Homoclinic solutions for second order
Hamiltonian systems with small forcing terms™
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Abstract

The existence of homoclinic solutions is obtained for a class of nonau-
tonomous second order Hamiltonian systems #i(t) + VV (t,u(t)) = f(t) as
the limit of the 2kT-periodic solutions which are obtained by the Mountain
Pass theorem, where V (t,x) = —K(t, x) + W(t, x) is T-periodic with respect
tot, T > 0,and W(t, x) satisfies the superquadratic condition: W(t, x) /|x|*> —
+o00 as |x| — oo uniformly in ¢, which needs not to satisfy the global Ambro-
setti-Rabinowitz condition.

1 Introduction and main results

In this paper, we put our attention to the existence of homoclinic orbits for the
second order Hamiltonian system

i)+ VV(tu(t)) = f(£), VteER, (1)

where f : R — RN is a continuous, bounded function. As usual, we say that a
solution u(t) of problem (1) is nontrivial homoclinic(to 0) if u # 0, u(t) — 0 and
1u(t) — 0ast — too. Here and subsequently, VV (¢, x) denotes the gradient with
respect to the x variable, and (-,-) : RN x RN — R denotes the standard inner
product in RN and | - | is the induced norm.
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The existence of homoclinic orbits is a very important problem in the theory
of Hamiltonian systems. It has been studied by many authors (see[1-13]). In 1990,
Rabinowitz in [10] showed the existence of homoclinic orbits for problem (1) as
the limit of the 2kT-periodic solutions of problem (1) when f = 0 and the function
V considered by the author is of the form

V(t x) = —%(L(t)x,x) +W(t ), )

where L is a continuous T-periodic positive definite symmetric matrix valued
function for all t € [0, T|, W is T-periodic and satisfies the so-called global Ambro-
setti-Rabinowitz condition, that is,

(Wq) there exists a constant A > 2 such that

0 < AW(t,x) < (x, VIW(t,x))
for every t € Rand x € RN \ {0}. As we know, condition (W;) implies that

/

(W;) W(t,x)/|x|* = +o0 as |x| — oo uniformly in ¢,

which is weaker than (W;). Then, by replacing (W) with (W{), the authors in
[8] obtained the existence of homoclinic orbits for problem (1) while f = 0 and
V is of the form (2). Via the same method of Rabinowitz in [10], Izydorek and
Janczewska in [5] proved problem (1) possesses a nontrivial homoclinic solution
when V(t,x) = —K(t, x) + W(t, x) rather than the form (2), and K is assumed to
be periodic in ¢, satisfying the pinching condition by |x|> > K(t, x) > by|x|?. After
then, by weakening the pinching condition, Tang and Xiao in [12] generalized the
results of [5], which are the following theorems.

Theorem A([12]). Suppose that V and f satisfy (Wy) and the following conditions

(V) V(t,x) = —K(t,x) + W(t,x), where K, W : R x RN — R are C!-maps,
T-periodic with respectto t, T > 0,

(K1) there are constants b > 0 and y € (1, 2] such that

K(t,0) =0, K(t x) > blx|"

for all (t,x) € R x RN,
(Ky) there is a constant 6 € [2,A) such that

(x, VK(t,x)) < OK(t, x)

for all (t,x) € R x RN,
(W2) VIW(t,x) = o(]x|) as x — 0 uniformly with respect to t,

(f)
2 P L v S B | 2
0</R|f(t)| dt <2 (min {2, o071 =117,
where m = sup{W(t,x)|t € [0, T],x € RN, |x| = 1}, and v € (0, 1] such that

b ! — 1 = max (bx”‘1 — mx)‘_l) .
x€[0,1]
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Then problem (1) possesses a nontrivial homoclinic solution.

When f = 0, under one stronger condition on K, they also proved system (1)
possesses a nontrivial homoclinic solution, which is the following theorem

Theorem B([12]). Suppose that f = 0 and V satisfies (V), (K1), (Wy), (W;) and
the following condition
(K,) there is a constant 6 € [2,A) such that

K(t,x) < (x, VK(t,x)) < 0K(t, x)
for all (t,x) € R x RN,
Then problem (1) possesses a nontrivial homoclinic solution.

Motivated by the papers above, in this paper, we will obtain the homoclinic
solution of problem (1) by using the more general condition (W{) rather than
(W1). The main results are the following theorems.

Theorem 1.1. Suppose that f # 0 and V satisfies (V), (Ky), (W,) and the following
conditions

(Ky) (x, VK(t,x)) < 2K(t,x) forall (t,x) € R x RV,

(Wé) VW(t, x) = o(|x|7"!) as x — 0 uniformly with respect to t,

(W3) there are constants B > 0 and d; > 0 such that

W(t,x)| < dyx]P

for all (t,x) € R x RN,
(Wy) there exist constants y > max{B — 7,1}, d» > 0 and function
¢ € LY(R,R") such that

(x, VIW(t,x)) —2W(t, x) > dp|x|!" — g(t)
for all (t,x) € R x RN,

Then there is a constant & > 0 such that, for any f satisfying

max { [ 1£®)Pa, [ IF@F 0 Vary <o, 3)

system (1) possesses at least one nontrivial homoclinic solution.

Theorem 1.2. Suppose that f = 0.and V satisfies (V'), (K1), (Wi), (Wé), (W3) and
the following conditions

11

(K, ) thereisa constant2 > p > 0 such that
pK(t,x) < (x, VK(t,x)) < 2K(t,x)

for all (t,x) € R x RV,
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(W;) there exist constants i > 8 — 7, d» > 0 and function ¢ € L'(R, R") such
that

(x, VIW(t,x)) —2W(t,x) > dp|x|! — g(t)
for all (t,x) € R x RV,

Then problem (1) possesses a nontrivial homoclinic solution.

Remark 1.1. Condition (K, ) implies K(t,0) = 0 and (K, ).

Remark 1.2. There are functions K and W which satisfy our Theorem 1.1 and
Theorem 1.2 without satisfying the corresponding assumptions in [5, 12]. For
example, let

2 2
K(t x) = |x|® + x5, W(tx)= { |x|“In|x|* forx # 0

0 forx =0,

where t € R, x € RV, then V(t,x) = —K(t,x) + W(t,x) cannot be represented
as the form V(t,x) = —Kp(t,x) + Wp(t, x) with Ko(t, x) and Wy(t, x) satisfying
Theorem A or Theorem B because W satisfies (W;) and does not satisfy (W)
while V satisfies our conditions with b = %, Y=p = %, B = %, di=pu =2,
dz = 1,g(t) =0.

2 Proof of Theorems

For each k € N, let L (R, R") denote the Hilbert space of 2kT-periodic
functions on R with values in RN under the norm

kT ) 172
Il = ([ o dr)

and LS+ (R, RN) be a space of 2kT-periodic essentially bounded measurable func-
tions from R into R under the norm

||UHL§<;(T(R/RN) = esssup{|u(t)| : t € [—kT,kT]}.

In order to obtain a homoclinic solution of problem (1), we consider a se-
quence of systems of differential equations:

i(t) + YV (tu(t) = filt), @

where, for each k € N, fi : R — RY is a 2kT-periodic extension of restriction of f
to the interval [—kT, kT].

For each k € N, let E; := Wzll'(‘zT(R, RYN) denote the Hilbert space of 2kT-

periodic function from R to RN under the norm

1/2
lull = ( [ ()P + loP)ar)
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Moreover, let 7 : Ex — [0, +00) be given by

1/2
ne(u) == (/_k;(yu(t),z —|—2K(t,u(t))dt> ,

and I : R — RY be the corresponding functional of (4) defined by

i) = [ (FOR + K u(h) ~ W) + (), ) )

then one can easily check that I; € C!(Eg, R) and

kT

(I(u), v) =/ ((a(t),0(t)) = (VV(tu(t), v(t)) + (f(t), v(t))) dt.

—kT

It follows from (5) and (6) that

1 kT
() = 5200 + [ (“W(Eu(0) + (flt) u(e)d.

751

(5)

(6)

(7)

(8)

Now, we prove the existence of a homoclinic solution of problem (1) as the
limit of the 2kT-periodic solutions of system (4) which are obtained via the Moun-
tain Pass theorem. We have divided the proof of Theorem 1.1 into a sequence of
lemmas. We can obtain a conclusion directly from the estimation made in [12],

which is our first lemma.

Lemma 2.1. There is a positive constant C which is independent of k such that for

each k € N and u € E the following inequality holds

g

2 (RRY) < Cllulg,.

1!

Lemma 2.2. Suppose that (K, ) holds. Then we have

K(tx) <K (tﬁ) 2

forallt € [0,T] and |x| > 1.
Proof. Set f(s) = s—2K(t,s¢). By (K, ), we have
f(s) = —25_3K(t,s<§) —I—s_z(VK(t,sC),C)
)

s3 (—2K(t,s¢) + (VK(t,5E),s8))
0,

IA

then if s > 1 we have f(s) < f(1), that s,
sT2K(t,s&) < K(t,¢),

sets = |x| and ¢ = x/|x|, we obtain our inequality.

©)

(10)
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By (V) we can set
M :=sup{K(t,x)| t € [0,T],x € RN, |x| < 1},
then from Lemma 2.2 we have
K(t,x) < M(|x[> +1) (11)

for all (t,x) € R x RN.

Lemma 2.3. Suppose that f # 0and V satisfies (V'), (K1), (K’Z/), (W{), (Wé), (W3)
and (Wy), then there is a constant 6 > 0 such that, for any f satisfying (3), system (4)
possesses a 2kT-periodic solution uy € Ey for every k € N.

Proof. It is known that the Mountain Pass theorem holds when the usual (PS)
condition is replaced by condition (C). Then we apply the Mountain Pass theorem
to obtain the critical point of [ under condition (C).

First of all, we prove a property of W. It follows from (Wé) that, for any € > 0,
there exists ¢ > 0 such that
IVW(t,x)| < yelx|",  |x| <o, Vt€]0,T],

which implies that

W(tx)| = /Ol(VW(t,sx),x)ds

1
< / IVW(t, sx)||x|ds
0

1
< /’ye|sx|"f_1|x|ds
0
= ¢lx|7. (12)

We can choose ¢ = %b, then there is a1 > o0y > 0 such that (12) holds when
|x| < oy forallt € [0, T].
Our proof involves three steps.

Step 1: I satisfies condition (C). We can choose 6 > 0 such that
0 < 5¢min{1,b}. Assumption (W3) yields W(t,0) = 0 which means I;(0) = 0.
Then we show that I; satisfies the (C) condition. Assume that {u;};en C Ex is

a sequence such that {I;(u) }jen is bounded and ||I,/((u])|| — 0 asj — oo. Then
there exists a constant C; > 0 such that

() < Co ()L + [ug]lg,) < C. (13)

Then {u;} is bounded. If not, passing to a subsequence if necessary, we can sup-
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pose that ||u;[g, — o0 asj — co. By (13), (K;_/), (W) and (3) we have

3Ck = 2I(uj) + [ (up) ([ (T + [lujllg,)

> 2L(uj) — (I (), up)
kT kT
> [ (TW (), () = 2W(E () + [ (lt), (e
1/u
> d, /_k;]uj(t)]ﬂdt—/_kkTTg(t)dt—é </_k:T|uj(t)|P‘dt)

kT kT 1/p
> dz/kT]uj(t)]”dt—é(/_kT]u]-(t)]”dt) e (14)

for some G > 0. Since y > 1, it follows from (14) that, there is Dy > 0 such that

kT
/_ (Bt < Dy, (15)

Moreover, from (W3) and (Ws) we can conclude 8 > p, then by (6), (3), (W3), (15)
and Lemma 2.1 we obtain

YR) < )+ [ WO~ [ (o,
1/
< Ck—i—dl/_k;]uj(tﬂﬁdt—l—é</_k:T|uj(t)]ﬂdt> '

kT
Cy+6DY" + dy / ()P

IN

IN

1/p By, b1 [ p
Ce+ D H + dy CPH ||| /_kT|uj(t)| dt
< Cp+ 0D +di CPFDlug| 5" (16)

Since pt > B — v, it follows from (16) that there is a constant vy € (8 — u, ) such
that

i (1)

170

[Ju45] E,

—0 (17)

as j — co. When j is big enough, we have ||u;||g, > 1, by (K;) and Lemma 2.1, we
get

5 kT ) 5 kT y
P2y > /_kT|uj(t)| dt+2b/_kT|u]-(t)| dt

kT . 2 ) ¥—2 kT 2
/_kT|u]-(t)| dt +26C72 | 7 /_kT|uj(t)| dt

_ , Koo o KT )
min{1,2067 2} ([ oy e+ g 17 [ )P )

> min{1,26C" 2} |luj]| %,

Vv

v
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which implies that

nE(uj)
1170
]

7

as j — oo. This is a contradiction. Then {u;}cn is bounded in E;. By a standard
argument, we see that {u]-} jeN has a convergent subsequence in E;. Hence Ij
satisfies the (C) condition.

Step 2: Now, we show that there exist constants ¢, « > 0 independent of k
such that I > a on 9B,(0) = {u € Ei| ||u|g, = o}. Set

0  3min{1,b}og — Céop
—c T ? ’

which implies 0 < [Ju| g, < 09 < 1. It follows from (8), (K1), (12) and (3) that

(18)

L(u) = znk )+ / (1) + (f(t), u(t))) dt
> 2/ 2dt+b/ |7dt——b/ u(t)|7dt
kT
+ [ o, u)r
> 2/ )|2dt + b/ (8)[7dt —6|ullg,
> %min{l,b} </_k 2dt+/ Wdt) —Ollullg,
> 2 min{1, b} ulf, — ulle, (19)

By the definition of ¢ and &, if ||u||g, = o, (19) implies I;(u) > «.

Step 3: We only need to prove that for each k € N there is ¢, € Ej such that
lex||e, > 0 and Ix(er) < 0. By (8) and (11), for every r € R\ {0} and u € E; \ {0},
the following inequality holds

1 kT kT
L(ru) < (-/ P ()|2dt+M/ y?-dt)| 2 - / W(t, ru)dt
2 )kt —kT
+ |r|§Hu||Ek + 2kTM. (20)

Fix Q € C°(—T,T)\ {0} C E;, then there exists ty € (=T, T) such that Q(t9) # 0,
which implies that there are §p > 0, L; > 0 such that

1Q(t)] > Ly (21)

for all |t — ty| < do. By (W;) and (W3), we can conclude, there exists L, > 0 such
that

W(t,x) > —L, (22)
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for all (t,x) € R x RN. Moreover, (W{) also implies that for every { > 0, there
exists L3 > 0 such that

W(t, x)
W > (23)

for all |x| > Lz uniformly in t € R. When r > L3/L;, combining (21), (22), (23)
we have

/T W(if,rQ)ahL B /to—‘so W(t,rQ)dt+/f0+‘50 W(t,rQ)dt+/T W(t’rQ)dt
t t

- | e rl? oo |7

0+do |V|2

2L2(T — 50) to+do W(t, VQ) 2
R D LA
i s roR @
2L, L3(T — &)

+ 250L3C,

then by the arbitrariness of { > 0 we obtain

/T W(t,rQ)

PE dt — 400 as |r| — +oo. (24)
~T

Hence (20) implies that there exists rp € R\ {0} such that |[roQ|r, > ¢ and
L(r0Q) < 0. Setei(t) = roQ(t) and ex(t) = e1(t). Then e, € E, Hek“Ek =
leille, > o and Ii(ex) = Ii(e1) < O for each k € N. By the Mountain Pass
theorem, I possesses a critical value c¢; > « given by

— inf I ) 25
i = Inf max x(g(s)) (25)

where
I = {8 € C([0,1], Ex)[ 8(0) = 0, g(1) = e}
Hence, for each k € N, there exists u; € E; such that
() =, T(w) = 0. (26)
Then the function uy is a desired classical 2kT-periodic solution of system (4). =

Lemma 2.4. Let u, € Ej be the solution of system (4) which satisfies (26) for all
k € N. Then there is a constant My > 0 independent of k such that

[ukllg, < My (27)
forall k € N.

Proof. For each k € N, let g : [0,1] — Ej be a curve given by gx(s) = sex where
e is defined in Lemma 2.3. Then g € Ty and I (gx(s)) = 1(g1(s)) forallk € N
and s € [0, 1]. Therefore, by (25) we have

Cy < max 11(81 (S)) = Mo, (28)
s€[0,1]
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where M) is independent of k € N, then from (26) we obtain

L) < Mo, [T (ug) || (1 + [|ugl|g,) = 0. (29)

In a way similar to proof of Step 1 in Lemma 2.3, there exists M; > 0 independent
of k such that

[, < Ma
for all k € N, which completes the proof. m

Lemma 2.5. Let uy € Ejy be the solution of system (4) which satisfies (27) for k € N.

Then there exists a subsequence {uy, } of {ux}ren convergent to ug in ClL.(R,RN).

Proof. In order to finish the proof via the Arzela-Ascoli theorem, we divide our
proof into two steps.

First, we show that {uy }xen and {iiy }ren are uniformly bounded sequence.
By (27), we know that {1 }xen is a uniformly bounded sequence, and combining
Lemma 2.1 we get

lukllLsy, < Cllullg, < CMy. (30)
Since uy is a 2kT-periodic solution of system (4), it follows that
i (t) = =VV(t,ur(t)) + fi(t) (31)
for every t € [—kT,kT), then we have

()] < [VV(Eue(®)] + 1 fi®)] = [VV(Eue ()] + £ ()]

< |VV(f/uk(f))|+Stl€111;> F(B)]

for k € N. By (30) and (V') we conclude that there is a constant M, > 0 indepen-
dent of k such that

k|l < M. (32)

2kT —

Finally, from the Mean Value Theorem, for each k € N and t € R, there is
tr € [t — 1, 1] such that

t
ie(t) = [ in(s)ds = ui(t) —ue(t = 1),
and

U (t) = /t: i (s)ds + t(te),

hence

a0 = | [ (o) + ) — il —1)

k

< [ ls)lds + () — e~ 1)
t—1
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By (30) and (32), we obtain

t
linllig, < [ li()lds +Ju(t) = me(t = 1)]
< My +2CM;

for each k € N.
Second, we need to prove that {u }ren and {1 }xen are equicontinuous. Ac-
tually, by (32) we get

g (t1) —u(t2)| <

/tl iig(s)ds

1)

5]
< [ li(s)lds < Malty = ta
2

for each k € N and f1,t € R, which shows {1 }xen is equicontinuous, and
{uy }ken remains in the same way. Then there is a subsequence {uk]. }ken conver-

gent to ug in C, (R, RN) by the Arzela-Ascoli theorem. m

Lemma 2.6. Let ug :R — RN be a function determined by Lemma 2.5. Then ug is a
nontrivial homoclinic solution of problem (1).

Proof The proof will be divided into three steps.
Step 1: we will show that ug satisfies (1). By Lemma 2.3 and Lemma 2.5, we

have ug;, — ug in Cl,.(R,RN)asj— o0, and

i (1) = =V (g, (1)) + fi, ()

foreach j € Nand t € [—k;T,k;T). Take a,b € R such thata < b. There exists
jo € N such that for all j > jo and for every t € [a,b] we have

i (£) = —VV (1 g (5) + (1),

In consequence, for j > jo, iikj(t) is continuous in [4,b] and iik].(t) —
—VV(t,uo(t)) + f(t) uniformly on [a, b]. So it follows that iiy, is a classical deriva-
tive of iy, in (a,b) for each j > jo. Moreover, since iy, — 1o uniformly on [a,b],
we get

—VV(tuo(t)) + f(t) = dio(t)

for every t € (a,b). Since a and b are arbitrary, we conclude that 1 satisfies (1).
Step 2: We prove that ug(t) — 0 ast — too. For every l € N, thereis jy € N
such that

IT
[ (O + g (D) at < g 13, < M3

for all j > jo. From this and Lemma 2.5 it follows that

: 1) + 1o (#)[* ) dt < M}
[, (1) + lio()2) at < 03
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for each | € N. Letting | — +00, we obtain

[ (o0 + o) ar < a8,
then
/t|2r<|”0(t)|2+|”0(t)|2> dt — 0 (33)
asr — +oo. Fix t € R, then we have

1) < o)l + | | ) 30

for each w € R. From (34) and Holder inequality we obtain

)

@l < [ (@l | [
< (/til <|u0(w)|—|— /wtuo(s)ds )zdw>
t t 2 172

< (z/t_1 <|u0(w)|2+ / tig(s)ds )m)

< ([ (ot + [ o pas) aw)
< Vo ([ motwRao + [ [ liots)asio)

< V2 (/til (10(5)2 + o (5) ) ds)l/z, (35)

then by (33), we obtain uy(t) — 0 as t — Foo.
Step 3: We now show that 119(t) — 0 as t — +co. Similar to (35) we obtain

1/2

o <2 [ (lofs)l? + Jio(s) ) ds @6

for each t € R. From (33), one has

t
/t_1 g (s)[2ds — 0 (37)

as t — £oo. And since uy is a solution of problem (1), we have

t
t—1

/til |ﬁ0(s)|2d5 = /_ (|VV(S,MO(5))|2 + |f(5)|2> ds

—2 | (VV(s,uo(s), f(s))ds.
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From (Kj) and (W;_), we can conclude that VK(s,0) = 0 and VW(s,0) = 0,
which yield VV(s,0) = 0 for all s € R. Since V (s, x) is T-periodic with respect
to s, VV (s, x) has the same property. Then for every s € [0, T| and € > 0, there is
ps > 0 such that

IVV(w,x)| <e

for all w € B(s;ps) N[0, T] and |x| < ps, which implies B(s;ps)(s € [0,T]) is
an open coverage of [0, T|. By the compactness of [0, T|, we can see that there
exist B(s1;0s,), B(s2;0s,), - - B(Sm; Ps,,) such that [0, T] C U™, B(s;; ps,)- Let pg =
min{Qs,, Ps,, - * * ,Ps, }» then we have

IVV(s,x)| <e

for all |x| < pp and uniformly in's € [0, T]. Since up(s) — 0 as s — £oo, there is
p > 0 such that |ug(s)| < po for |t| > p. Hence, when |t| > p + 1,

t
/ YV (s, uo(s))2ds < €.
t—1

Noting that ftt_l |f(s)|>ds — 0 as t — +oo, we have

t
| liio(s)Pds = 0, (38)

then we obtain our conclusion.
Since VV (t,0) = 0, then u = 0 is not a solution of problem (1) for f # 0,
which shows 1y # 0. u

From Lemma 2.3 - Lemma 2.6, we complete the proof of Theorem 1.1. Finally,
we will prove Theorem 1.2.

Proof of Theorem 1.2. Under conditions of Theorem 1.2, the conclusions of Lem-
ma 2.1 - Lemma 2.4 for the system (1) are still true, which means there is a 2kT-
periodic solution uy € Ej satisfies

i(H) + VV(tu(t) =0 (39)

for k € N. Since V is T-periodic with respect to t, we can see u(t +nT) is still a
2kT-periodic solution of (39) for every n € Z. By replacing earlier, if necessary, u
by uy(t + nT) for some n € Z, we can assume that the maximum of uj occurs in
[—T,T].

Similar to the proofs of Lemma 2.5 and Lemma 2.6, we choose a subsequence
{ug;} of {ux} convergent to a ug in Cl.(R,RN), ug is a homoclinic solution of

problem (1). Finally, we have to show that 1y # 0. As Rabinowitz in [10], we set

_ (VW(t,u),u)
v = 1[0, T u/<s |
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fors > 0 and (0) = 0. Then it is easy to verify that ¢ is continuous, nondecreas-
ing and 1(s) — +o0 as s — +o0. By the definition of ¢, we have

k;T
/ (VW e () ()t < i o (40)

for all j € N. Since I;(j(uk].)ukj = 0, it follows from (7) that

KT
/k (vw(t’uk;(t))/”kj(t))dtz
KT
kj

T kT
/ iy ()2t + / " (VK(t g (), ug ())dt. (41)
—kT —kT J J
From (40), (41), (Ky), (K;_”), Lemma 2.1 and (27), we obtain

KT kT
Wl leg, g1, 2 [ Ot + / e (0, VK ()

> /ij |ty (t)|*dt + bp /ij g (£)|7dt

- JekT —kT

> [ i (0t + bp(Cllag )72 [ g 1) Pl
= ST Y Ju kT

> /k"T i ()[2dt + bp(CM; )72 /ij . (1) 2t

- kT kT

i i
> C1||ukj||%5k],z

where C; = min{1, bo(CM;)?~2}, and hence

P([luk g ) = C1 > 0. (42)

Zk]-T -
By the property of ¥, there is a constant C, > 0 such that

Juk |l . = Co (43)

ijT -
for each j € N. Consequently we get

max |ug. ()| = (lug.lljo > Cp, 7 €N,
e s (0] = g > Cor

which implies that

t) > Cy.
e et = @

Hence 1y # 0. The proof is completed. n
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