for any f : X // Y in a modular Q′ we always have f ≤
f f o f : because f = 1Y f ∧ f ≤ (1Y ∧ f f o) f ≤ f f o f . Now suppose that e : A // A,

p : A // B and q : B // A satisfy e = e2 = eo = qp and pq = 1B in Q′. Then it
follows that qo = pqqo ≤ ppopqqo = ppoqo = p(qp)o = peo = pe = p, and
similarly po ≤ q. �

Lemma 3.5 If Q′ is a modular and tabular quantaloid in which all symmetric monads3

split, then all symmetric idempotents in Q′ have a (necessarily symmetric) splitting.

Proof : Let e : A // A be a symmetric idempotent in Q′: we shall exhibit a splitting.
To that end, first consider a tabulation ( f , g) of e ∧ 1A:

B

g

����
��

��
��

��
�

f

��
33

33
33

33
33

3

A
1A ∧ e

// A

3In the context of allegories, Freyd and Scedrov [1990] use the term equivalence relation (and
Johnstone [2002] speaks simply of an equivalence) for what we call a symmetric monad; when
it splits, then it does so symmetrically (because an allegory is modular), and they say that the
equivalence relation is effective. If all equivalence relations in an allegory split, they say that the
allegory is effective.
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Thus, f and g are left adjoints in Q′ such that f go = 1A ∧ e and gog ∧ f o f = 1B.
Because Q′ is modular, we know moreover that f ⊣ f o and g ⊣ go. It is useful
to point out that g ≤ e f and f ≤ eg follow from these assumptions, and that, in
turn, this implies that g ≤ eg and eg = e f .

Now define t := (eg)o(eg) = goeg : B // B. Then clearly to = t holds; it
is furthermore easy to check that tt = goeggoeg ≤ goe1Aeg = goeg = t; and
t = (eg)oeg ≥ gog ≥ 1B follows from inequalities pointed out above. In sum, this
says that t : B // B is a symmetric monad. By assumption we can split t: there is
a diagram

Bt

1Bt

�� ho //

B
h

oo

t

rr

such that t = hoh and hho = 1Bt (where, again by modularity, h ⊣ ho).
Next, consider the diagram

B

t
��

eg
//

A
(eg)o

oo

e

ss

in which, by definition of t, we have t = (eg)o(eg). Using modularity of Q′

and the tabulation ( f , g) of 1A ∧ e, we can compute that e = e1Ae ∧ e ≤ e(1A ∧
eoeeo)e = e(1A ∧ e)e = e( f go)e = (e f )(eg)o = (eg)(eg)o . But (eg)(eg)o = eggoe ≤
ee = e follows immediately from g ⊣ go, hence we obtain e = (eg)(eg)o .

Composing these two diagrams produces a splitting in Q′ for the symmetric
idempotent e : A // A, as required. �

For any small involutive quantaloid Q, SymDist(Q) is a quantaloid in which
all symmetric monads split: simply because it is the universal splitting of sym-
metric monads in Matr(Q). Below we shall furthermore prove that, whenever Q
is a small quantaloid of closed cribles, SymDist(Q) is modular and tabular too.

Lemma 3.6 If Q is a locally localic quantaloid and E is a collection of idempotents in Q,
then QE is locally localic too.

Proof : If p : L // L is an idempotent sup-morphism on a complete lattice, then
p(L) ⊆ L is a complete lattice too, with the same suprema as in L, but with
p(x) ∧′ p(y) := p(p(x) ∧ p(y)) as binary infimum and p(⊤) as emtpy infimum
(i.e. top element). A simple computation shows that, if L is a locale, then so is
p(L). This applies to e2 ◦ − ◦ e1 : Q(X, Y) //Q(X, Y) for idempotents e1 : X // X

and e2 : Y // Y in E , to show that QE (e1, e2) is a locale whenever Q(X, Y) is; hence
QE is locally localic whenever Q is. �

Lemma 3.7 If Q is a modular quantaloid and E is a collection of symmetric idempotents
in Q, then QE is modular too.

Proof : Local suprema, composition and involution in QE are the same as in Q.
As pointed out in the above proof, the infimum of f , g : e1

// e2 in QE is f ∧′ g :=
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e2( f ∧ g)e1, but thanks to the modular law it is easily seen that

f ∧ g = e2 f ∧ ge1 ≤ e2( f eo1 ∧ eo2g)e1 = e2( f ∧ g)e1,

whereas e2( f ∧ g)e1 ≤ f ∧ g is always valid, hence in this case the local binary
infima in QE are the same as in Q. Thus it follows that QE is modular whenever
Q is. �

Proposition 3.8 If Q is a small, locally localic, modular quantaloid, then SymDist(Q)
is modular.

Proof : Matr(Q) is modular by Lemma 3.2, so SymDist(Q) = (Matr(Q))E , with E
the collection of symmetric monads in Matr(Q), is modular too by Lemma 3.7. �

Proposition 3.9 If Q is a small, weakly tabular, Cauchy-bilateral quantaloid, then
SymDist(Q) is tabular.

Proof : From [Heymans and Stubbe, 2012, Proposition 3.5] we recall that a small
quantaloid Q is weakly tabular if and only if Dist(Q) is map-tabular. The proof
for the necessity goes as follows: Suppose that Φ : A ❝ // B is a distributor. We
can assume without loss of generality that A and B are Cauchy complete, be-
cause every Q-category is isomorphic to its Cauchy completion in Dist(Q). Now
define the Q-category R to be the full subcategory of A × B whose objects are
those (a, b) ∈ A × B for which 1ta ≤ Φ(a, b), and write T (resp. S) for the com-
position of the inclusion R →֒ A × B with the projection of A × B onto A (resp.
onto B). By construction we then have B(S−, S−) ∧ A(T−, T−) = R; and, re-
lying on the weak tabularity of Q and the Cauchy completeness of A and B, a
lenghty computation shows that Φ = A(−, T−)⊗ B(S−,−). That is to say, the
left adjoints A(−, T−) : R ❝ // A and B(−, S−) : R ❝ // B in Dist(Q) provide for a

map-tabulation of Φ : A ❝ // B.

We now modify this proof to suit our needs. For any Φ : B ❝ // A in SymDist(Q)
we must find Σ : R ❝ // A and Θ : R ❝ // B in SymDist(Q) such that Σ⊗Θo = Φ and
Σ
o ⊗ Σ ∧ Θ

o ⊗ Θ = R. If Q is Cauchy-biateral then the Cauchy completion of
a symmetric Q-category is again symmetric, hence any symmetric Q-category is
isomorphic to its Cauchy completion in SymDist(Q) (and not merely in Dist(Q)).
Therefore we may still suppose that A and B are Cauchy complete. Referring to
the above, the category R is clearly symmetric whenever A and B are, and the
left adjoint distributors represented by the functors S : R // B and T : R // A are
evidently symmetric left adjoints. Thus the result follows. �

In view of Theorem 3.3 we may now conclude from the above:

Theorem 3.10 If Q is a small quantaloid of closed cribles, then SymDist(Q) is a modular
and tabular quantaloid in which all symmetric idempotents split symmetrically.

Change of base

This subsection is devoted to the proof of the fact that, when Q is a small quan-
taloid of closed cribles and E is a class of symmetric idempotents in Q contain-
ing all identities, then also QE is a small quantaloid of closed cribles, and the
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involutive quantaloids SymDist(Q) and SymDist(QE ) are equivalent. To tackle
this problem, we study the “change of base” homomorphism from SymDist(Q) to
SymDist(QE ) which is determined by the universal property of splitting symmet-
ric idempotents. Let us first recall the appropriate terminology.

Let Q and Q′ be small involutive quantaloids and F : Q //Q′ be a homomor-
phism that preserves the involution. It is easily seen that a symmetric Q-category
A determines a symmetric Q′-category FA by putting:

- objects: (FA)0 = A0 with types tFAa = F(ta) in Q′
0,

- hom-arrows: (FA)(a′ , a) = F(A(a′ , a)) for all objects a, a′.

Similarly for distributors, and F so determines a homomorphism
F : SymDist(Q) // SymDist(Q′) of involutive quantaloids that makes the diagram

Q
F //

� _

I

��

Q′
� _

I ′

��

SymDist(Q)
F

// SymDist(Q′)

(8)

commute: F is the change of base homomorphism induced by F. (Of course, I
denotes the canonical inclusion of Q in SymDist(Q), and similarly for I ′.)

Now we recall a necessary and sufficient condition for the “change of base”
induced by some F : Q //Q′ to be an equivalence. As it is straightforward to

verify that F : Q //Q′ is fully faithful if and only if the change of base F is fully

faithful, we need to take a closer look at the essential surjectivity on objects of F.

Lemma 3.11 Let F : Q //Q′ be a homomorphism of small involutive quantaloids. The

change of base F : SymDist(Q) // SymDist(Q′) is an equivalence of involutive quan-
taloids if and only if there exists a fully faithful homomorphism of involutive quantaloids
G : Q′ //SymDist(Q) making the diagram below essentially commutative:

Q
F //

� _

I

��

Q′

G
zzvvvvvvvvvvvvvvvvv

SymDist(Q)

Proof : First suppose that F is an equivalence. Considering the commutative
square in (8), the required fully faithful G is obtained by composing I ′ with the
pseudo-inverse of F.

Conversely, suppose that a fully faithful G exists such that G ◦ F ∼= I. Because
G and I are fully faithful, so is F, and thus also F. Size issues apart, also I and G
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induce a change of base, and we end up with an essentially commutative diagram

SymDist(Q) F //

I

��

SymDist(Q′)

G
vvnnnnnnnnnnnnnnnnnnnnnn

SymDist(SymDist(Q))

The homomorphisms I, F and G are fully faithful, because I, F and G are. If we
show that I is essentially surjective on objects, then it is an equivalence, and hence
so is F.

To see that I is indeed essentially surjective on objects, one can do as fol-
lows. Given C in SymDist(SymDist(Q)), let us explicitly write the hom-arrow
from an object x ∈ C to an object y ∈ C as Γy,x : Ax

❝ // Ay; these morphisms in
SymDist(Q) satisfy the conditions that make C a symmetric category: Ax ≤ Γx,x,
∨

y∈C Γz,y ⊗ Γy,x ≤ Γz,x and Γx,y = Γo
y,x (for all x, y ∈ C). With these data, we

define a symmetric Q-category A as follows:

- objects: A0 :=
⊎

x∈C Ax, with inherited types,

- hom-arrows: for u ∈ Ax and v ∈ Ay, A(v, u) := Γy,x(v, u).

Regarding A now as an object in SymDist(SymDist(Q)), via the change of base I,
we further define a distributor Γ : I(A) ❝ // C by:

- distributor-elements: for u ∈ Ax and y ∈ C, Γ(y, u) := Γy,x(−, u).

It is then a fact that Γ ⊗ Γo = C and Γo ⊗ Γ = I(A). All verifications are long but
straightforward computations. �

In the exact same situation as in the above lemma, we can sometimes say
more:

Lemma 3.12 In the situation of Lemma 3.11, if G is fully faithful and SymDist(Q) is
modular and tabular then Q′ is modular and weakly tabular.

Proof : Modularity of Q′ follows straightforwardly from the modularity of
SymDist(Q) and the fully faithful homomorphism Q′ // SymDist(Q) of involu-
tive quantaloids.

To deduce the weak tabularity of Q′ from the tabularity and modularity of
SymDist(Q), we first make a helpful observation. Given any Φ : A ❝ // B in
SymDist(Q), let

C

❝









Σ

��









❝
33

33
33

Θ

��
33

33
33

A ❝

Φ

// B
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be a tabulation; then, in particular, Φ = Θ ⊗ Σ
o and Σ ⊣ Σ

o. Now consider the
family

(

C(−, c) : ∗tc
❝ // C

)

c∈C

of all representable presheaves on C, each of which is a left adjoint in SymDist(Q).
Precomposing both Σ : C ❝ // A and Θ : C ❝ // B with these thus gives a family, in-
dexed by the c ∈ C,

∗tc

❝		
		

		

Σ ⊗ C(−, c) = Σ(−, c)

��		
		

		
❝

55
55

55

Θ(−, c) = Θ ⊗ C(−, c)

��
55

55
55

A B

of spans of left adjoints in SymDist(Q), whose domains are in the image of the
canonical embedding Q →֒ SymDist(Q), such that

Φ =
∨

c∈C

Θ(−, c)⊗
(

Σ(−, c)
)∗

.

In particular, if Φ : A ❝ // B is in the image of G : Q′ // SymDist(Q), then – because
the image of Q →֒ SymDist(Q) is contained in the image of G – it admits a weak
tabulation by spans of left adjoints in the image of G. By fully faithfulness of G,
Q′ is weakly tabular. �

The above results apply in particular when Q is a small quantaloid of closed
cribles and when we put Q′ = Qssi: they show that splitting the symmetric idem-
potents in a small quantaloid of closed cribles is “harmless” for the theory of
sheaves. In fact, instead of splitting all symmetric idempotents, we can choose to
split only those in a class E of symmetric idempotents containing all identities.

Theorem 3.13 If Q is a small quantaloid of closed cribles and E is a class of sym-
metric idempotents in Q containing all identities, then also QE is a small quantaloid
of closed cribles and the inclusion Q →֒ QE induces an equivalence SymDist(Q) ≃
SymDist(QE ) of involutive quantaloids.

Proof : If Q is a small quantaloid of closed cribles, then it is locally localic, hence
so is QE , by Lemma 3.6. The other results follow from the commutative diagram

Q � � //
� _

��

QE

zzuuuuuuuuuuuuuuuu

SymDist(Q)

of fully faithful functors, and the fact that SymDist(Q) is modular and tabular. �

Of course, taking E to be the class of all symmetric idempotents in Q, we
find that Qssi is a small quantaloid of closed cribles such that SymDist(Q) ≃
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SymDist(Qssi). But taking E to be the class of all symmetric monads in Q, or
the class of all symmetric comonads4, produces other important examples.

Walters’ theorem revisited

We now have everything ready to make the following extension to the result of
[Walters, 1982]. As is customary, we write Rel(T ) for the quantaloid of internal
relations in a topos T . The next theorem excludes all confusion with our earlier
notation Rel(Q).

Theorem 3.14 For any small site (C, J), any small quantaloid Q ≃ R(C, J) and any
set E of symmetric idempotents in Q containing all identities, we have the following
equivalences:

1. Sh(Q, E) ≃ SymCatcc(Q) ≃ Sh(C, J),

2. Rel(Q, E) ≃ SymDist(Q) ≃ Rel(Sh(C, J)).

Proof : This proof relies on Walters’ [1982, p. 101] theorem that the topos Sh(C, J) is
biequivalent to the bicategory SymCatcc(R(C, J)) (Walters’ insistence on the term
biequivalence stresses the fact that a single morphism in the category Sh(C, J) gets
identified with an equivalence class of morphisms in the bicategory
SymCatcc(R(C, J)) whose homs are symmetric preorders), on Freyd and Scecrov’s
[1990, 2.148] theorem that any tabular allegory A is equivalent (as allegory) to the
allegory Rel(Map(A)) of internal relations in the regular category Map(A), and on
the particular properties of SymDist(Q), for Q a small quantaloid of closed cribles,
that we summarised in Theorems 3.10 and 3.13.

Because Q is a small quantaloid of closed relations, so is QE (see Theorem
3.13); one particular consequence is that, for symmetric categories enriched in
either quantaloid, the symmetric completion coincides with the Cauchy comple-
tion (cf. Lemma 3.2 and Proposition 2.4). Furthermore, again by Theorem 3.13,
SymDist(Q) is equivalent to SymDist(QE ). All this justifies the following equiva-
lences of involutive quantaloids:

Rel(Q, E) := SymDistsc(QE ) = SymDistcc(QE ) ≃ SymDist(QE ) ≃ SymDist(Q).

By Theorem 3.10 we know that SymDist(Q) is a modular quantaloid, hence so are
its equivalents; all left adjoints in the above involutive quantaloids are therefore
symmetric left adjoints, by Lemma 3.2. Taking (symmetric) left adjoints therefore
produces the following equivalences of categories (or rather, biequivalences of
2-categories which are locally symmetrically ordered):

Sh(Q, E) := Catsc(QE ) ≃ SymMap(SymDistsc(QE )) ≃

Map(SymDist(Q)) ≃ SymCatcc(Q).

4In a modular quantaloid Q, an arrow c : A // A is a symmetric comonad if and only if it
satisfies c ≤ 1A. Indeed, if c ≤ 1A then co ≤ 1A too, hence c ≤ ccoc (cf. the proof of Lemma 3.4)
implies that c ≤ cc but also that c ≤ co, and by involution also co ≤ c. Therefore, particularly in
the context of allegories, the term coreflexive is often used.
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Invoking at this point Walters’ theorem, this proves (1). But because the involu-
tive quantaloid SymDist(Q) is not only modular but also tabular (see again The-
orem 3.10), Freyd and Scedrov’s theorem proves it to be equivalent to the invo-
lutive quantaloid of internal relations in Map(SymDist(Q)), which in turn proves
(2). �

The theorem above thus says two things about a small quantaloid of closed
cribles Q and a set E of symmetric idempotents in Q containing all identities:
firstly, that the category Sh(Q, E) := SymCatsc(QE ) is the category of sheaves on
a site; secondly, that this category Sh(Q, E) admits, up to equivalence, the simpler
description SymCatcc(Q). (And similar for Rel(Q, E).) Choosing E to be the set of
all symmetric idempotents in Q, we find:

Corollary 3.15 If Q is a small quantaloid of closed cribles, then Sh(Q) is a Grothendieck
topos and Rel(Q) is its category of relations.

Symmetric vs. discrete

In this subsection we wish to make a remark on the symmetry axiom that we
used in Definition 2.2 of Q-sheaves. In any locally ordered category K, an object
D is said to be discrete when, for any other object X ∈ K, the order K(X, D)
is symmetric. In [Heymans and Stubbe, 2012] we showed that, for a Cauchy-
bilateral quantaloid Q, every symmetric and Cauchy complete Q-category is a
discrete object of Catcc(Q). In general the converse need not hold, but:

Proposition 3.16 If Q is a small quantaloid of closed cribles, then a Cauchy complete
Q-category is discrete in Catcc(Q) if and only if it is symmetric.

Proof : Suppose that A is a discrete object in Catcc(Q); we seek to prove that
A(y, x) = A(x, y)o for any x, y ∈ A. Relying in particular on the weak tabularity
of Q, it is sufficient to show that, for any span ( f , g) : ty // tx of left adjoints in Q,

f g∗ ≤ A(x, y) ⇐⇒ f g∗ ≤ A(y, x)o.

But, because A is Cauchy complete, for any such span ( f , g) we can consider the
tensors x ⊗ f and y ⊗ g in A, and writing U = dom( f ) = dom(g) we indeed have

f ◦ g∗ ≤ A(x, y) ⇐⇒ 1U ≤ A(x ⊗ f , y ⊗ g)

⇐⇒ 1U ≤ A(y ⊗ g, x ⊗ f )

⇐⇒ g ◦ f ∗ ≤ A(y, x)

⇐⇒ f ◦ g∗ ≤ A(y, x)o

where the second equivalence is due to the discreteness of A and the last equiv-
alence holds because f ∗ = f o due to the modularity of Q. �

If Q is a small quantaloid of closed cribles, then so is Qssi, and the Cauchy
competion and symmetric completion of a symmetric Qssi-enriched category co-
incide. Thus we find:
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Corollary 3.17 If Q is a small quantaloid of closed cribles, then Sh(Q) is the full sub-
category of discrete objects of Ord(Q) and Rel(Q) is the full subquantaloid of discrete
objects of Idl(Q).

That is to say, whereas we defined the objects of Sh(Q) as the symmetric objects in
Ord(Q), we now find that they are exactly the discrete objects.

4 Grothendieck quantaloids and quantales

In the previous section we showed that, for Q a small quantaloid of closed cribles,
Sh(Q) is a Grothendieck topos and Rel(Q) is its category of relations. Given this
result, it is a natural to ask whether this is the case for other involutive quan-
taloids too; and if so, for which ones. Precisely, we wish to find necessary and
sufficient conditions on Q for Rel(Q) to be the category of relations in a topos.

Definition 4.1 A small involutive quantaloid Q is called a Grothendieck quantaloid
(if Q has only one object we speak of a Grothendieck quantale) if there exists a topos T
such that there is an equivalence Rel(T ) ≃ Rel(Q) of involutive quantaloids.

A sufficient condition on Q is being a small quantaloid of closed cribles. On the
other hand, the internal relations in a topos form a modular quantaloid, and Q is
a full subquantaloid of Rel(Q), so a necessary condition will be the modularity of
Q. To establish a precise necessary-and-sufficient condition, we first point out a
connection with projection matrices.

Definition 4.2 If Q is a small involutive quantaloid, then ProjMatr(Q) := Matr(Q)ssi
is the involutive quantaloid of projection matrices5.

Straightforwardly extending the terminology for quantales [Resende, 2012], we
shall say that a quantaloid Q is stably Gelfand if it is an involutive quantaloid in
which f f o f ≤ f implies f ≤ f f o f for any morphism f : X // Y. Any modular
quantaloid is trivially stably Gelfand, as seen in the proof of Lemma 3.4.

Lemma 4.3 1. For a stably Gelfand quantaloid Q there is an equivalence
ProjMatr(Q) ≃ SymDist(Qssi) ≃ Rel(Q) of involutive quantaloids.

2. If Q is a small quantaloid of closed cribles, then ProjMatr(Q) and SymDist(Q) are
equivalent involutive quantaloids.

3. A small involutive quantaloid Q is a Grothendieck quantaloid if and only if there
exists a topos T such that there is an equivalence Rel(T ) ≃ ProjMatr(Q) of invo-
lutive quantaloids.

Proof : (1) Let P : X // X be a symmetric idempotent in Matr(Q); that is to say, X

is a Q-typed set, and P is a collection of Q-morphisms P(x′, x) : tx // tx′, one for
each (x, x′) ∈ X × X, such that

∨

x′′∈X

P(x′, x′′) ◦ P(x′′, x) = P(x′, x) = P(x, x′)o for every (x, x′) ∈ X.

5In [Freyd and Scedrov, 1990, 2.226], in the context of allegories rather than quantaloids, this
construction is referred to as the systemic completion.
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From this it is clear that P(x, x′) ◦ P(x, x′)o ◦ P(x, x′) ≤ P(x, x′), so that by hy-
pothesis the converse inequality holds too. The computation

P(x, x′) ≤ P(x, x′) ◦ P(x, x′)o ◦ P(x, x′)

= P(x, x′) ◦ P(x′, x) ◦ P(x, x′)

≤ P(x, x) ◦ P(x, x′)

≤ P(x, x′).

then shows that P(x, x′) = P(x, x) ◦P(x, x′); and similarly for P(x, x′) = P(x, x′) ◦
P(x′, x′). In other words, each P(x, x) is an object of Qssi, and each P(x, x′)
is a morphism in Qssi from P(x′, x′) to P(x, x). As a consequence, we can de-
fine a symmetric Qssi-category P whose Qssi-typed object set is X with types
tx := P(x, x), and whose hom-arrows are P(x, x′) := P(x, x′). Note that the Qssi-
category P is normal in the sense of [Stubbe, 2005b]: all of its endo-hom-arrows
are identities. Furthermore, if both P : X // X and Q : Y // Y are projection ma-

trices, and M : P // Q is a morphism in ProjMatr(Q), i.e. a matrix M : X // Y such

that Q ◦ M = M = M ◦ P, then we can define a distributor Φ : P ❝ // Q with el-
ements Φ(y, x) = M(y, x). In fact, each distributor between P and Q arises in
this way. In short, the correspondence P 7→ P extends to an equivalence of in-
volutive quantaloids between ProjMatr(Q) and the full involutive subquantaloid
of SymDist(Qssi) of the normal symmetric Qssi-categories (compare with [Stubbe,
2005b, Lemma 6.1]). But furthermore, a long but straightforward computation
shows that each symmetric Qssi-category is Morita equivalent with a normal sym-
metric Qssi-category: so SymDist(Qssi) is equivalent to its full involutive subquan-
taloid of normal objects (compare with [Stubbe, 2005b, Lemma 6.2]). Taken to-
gether, all this proves that the correspondence P 7→ P extends to an equivalence
of involutive quantaloids between ProjMatr(Q) and SymDist(Qssi). Finally, by
Proposition 2.4 the latter is furthermore equivalent to Rel(Q) := SymDistsc(Qssi)
(as involutive quantaloid).

(2) Holds by Theorem 3.14, taking E to be the set of all symmetric idempotents
in Q.

(3) If Q is a Grothendieck quantaloid, then Rel(Q) ≃ Rel(T ) for some topos T ,
so Q is modular because it is a full involutive subquantaloid of Rel(Q). If, on the
other hand, we assume that ProjMatr(Q) ≃ Rel(T ) for some topos T , then again
Q is modular, now because it is a full involutive subquantaloid of ProjMatr(Q).
In either case, Q is certainly stably Gelfand, so ProjMatr(Q) ≃ Rel(Q) by the first
statement in this Lemma, which proves ProjMatr(Q) ≃ Rel(T ) ≃ Rel(Q) in either
case. �

We shall now recall some notions that [Freyd and Scedrov, 1990, 2.216(1),
2.225] introduced in the context of allegories, but that we adopt here for quan-
taloids. (In fact, the property that we call ‘weak semi-simplicity’ was not given a
name by Freyd and Scedrov [1990].)

Definition 4.4 A morphism q : X // Y in an involutive quantaloid Q is:

1. simple if qqo ≤ 1Y,

2. semi-simple if there are simple morphisms f and g such that q = f go,
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3. weakly semi-simple if q =
∨

{ f go | f go ≤ q with f and g simple}.

And an involutive quantaloid Q is (weakly) (semi-)simple if each of its morphisms is.

The next lemma can be found in [Freyd and Scedrov, 1990, 2.16(10)], but we spell
out its proof for later reference.

Lemma 4.5 A modular quantaloid Q is semi-simple if and only if Qssi is tabular.

Proof : Suppose that Qssi is tabular. Given a morphism q : X // Y in Q, it can be

included in Qssi as q : 1X
// 1Y, so let q = f go be a tabulation in Qssi. If Q is

modular then so is Qssi (by Lemma 3.7) so every left adjoint is a symmetric left
adjoint. From this it is straightforward that both f and g are simple morphisms
in Q such that q = f go.

Conversely, suppose first that Q is only semi-simple, and let q ∈ Qssi(r, p);
that is to say, r : X // X and p : Y // Y are symmetric idempotents in Q, and

q : X // Y is a morphism in Q satisfying pq = q = qr. Now let b : Z // X and

a : Z // Y be simple morphisms in Q such that abo = q. It is then straightforward

to check that pa : 1Z
// p and rb : 1Z

// r are simple morphisms in Qssi such that
(pa)(rb)o = q. In other words, Qssi is semi-simple whenever Q is. Now the other
hypothesis says that Q is also modular; by Lemma 3.7 we know that Qssi is mod-
ular too. It thus remains to prove that Qssi is tabular when it is semi-simple and
modular. So again, let q ∈ Qssi(r, p) and suppose now that x : e // p and y : e // r
are simple morphisms in Qssi such that q = xyo. Simplicity of x and y makes
z := xox ∧ yoy ∈ Qssi(e, e) a symmetric morphism satisfying zz ≤ z; it follows
from the modular law that it is therefore a symmetric idempotent, and further-
more that xzyo = xyo. Choosing a (necessarily symmetric) splitting of z in Qssi,
say a w ∈ Qssi( f , e) such that z = wwo and wow = f , it is then tedious but routine
to check that x′ := xw and y′ := yw are left adjoints in Qssi that tabulate q. �

The proof of the previous lemma can be tweaked to obtain the following
‘weak’ variant:

Lemma 4.6 A modular quantaloid Q is weakly semi-simple if and only if Qssi is weakly
tabular.

Proof : This is a straightforward adaptation of the previous proof: instead of work-
ing with single pairs of simple morphisms we must work with families of pairs
of simple morphisms.

Suppose that Qssi is weakly tabular. A morphism q : X // Y in Q can be

viewed as a morphism q : 1X
// 1Y in Qssi, so consider its weak tabulation in Qssi:

q =
∨

{ f g∗ | f and g are left adjoints in Qssi such that f g∗ ≤ q}.

If Q is modular then it follows (as in the previous proof) that all the f ’s and g’s in
the above expression are simple in Q and exhibit q’s weak semi-simplicity.

Conversely, suppose first that Q is weakly semi-simple. If q : r // p is a mor-

phism in Qssi (between symmetric idempotents r : X // X and p : Y // Y, say)

then at least we know that q : X // Y is weakly semi-simple in Q:

q = {abo | a and b are simple morphisms in Q such that abo ≤ q}.
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As in the previous proof, each such pair (a, b) of simple morphisms in Q deter-
mines a pair (pa, rb) of simple morphisms in Qssi, and the lot of them exhibit
q’s weak semi-simplicity in Qssi. Thus Qssi is weakly semi-simple whenever Q
is. Adding the hypothesis that Q is modular, we must prove that Qssi is in fact
weakly tabular. So again, let q : r // p be a morphism in Qssi, and suppose now
that

q =
∨

{xyo | x and y are simple morphisms in Qssi such that xyo ≤ q}.

Each of the pairs (x, y) of simple morphisms in Qssi can be transformed, as in the
previous proof, into a pair (x′, y′) of left adjoint morphisms in Qssi, and the lot of
them provide for a weak tabulation of q. �

Much like Theorem 3.3 contains an axiomatic description of small quantaloids
of closed cribles, we can now give an axiomatisation of Grothendieck quantaloids.
In a sense, this is a refined analysis of the notion of ‘weak semi-simplicity’.

Theorem 4.7 For a small involutive quantaloid Q, the following are equivalent:

1. Q is weakly semi-simple,

2. Matr(Q) is semi-simple,

If Q is modular then this is also equivalent to:

3. Qssi is weakly tabular.

If Q is modular and locally localic then this is also equivalent to:

4. Qssi is a small quantaloid of closed cribles,

5. ProjMatr(Q) is tabular,

6. there exists a small site (C, J) such that Rel(Q) ≃ Rel(Sh(C, J)),

7. Q is a Grothendieck quantaloid.

In fact, the small site (C, J) of which statement (6) speaks, is the site associated (as in The-
orem 3.3) with the small quantaloid of closed cribles Qssi of which statement (4) speaks.

Proof : (1 ⇒ 2) Let M : A // B be a morphism in Matr(Q): we must find semi-

simple matrices F : C // B and G : C // A such that M = FGo. Each element of

M, that is, each Q-arrow M(b, a) : ta // tb, is weakly semi-simple by assumption;
thus

M(b, a) =
∨

{ f go | f go ≤ M(b, a) with f and g simple}. (9)

For each (a, b) ∈ A × B we define the set

C(a,b) = {( f , g) | f go ≤ M(b, a) with f and g simple morphisms in Q}

and furthermore we define C to be the coproduct of the C(a,b)’s. The constant

functions C(a,b)
// A : ( f , g) 7→ a and C(a,b)

// B : ( f , g) 7→ b therefore uniquely
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define functions α : C // A and β : C // A; and putting the type of ( f , g) ∈ C to
be the domain of f (= the domain of g) makes C an object of Matr(Q).

With the aid of the identity matrices ∆A : A // A and ∆B : B // B we now de-

fine two Q-matrices, F : C // B and G : C // A, to have as elements

F(b, ( f , g)) = ∆B(b, β( f , g)) ◦ f and G(a, ( f , g)) = ∆A(a, α( f , g)) ◦ g.

Simplicity of all f ’s and g’s makes sure that F and G are simple matrices, and the
formula M = FGo precisely coincides with (9).

(2 ⇒ 1) Any q : X // Y in Q may be viewed as a one-element matrix

(q) : {X} // {Y} between singletons (with obvious types). By hypothesis there

are simple matrices F : C // {Y} and G : C // {X} such that (q) = FGo. The sim-
plicity of F and G implies that, for each c ∈ C, the morphisms fc := F(Y, c) :
tc // Y and gc := G(c, X) : X // tc are simple morphisms in Q; and (q) = FGo

expresses precisely that q =
∨

c∈C fcgoc , showing q to be weakly semi-simple in Q.
(1 ⇔ 3) This is the contents of Lemma 4.6
(3 ⇔ 4) If Q is a locally localic and modular quantaloid, then so is Qssi (by

Lemmas 3.6 and 3.7); in particular, Qssi is map-discrete and weakly modular too
(see Lemma 3.2). Thus Qssi is weakly tabular if and only if it is a small quantaloid
of closed cribles (cf. Theorem 3.3).

(2 ⇔ 5) From Lemmas 3.2 and 3.7 we know that Matr(Q) is modular. Lemma
4.5 does the rest, since ProjMatr(Q) = (Matr(Q))ssi .

(4 ⇒ 6) If Qssi ≃ R(C, J) for some small site (C, J), then Rel(Q) ≃ Rel(Qssi) is
equivalent to Rel(Sh(C, J)) by Theorem 3.14.

(6 ⇒ 7) Is evident.
(7 ⇒ 5) If Q is a Grothendieck quantaloid, then ProjMatr(Q) – which by

Lemma 4.3 is equivalent to Rel(Q) – is equivalent to the allegory of internal rela-
tions in a topos, so it is most certainly tabular (see e.g. [Freyd and Scedrov, 1990,
2.142]). �

Quantaloids vs. quantales

The theorem above thus says that a Grothendieck quantaloid is precisely a mod-
ular, locally localic and weakly semi-simple quantaloid. There is an easier crite-
rion than weak semi-simplicity when dealing with Grothendieck quantales rather
than quantaloids. Using the term quantal frame to mean a quantale whose under-
lying sup-lattice is a locale [Resende, 2007], we can state it as:

Theorem 4.8 A Grothendieck quantale is a modular quantal frame with a weakly semi-
simple top (i.e. ⊤ =

∨

{ f go | f , g simple}).

Proof : One implication is trivial. For the other, let q ∈ Q; we must show that it is
weakly semi-simple. For any two simple elements of Q, f and g say, the modular
law and the simplicity of f and g allow us to compute that

q ∧ f go ≤ f ( f oqg ∧ 1)go ≤ ( f f oqggo) ∧ f 1go ≤ q ∧ f go.
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The element h := f ( f oqg ∧ 1) is simple, because it is smaller than the simple
element f . In other words, this shows that, for any pair ( f , g) of simple elements,
there exists a simple element h such that q ∧ f go = hgo. Using the remaining
hypotheses, we can thus compute that

q = q ∧⊤

= q ∧
∨

{ f go | f , g simple}

=
∨

{q ∧ f go | f , g simple}

=
∨

{hgo | hgo ≤ q with h and g simple},

so Q is indeed weakly semi-simple. �

As an application of the “change of base” principles that we developed in
Section 3, we shall now show how every Grothendieck topos is equivalent to a
category of Q-sheaves, with Q a Grothendieck quantale.

First recall that two small quantaloids Q and R are said to be Morita-equivalent
when the (large) quantaloids of modules [Qop, Sup] and [Rop, Sup] are equiva-
lent. B. Mesablishvili [2004] proved that for any small quantaloid Q there is a
Morita-equivalent quantale Qm; he uses abstract V-category theoretic arguments
to prove his claim. Unraveling his arguments, we can give an explicit construc-
tion of Qm: it is Matr(Q)(Q0,Q0), the quantale of endo-matrices with elements
in Q on the Q-typed set of objects of Q (where, of course, the type of an object
X ∈ Q is X).

Given a morphism f : A // B in a small quantaloid Q, we shall write M f ∈ Qm

for the matrix all of whose elements are zero, except for the element indexed by
(A, B) ∈ Q0 × Q0, which is equal to f . The function f 7→ M f is easily seen to
preserve composition and suprema (but evidently not the identities, so it is not
a quantaloid homomorphism). However, if E is a class of idempotents in Qm

containing all of {M1A
| A ∈ Q0}, and we split these idempotents in Qm, then we

obtain a homomorphism

M : Q // (Qm)E : ( f : A // B) 7→ (M f : M1A
// M1B

)

which is easily seen to be fully faithful and injective on objects. If Q is a small
involutive quantaloid, then it is straightforward to define an involution on the
quantale Qm as well, which the function f 7→ M f preserves. If all elements of E
are symmetric (which is automatic for the M1A

), then the above homomorphism
is not only fully faithful and injective on objects, but also preserves the involution.

Furthermore, Qm is, by definition, a full subquantaloid of Matr(Q), which
in turn is a full subquantaloid of SymDist(Q); let us write the full inclusion as
J : Qm // SymDist(Q). In case symmetric idempotents split symmetrically in

SymDist(Q), there is a fully faithful homomorphism J′ : (Qm)E // SymDist(Q) of
involutive quantaloids. This is in particular the case when Q is a small quantaloid
of closed cribles, which leads us to:
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Proposition 4.9 If Q is a small quantaloid of closed cribles, Qm is its Morita-equivalent
quantale and E is a class of symmetric idempotents in Qm containing all of
{M1A

| A ∈ Q0}, then also (Qm)E is a small quantaloid of closed cribles and the
inclusion Q →֒ (Qm)E induces an equivalence SymDist(Q) // SymDist((Qm)E ) of in-
volutive quantaloids.

Proof : If Q is a small quantaloid of closed cribles, then it is in particular locally
localic and modular. Hence Matr(Q) is locally localic, implying that Qm is locally
localic (as a one-object quantaloid), and therefore also (Qm)E is locally localic.
Moreover, it is straightforward to compute that the diagram

Q � � M
//

� _

I

��

(Qm)E

J′
yysssssssssssssssss

SymDist(Q)

of involutive quantaloids and homomorphisms that preserve the involution com-
mutes up to natural isomorphism. Because J′ is fully faithful, the results in Lem-
mas 3.11 and 3.12 apply, and prove the proposition. �

If Q is a small quantaloid of closed cribles, then SymDist(Qssi) ≃ SymDist(Q)
by Proposition 3.13, which is further equivalent to SymDist((Qm)ssi) by Proposi-
tion 4.9. This produces the following:

Corollary 4.10 If Q is a small quantaloid of closed cribles, then

1. Sh(Q) ≃ Sh(Qm),

2. Rel(Q) ≃ Rel(Qm).

This implies that Qm is a Grothendieck quantale.

This result says in particular that any Grothendieck topos can equivalently be described
as a category of sets with an equality relation taking truth-values in a Grothendieck quan-
tale.

Examples

We end this paper with some examples, the first two of which clearly illustrate
the difference between ‘small quantaloids of closed cribles’ and ‘Grothendieck
quantaloids’.

Example 4.11 (Closed cribles) As remarked before, each small quantaloid Q of
closed cribles is a Grothendieck quantaloid, and Sh(Q) is equivalent to the topos
of sheaves on the site canonically associated with Q.
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Example 4.12 (Locales) A locale (L,
∨

,∧,⊤) with its trivial involution is a Gro-
thendieck quantale, but it is not a small quantaloid of closed cribles (because
it is not weakly tabular). Upon splitting the (symmetric) idempotents in L one
obtains a small quantaloid of closed cribles; the site associated with the latter (as
in Theorem 3.3) is exactly the canonical site (L, J) (for which (xi)i ∈ J(x) if and
only if

∨

i xi = x). Thus Sh(L) - in the sense of Definition 2.2 – is equivalent to the
“usual” topos of sheaves on L.

Our next example is somewhat more involved. First we must recall from
[Stubbe, 2005b] that the 2-category Ord(Q) of Definition 2.1 is equivalent to the 2-
category TRSCatcc(Q) of “Cauchy complete totally regular Q-semicategories and
totally regular semifunctors”; and in [Heymans and Stubbe, 2009a] it is shown to
be further equivalent to the 2-category Map(Modlpg(Q)) of “locally principally
generated Q-modules” and left adjoint module morphisms. It is not difficult to
deduce, from the symmetrisation of Q-orders qua Qssi-enriched categories that
we proposed in Definition 2.2, the appropriate symmetrisations of Q-semicate-
gories and of Q-modules, thus producing as many different but equivalent de-
scriptions of Q-sheaves. In fact, in [Heymans and Stubbe, 2009b] we already
studied the symmetric variant of locally principally generated Q-modules, albeit
only for involutive quantales (and not quantaloids): the so-called “locally prin-
cipally symmetric” objects in Modlpg(Q) form the subcategory Modlpg,lps(Q). In
[Heymans and Stubbe, 2009b, Example 3.7(4)] we showed that, for any involu-
tive quantale Q, the involutive quantaloid ProjMatr(Q) is equivalent to the invo-
lutive quantaloid Hilb(Q) of so-called “Q-modules with Hilbert structure” (and
module morphisms between them). (The proof also appears in [Resende, 2012,
Lemma 4.26, Theorem 4.29].) And we furthermore proved that, when Q is a mod-
ular quantal frame, then Hilb(Q) is further equivalent to the involutive quantaloid
Modlpg,lps(Q) [Heymans and Stubbe, 2009b, Theorems 3.6 and 4.1]. Theorem 4.7
says in particular that a Grothendieck quantale is necessarily a modular quantal
frame, so together with Lemma 4.3 this shows that in this case all of the invo-
lutive quantaloids Rel(Q), ProjMatr(Q), Hilb(Q) and Modlpg,lps(Q) are equivalent.
Taking left adjoints in either of these therefore produces equivalent Grothendieck
toposes

Sh(Q)≃Map(Rel(Q))≃Map(ProjMatr(Q))≃Map(Hilb(Q))≃Map(Modlpg,lps(Q)).

Example 4.13 (Inverse quantal frames) An inverse quantal frame Q is a modular
quantal frame such that ⊤ =

∨

{p ∈ Q | pop ∨ ppo ≤ 1}. It follows trivially from
Theorem 4.8 that inverse quantal frames are Grothendieck quantales. There is
a correspondence up to isomorphism between inverse quantal frames and étale
groupoids [Resende, 2007]: for every étale groupoid G there is an inverse quantal
frame Q = O(G) (as locale it is the object of morphisms of G, and its quan-
tale multiplication stems from the composition law in G); and for every inverse
quantal frame Q there is an étale groupoid G such that Q ∼= O(G). Moreover,
[Resende, 2012, p. 62–65] proves that Map(Hilb(O(G))) is equivalent to the classi-
fying topos BG of the étale groupoid G. Consequently,

Sh(O(G))≃Map(Rel(O(G)))≃Map(ProjMatr(O(G)))≃

Map(Hilb(O(G)))≃Map(Modlpg,lps(O(G)))
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are all equivalent descriptions of the topos BG in terms of “sheaves on an involu-
tive quantale”.
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