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Abstract

The existence of homoclinic solutions is obtained for a class of nonau-
tonomous second order Hamiltonian systems ü(t) +∇V(t, u(t)) = f (t) as
the limit of the 2kT-periodic solutions which are obtained by the Mountain
Pass theorem, where V(t, x) = −K(t, x) + W(t, x) is T-periodic with respect
to t, T > 0, and W(t, x) satisfies the superquadratic condition: W(t, x)/|x|2 →
+∞ as |x| → ∞ uniformly in t, which needs not to satisfy the global Ambro-
setti-Rabinowitz condition.

1 Introduction and main results

In this paper, we put our attention to the existence of homoclinic orbits for the
second order Hamiltonian system

ü(t) +∇V(t, u(t)) = f (t), ∀t ∈ R, (1)

where f : R → RN is a continuous, bounded function. As usual, we say that a
solution u(t) of problem (1) is nontrivial homoclinic(to 0) if u 6= 0, u(t) → 0 and
u̇(t) → 0 as t → ±∞. Here and subsequently, ∇V(t, x) denotes the gradient with
respect to the x variable, and (·, ·) : RN × RN → R denotes the standard inner
product in RN and | · | is the induced norm.
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The existence of homoclinic orbits is a very important problem in the theory
of Hamiltonian systems. It has been studied by many authors (see[1-13]). In 1990,
Rabinowitz in [10] showed the existence of homoclinic orbits for problem (1) as
the limit of the 2kT-periodic solutions of problem (1) when f = 0 and the function
V considered by the author is of the form

V(t, x) = −1

2
(L(t)x, x) + W(t, x), (2)

where L is a continuous T-periodic positive definite symmetric matrix valued
function for all t ∈ [0, T], W is T-periodic and satisfies the so-called global Ambro-
setti-Rabinowitz condition, that is,

(W1) there exists a constant λ > 2 such that

0 < λW(t, x) ≤ (x,∇W(t, x))

for every t ∈ R and x ∈ RN \ {0}. As we know, condition (W1) implies that

(W
′
1) W(t, x)/|x|2 → +∞ as |x| → ∞ uniformly in t,

which is weaker than (W1). Then, by replacing (W1) with (W
′
1), the authors in

[8] obtained the existence of homoclinic orbits for problem (1) while f = 0 and
V is of the form (2). Via the same method of Rabinowitz in [10], Izydorek and
Janczewska in [5] proved problem (1) possesses a nontrivial homoclinic solution
when V(t, x) = −K(t, x) + W(t, x) rather than the form (2), and K is assumed to
be periodic in t, satisfying the pinching condition b1|x|2 ≥ K(t, x) ≥ b2|x|2. After
then, by weakening the pinching condition, Tang and Xiao in [12] generalized the
results of [5], which are the following theorems.

Theorem A([12]). Suppose that V and f satisfy (W1) and the following conditions
(V) V(t, x) = −K(t, x) + W(t, x), where K, W : R × RN → R are C1-maps,

T-periodic with respect to t, T > 0,
(K1) there are constants b > 0 and γ ∈ (1, 2] such that

K(t, 0) = 0, K(t, x) ≥ b|x|γ

for all (t, x) ∈ R × RN ,
(K2) there is a constant θ ∈ [2, λ) such that

(x,∇K(t, x)) ≤ θK(t, x)

for all (t, x) ∈ R × RN ,
(W2) ∇W(t, x) = o(|x|) as x → 0 uniformly with respect to t,
( f )

0 <

∫

R
| f (t)|2dt < 2

(

min
{ν

2
, bνγ−1 − mνλ−1

})2
,

where m = sup{W(t, x)|t ∈ [0, T], x ∈ RN , |x| = 1}, and ν ∈ (0, 1] such that

bνγ−1 − mνλ−1 = max
x∈[0,1]

(

bxγ−1 − mxλ−1
)

.
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Then problem (1) possesses a nontrivial homoclinic solution.

When f = 0, under one stronger condition on K, they also proved system (1)
possesses a nontrivial homoclinic solution, which is the following theorem

Theorem B([12]). Suppose that f = 0 and V satisfies (V), (K1), (W1), (W2) and
the following condition

(K
′
2) there is a constant θ ∈ [2, λ) such that

K(t, x) ≤ (x,∇K(t, x)) ≤ θK(t, x)

for all (t, x) ∈ R × RN .

Then problem (1) possesses a nontrivial homoclinic solution.

Motivated by the papers above, in this paper, we will obtain the homoclinic

solution of problem (1) by using the more general condition (W
′
1) rather than

(W1). The main results are the following theorems.

Theorem 1.1. Suppose that f 6= 0 and V satisfies (V), (K1), (W
′
1) and the following

conditions
(K

′′
2) (x,∇K(t, x)) ≤ 2K(t, x) for all (t, x) ∈ R × RN ,

(W
′
2) ∇W(t, x) = o(|x|γ−1) as x → 0 uniformly with respect to t,

(W3) there are constants β ≥ 0 and d1 > 0 such that

|W(t, x)| ≤ d1|x|β

for all (t, x) ∈ R × RN ,
(W4) there exist constants µ > max{β − γ, 1}, d2 > 0 and function

g ∈ L1(R, R+) such that

(x,∇W(t, x))− 2W(t, x) ≥ d2|x|µ − g(t)

for all (t, x) ∈ R × RN .

Then there is a constant δ > 0 such that, for any f satisfying

max
{

∫

R
| f (t)|2dt,

∫

R
| f (t)|µ/(µ−1)dt

}

< δ, (3)

system (1) possesses at least one nontrivial homoclinic solution.

Theorem 1.2. Suppose that f = 0 and V satisfies (V), (K1), (W
′
1), (W

′
2), (W3) and

the following conditions

(K
′′′
2 ) there is a constant 2 ≥ ρ > 0 such that

ρK(t, x) ≤ (x,∇K(t, x)) ≤ 2K(t, x)

for all (t, x) ∈ R × RN ,
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(W
′
4) there exist constants µ > β − γ, d2 > 0 and function g ∈ L1(R, R+) such

that

(x,∇W(t, x))− 2W(t, x) ≥ d2|x|µ − g(t)

for all (t, x) ∈ R × RN .

Then problem (1) possesses a nontrivial homoclinic solution.

Remark 1.1. Condition (K
′′′
2 ) implies K(t, 0) = 0 and (K

′′
2).

Remark 1.2. There are functions K and W which satisfy our Theorem 1.1 and
Theorem 1.2 without satisfying the corresponding assumptions in [5, 12]. For
example, let

K(t, x) = |x| 11
6 + |x| 9

5 , W(t, x) =

{

|x|2ln|x|2 for x 6= 0
0 for x = 0,

where t ∈ R, x ∈ RN , then V(t, x) = −K(t, x) + W(t, x) cannot be represented
as the form V(t, x) = −K0(t, x) + W0(t, x) with K0(t, x) and W0(t, x) satisfying

Theorem A or Theorem B because W satisfies (W
′
1) and does not satisfy (W1)

while V satisfies our conditions with b = 1
2 , γ = ρ = 9

5 , β = 11
4 , d1 = µ = 2,

d2 = 1, g(t) = 0.

2 Proof of Theorems

For each k ∈ N, let L2
2kT(R, RN) denote the Hilbert space of 2kT-periodic

functions on R with values in RN under the norm

‖u‖L2
2kT(R,RN) :=

(

∫ kT

−kT
|u(t)|2dt

)1/2

,

and L∞

2kT(R, RN) be a space of 2kT-periodic essentially bounded measurable func-

tions from R into RN under the norm

‖u‖L∞

2kT(R,RN) := esssup{|u(t)| : t ∈ [−kT, kT]}.

In order to obtain a homoclinic solution of problem (1), we consider a se-
quence of systems of differential equations:

ü(t) +∇V(t, u(t)) = fk(t), (4)

where, for each k ∈ N, fk : R → RN is a 2kT-periodic extension of restriction of f
to the interval [−kT, kT].

For each k ∈ N, let Ek := W1,2
2kT(R, RN) denote the Hilbert space of 2kT-

periodic function from R to RN under the norm

‖u‖Ek
:=

(

∫ kT

−kT
(|u̇(t)|2 + |u(t)|2)dt

)1/2

.
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Moreover, let ηk : Ek → [0,+∞) be given by

ηk(u) :=

(

∫ kT

−kT
(|u̇(t)|2 + 2K(t, u(t))dt

)1/2

, (5)

and Ik : R → RN be the corresponding functional of (4) defined by

Ik(u) =
∫ kT

−kT

(

1

2
|u̇(t)|2 + K(t, u(t)) − W(t, u(t)) + ( fk(t), u(t))

)

dt, (6)

then one can easily check that Ik ∈ C1(Ek, R) and

〈I
′
k(u), v〉 =

∫ kT

−kT
((u̇(t), v̇(t)) − (∇V(t, u(t)), v(t)) + ( fk(t), v(t))) dt. (7)

It follows from (5) and (6) that

Ik(u) =
1

2
η2

k (u) +
∫ kT

−kT
(−W(t, u(t)) + ( fk(t), u(t)))dt. (8)

Now, we prove the existence of a homoclinic solution of problem (1) as the
limit of the 2kT-periodic solutions of system (4) which are obtained via the Moun-
tain Pass theorem. We have divided the proof of Theorem 1.1 into a sequence of
lemmas. We can obtain a conclusion directly from the estimation made in [12],
which is our first lemma.

Lemma 2.1. There is a positive constant C which is independent of k such that for
each k ∈ N and u ∈ Ek the following inequality holds

‖u‖L∞

2kT(R,RN) ≤ C‖u‖Ek
. (9)

Lemma 2.2. Suppose that (K
′′
2) holds. Then we have

K(t, x) ≤ K

(

t,
x

|x|

)

|x|2 (10)

for all t ∈ [0, T] and |x| ≥ 1.

Proof. Set f (s) = s−2K(t, sξ). By (K
′′
2), we have

f
′
(s) = −2s−3K(t, sξ) + s−2(∇K(t, sξ), ξ)

= s−3 (−2K(t, sξ) + (∇K(t, sξ), sξ))

≤ 0,

then if s ≥ 1 we have f (s) ≤ f (1), that is,

s−2K(t, sξ) ≤ K(t, ξ),

set s = |x| and ξ = x/|x|, we obtain our inequality.
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By (V) we can set

M := sup{K(t, x)| t ∈ [0, T], x ∈ RN , |x| ≤ 1},

then from Lemma 2.2 we have

K(t, x) ≤ M(|x|2 + 1) (11)

for all (t, x) ∈ R × RN .

Lemma 2.3. Suppose that f 6= 0 and V satisfies (V), (K1), (K
′′
2), (W

′
1), (W

′
2), (W3)

and (W4), then there is a constant δ > 0 such that, for any f satisfying (3), system (4)
possesses a 2kT-periodic solution uk ∈ Ek for every k ∈ N.

Proof. It is known that the Mountain Pass theorem holds when the usual (PS)
condition is replaced by condition (C). Then we apply the Mountain Pass theorem
to obtain the critical point of Ik under condition (C).

First of all, we prove a property of W. It follows from (W
′
2) that, for any ε > 0,

there exists σ > 0 such that

|∇W(t, x)| ≤ γε|x|γ−1, |x| ≤ σ, ∀t ∈ [0, T],

which implies that

|W(t, x)| =

∣

∣

∣

∣

∫ 1

0
(∇W(t, sx), x)ds

∣

∣

∣

∣

≤
∫ 1

0
|∇W(t, sx)||x|ds

≤
∫ 1

0
γε|sx|γ−1|x|ds

= ε|x|γ. (12)

We can choose ε = 1
2 b, then there is a 1 ≥ σ0 > 0 such that (12) holds when

|x| ≤ σ0 for all t ∈ [0, T].

Our proof involves three steps.

Step 1: Ik satisfies condition (C). We can choose δ > 0 such that
δ <

σ0
2C min{1, b}. Assumption (W3) yields W(t, 0) = 0 which means Ik(0) = 0.

Then we show that Ik satisfies the (C) condition. Assume that {uj}j∈N ⊂ Ek is

a sequence such that {Ik(uj)}j∈N is bounded and ‖I
′
k(uj)‖ → 0 as j → ∞. Then

there exists a constant Ck > 0 such that

Ik(uj) ≤ Ck, ‖I
′
k(uj)‖(1 + ‖uj‖Ek

) ≤ Ck. (13)

Then {uj} is bounded. If not, passing to a subsequence if necessary, we can sup-
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pose that ‖uj‖Ek
→ ∞ as j → ∞. By (13), (K

′′
2), (W4) and (3) we have

3Ck ≥ 2Ik(uj) + ‖I
′
k(uj)‖(1 + ‖uj‖Ek

)

≥ 2Ik(uj)− 〈I
′
k(uj), uj〉

≥
∫ kT

−kT
((∇W(t, uj(t)), uj(t))− 2W(t, uj(t))) +

∫ kT

−kT
( fk(t), uj(t))dt

≥ d2

∫ kT

−kT
|uj(t)|µdt −

∫ kT

−kT
g(t)dt − δ

(

∫ kT

−kT
|uj(t)|µdt

)1/µ

≥ d2

∫ kT

−kT
|uj(t)|µdt − δ

(

∫ kT

−kT
|uj(t)|µdt

)1/µ

− G (14)

for some G > 0. Since µ > 1, it follows from (14) that, there is Dk > 0 such that

∫ kT

−kT
|uj(t)|µdt ≤ Dk. (15)

Moreover, from (W3) and (W4) we can conclude β ≥ µ, then by (6), (3), (W3), (15)
and Lemma 2.1 we obtain

1

2
η2

k (uj) ≤ Ik(uj) +
∫ kT

−kT
W(t, uj(t))dt −

∫ kT

−kT
( fk(t), uj(t))dt

≤ Ck + d1

∫ kT

−kT
|uj(t)|βdt + δ

(

∫ kT

−kT
|uj(t)|µdt

)1/µ

≤ Ck + δD
1/µ
k + d1

∫ kT

−kT
|uj(t)|βdt

≤ Ck + δD
1/µ
k + d1Cβ−µ‖uj‖β−µ

Ek

∫ kT

−kT
|uj(t)|µdt

≤ Ck + δD
1/µ
k + d1Cβ−µDk‖uj‖β−µ

Ek
. (16)

Since µ > β − γ, it follows from (16) that there is a constant γ0 ∈ (β − µ, γ) such
that

η2
k (uj)

‖uj‖γ0
Ek

→ 0 (17)

as j → ∞. When j is big enough, we have ‖uj‖Ek
≥ 1, by (K1) and Lemma 2.1, we

get

η2
k (uj) ≥

∫ kT

−kT
|u̇j(t)|2dt + 2b

∫ kT

−kT
|uj(t)|γdt

≥
∫ kT

−kT
|u̇j(t)|2dt + 2bCγ−2‖uj‖γ−2

Ek

∫ kT

−kT
|uj(t)|2dt

≥ min{1, 2bCγ−2}
(

∫ kT

−kT
|u̇j(t)|2dt + ‖uj‖γ−2

Ek

∫ kT

−kT
|uj(t)|2dt

)

≥ min{1, 2bCγ−2}‖uj‖γ
Ek

,
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which implies that

η2
k (uj)

‖uj‖γ0
Ek

→ ∞,

as j → ∞. This is a contradiction. Then {uj}j∈N is bounded in Ek. By a standard
argument, we see that {uj}j∈N has a convergent subsequence in Ek. Hence Ik

satisfies the (C) condition.
Step 2: Now, we show that there exist constants ̺, α > 0 independent of k

such that Ik ≥ α on ∂B̺(0) = {u ∈ Ek| ‖u‖Ek
= ̺}. Set

̺ =
σ0

C
, α =

1
2 min{1, b}σ2

0 − Cδσ0

C2
> 0, (18)

which implies 0 < ‖u‖L∞

2kT
≤ σ0 ≤ 1. It follows from (8), (K1), (12) and (3) that

Ik(u) =
1

2
η2

k (u) +
∫ kT

−kT
(−W(t, u(t)) + ( fk(t), u(t))) dt

≥ 1

2

∫ kT

−kT
|u̇(t)|2dt + b

∫ kT

−kT
|u(t)|γdt − 1

2
b
∫ kT

−kT
|u(t)|γdt

+
∫ kT

−kT
( fk(t), u(t))dt

≥ 1

2

∫ kT

−kT
|u̇(t)|2dt +

1

2
b
∫ kT

−kT
|u(t)|γdt − δ‖u‖Ek

≥ 1

2
min{1, b}

(

∫ kT

−kT
|u̇(t)|2dt +

∫ kT

−kT
|u(t)|γdt

)

− δ‖u‖Ek

≥ 1

2
min{1, b}‖u‖2

Ek
− δ‖u‖Ek

. (19)

By the definition of ̺ and α, if ‖u‖Ek
= ̺, (19) implies Ik(u) ≥ α.

Step 3: We only need to prove that for each k ∈ N there is ek ∈ Ek such that
‖ek‖Ek

> ̺ and Ik(ek) ≤ 0. By (8) and (11), for every r ∈ R \ {0} and u ∈ Ek \ {0},
the following inequality holds

Ik(ru) ≤
(

1

2

∫ kT

−kT
|u̇(t)|2dt + M

∫ kT

−kT
|u(t)|2dt

)

|r|2 −
∫ kT

−kT
W(t, ru)dt

+ |r|δ‖u‖Ek
+ 2kTM. (20)

Fix Q ∈ C∞

0 (−T, T) \ {0} ⊂ E1, then there exists t0 ∈ (−T, T) such that Q(t0) 6= 0,
which implies that there are δ0 > 0, L1 > 0 such that

|Q(t)| ≥ L1 (21)

for all |t − t0| < δ0. By (W
′
1) and (W3), we can conclude, there exists L2 > 0 such

that

W(t, x) ≥ −L2 (22)
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for all (t, x) ∈ R × RN . Moreover, (W
′
1) also implies that for every ζ > 0, there

exists L3 > 0 such that

W(t, x)

|x|2 ≥ ζ (23)

for all |x| ≥ L3 uniformly in t ∈ R. When r ≥ L3/L1, combining (21), (22), (23)
we have

∫ T

−T

W(t, rQ)

|r|2 dt =
∫ t0−δ0

−T

W(t, rQ)

|r|2 dt +
∫ t0+δ0

t0−δ0

W(t, rQ)

|r|2 dt +
∫ T

t0+δ0

W(t, rQ)

|r|2 dt

≥ − 2L2(T − δ0)

|r|2 +
∫ t0+δ0

t0−δ0

W(t, rQ)

|rQ|2 |Q|2dt

≥ − 2L2L2
1(T − δ0)

L2
3

+ 2δ0L2
1ζ,

then by the arbitrariness of ζ > 0 we obtain

∫ T

−T

W(t, rQ)

|r|2 dt → +∞ as |r| → +∞. (24)

Hence (20) implies that there exists r0 ∈ R \ {0} such that ‖r0Q‖E1
> ̺ and

I1(r0Q) < 0. Set e1(t) = r0Q(t) and ek(t) = e1(t). Then ek ∈ Ek, ‖ek‖Ek
=

‖e1‖E1
> ̺ and Ik(ek) = I1(e1) < 0 for each k ∈ N. By the Mountain Pass

theorem, Ik possesses a critical value ck ≥ α given by

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)), (25)

where

Γk = {g ∈ C([0, 1], Ek)| g(0) = 0, g(1) = ek}.

Hence, for each k ∈ N, there exists uk ∈ Ek such that

Ik(uk) = ck, I
′
k(uk) = 0. (26)

Then the function uk is a desired classical 2kT-periodic solution of system (4).

Lemma 2.4. Let uk ∈ Ek be the solution of system (4) which satisfies (26) for all
k ∈ N. Then there is a constant M1 > 0 independent of k such that

‖uk‖Ek
≤ M1 (27)

for all k ∈ N.

Proof. For each k ∈ N, let gk : [0, 1] → Ek be a curve given by gk(s) = sek where
ek is defined in Lemma 2.3. Then gk ∈ Γk and Ik(gk(s)) = I1(g1(s)) for all k ∈ N
and s ∈ [0, 1]. Therefore, by (25) we have

ck ≤ max
s∈[0,1]

I1(g1(s)) ≡ M0, (28)
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where M0 is independent of k ∈ N, then from (26) we obtain

Ik(uk) ≤ M0, ‖I
′
k(uk)‖(1 + ‖uk‖Ek

) = 0. (29)

In a way similar to proof of Step 1 in Lemma 2.3, there exists M1 > 0 independent
of k such that

‖uk‖Ek
≤ M1

for all k ∈ N, which completes the proof.

Lemma 2.5. Let uk ∈ Ek be the solution of system (4) which satisfies (27) for k ∈ N.
Then there exists a subsequence {ukj

} of {uk}k∈N convergent to u0 in C1
loc(R, RN).

Proof. In order to finish the proof via the Arzelà-Ascoli theorem, we divide our
proof into two steps.

First, we show that {u̇k}k∈N and {ük}k∈N are uniformly bounded sequence.
By (27), we know that {uk}k∈N is a uniformly bounded sequence, and combining
Lemma 2.1 we get

‖uk‖L∞

2kT
≤ C‖uk‖Ek

≤ CM1. (30)

Since uk is a 2kT-periodic solution of system (4), it follows that

ük(t) = −∇V(t, uk(t)) + fk(t) (31)

for every t ∈ [−kT, kT), then we have

|ük(t)| ≤ |∇V(t, uk(t))| + | fk(t)| = |∇V(t, uk(t))| + | f (t)|
≤ |∇V(t, uk(t))| + sup

t∈R

| f (t)|

for k ∈ N. By (30) and (V) we conclude that there is a constant M2 > 0 indepen-
dent of k such that

‖ük‖L∞

2kT
≤ M2. (32)

Finally, from the Mean Value Theorem, for each k ∈ N and t ∈ R, there is
tk ∈ [t − 1, t] such that

u̇k(tk) =
∫ t

t−1
u̇k(s)ds = uk(t)− uk(t − 1),

and

u̇k(t) =
∫ t

tk

ük(s)ds + u̇k(tk),

hence

|u̇k(t)| =

∣

∣

∣

∣

∫ t

tk

ük(s)ds + uk(t)− uk(t − 1)

∣

∣

∣

∣

≤
∫ t

t−1
|ük(s)|ds + |uk(t)− uk(t − 1)|.
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By (30) and (32), we obtain

‖u̇k‖L∞

2kT
≤

∫ t

t−1
|ük(s)|ds + |uk(t)− uk(t − 1)|

≤ M2 + 2CM1

for each k ∈ N.
Second, we need to prove that {uk}k∈N and {u̇k}k∈N are equicontinuous. Ac-

tually, by (32) we get

|u̇k(t1)− u̇k(t2)| ≤
∣

∣

∣

∣

∫ t1

t2

ük(s)ds

∣

∣

∣

∣

≤
∫ t1

t2

|ük(s)|ds ≤ M2|t1 − t2|

for each k ∈ N and t1, t2 ∈ R, which shows {u̇k}k∈N is equicontinuous, and
{uk}k∈N remains in the same way. Then there is a subsequence {ukj

}k∈N conver-

gent to u0 in C1
loc(R, RN) by the Arzelà-Ascoli theorem.

Lemma 2.6. Let u0 :R → RN be a function determined by Lemma 2.5. Then u0 is a
nontrivial homoclinic solution of problem (1).

Proof The proof will be divided into three steps.
Step 1: we will show that u0 satisfies (1). By Lemma 2.3 and Lemma 2.5, we

have ukj
→ u0 in C1

loc(R, RN) as j → ∞, and

ükj
(t) = −∇V(t, ukj

(t)) + fkj
(t)

for each j ∈ N and t ∈ [−kjT, kjT). Take a, b ∈ R such that a < b. There exists
j0 ∈ N such that for all j > j0 and for every t ∈ [a, b] we have

ükj
(t) = −∇V(t, ukj

(t)) + f (t).

In consequence, for j > j0, ükj
(t) is continuous in [a, b] and ükj

(t) →
−∇V(t, u0(t))+ f (t) uniformly on [a, b]. So it follows that ükj

is a classical deriva-

tive of u̇kj
in (a, b) for each j > j0. Moreover, since u̇kj

→ u̇0 uniformly on [a, b],
we get

−∇V(t, u0(t)) + f (t) = ü0(t)

for every t ∈ (a, b). Since a and b are arbitrary, we conclude that u0 satisfies (1).
Step 2: We prove that u0(t) → 0 as t → ±∞. For every l ∈ N, there is j0 ∈ N

such that

∫ lT

−lT

(

|ukj
(t)|2 + |u̇kj

(t)|2
)

dt ≤ ‖ukj
‖2

Ekj
≤ M2

1

for all j > j0. From this and Lemma 2.5 it follows that

∫ lT

−lT

(

|u0(t)|2 + |u̇0(t)|2
)

dt ≤ M2
1
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for each l ∈ N. Letting l → +∞, we obtain

∫ +∞

−∞

(

|u0(t)|2 + |u̇0(t)|2
)

dt ≤ M2
1,

then
∫

|t|≥r

(

|u0(t)|2 + |u̇0(t)|2
)

dt → 0 (33)

as r → +∞. Fix t ∈ R, then we have

|u0(t)| ≤ |u0(ω)|+
∣

∣

∣

∣

∫ t

ω
u̇0(s)ds

∣

∣

∣

∣

(34)

for each ω ∈ R. From (34) and Hölder inequality we obtain

|u0(t)| ≤
∫ t

t−1

(

|u0(ω)|+
∣

∣

∣

∣

∫ t

ω
u̇0(s)ds

∣

∣

∣

∣

)

dω

≤
(

∫ t

t−1

(

|u0(ω)| +
∣

∣

∣

∣

∫ t

ω
u̇0(s)ds

∣

∣

∣

∣

)2

dω

)1/2

≤
(

2
∫ t

t−1

(

|u0(ω)|2 +
∣

∣

∣

∣

∫ t

ω
u̇0(s)ds

∣

∣

∣

∣

2
)

dω

)1/2

≤
√

2

(

∫ t

t−1

(

|u0(ω)|2 +
∫ t

ω
|u̇0(s)|2ds

)

dω

)1/2

≤
√

2

(

∫ t

t−1
|u0(ω)|2dω +

∫ t

t−1

∫ t

t−1
|u̇0(s)|2dsdω

)1/2

≤
√

2

(

∫ t

t−1

(

|u0(s)|2 + |u̇0(s)|2
)

ds

)1/2

, (35)

then by (33), we obtain u0(t) → 0 as t → ±∞.
Step 3: We now show that u̇0(t) → 0 as t → ±∞. Similar to (35) we obtain

|u̇0(t)|2 ≤ 2
∫ t

t−1

(

|u̇0(s)|2 + |ü0(s)|2
)

ds (36)

for each t ∈ R. From (33), one has

∫ t

t−1
|u̇0(s)|2ds → 0 (37)

as t → ±∞. And since u0 is a solution of problem (1), we have

∫ t

t−1
|ü0(s)|2ds =

∫ t

t−1

(

|∇V(s, u0(s))|2 + | f (s)|2
)

ds

− 2
∫ t

t−1
(∇V(s, u0(s)), f (s))ds.
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From (K1) and (W
′
2), we can conclude that ∇K(s, 0) = 0 and ∇W(s, 0) = 0,

which yield ∇V(s, 0) = 0 for all s ∈ R. Since V(s, x) is T-periodic with respect
to s, ∇V(s, x) has the same property. Then for every s ∈ [0, T] and ε > 0, there is
ρs > 0 such that

|∇V(w, x)| < ε

for all w ∈ B(s; ρs) ∩ [0, T] and |x| < ρs, which implies B(s; ρs)(s ∈ [0, T]) is
an open coverage of [0, T]. By the compactness of [0, T], we can see that there
exist B(s1; ρs1

), B(s2; ρs2), · · · , B(sm; ρsm) such that [0, T] ⊂ ∪m
i=1B(si; ρsi

). Let ρ0 =
min{ρs1

, ρs2 , · · · , ρsm}, then we have

|∇V(s, x)| < ε

for all |x| < ρ0 and uniformly in s ∈ [0, T]. Since u0(s) → 0 as s → ±∞, there is
p > 0 such that |u0(s)| < ρ0 for |t| ≥ p. Hence, when |t| ≥ p + 1,

∫ t

t−1
|∇V(s, u0(s))|2ds < ε2.

Noting that
∫ t

t−1 | f (s)|2ds → 0 as t → ±∞, we have

∫ t

t−1
|ü0(s)|2ds → 0, (38)

then we obtain our conclusion.
Since ∇V(t, 0) = 0, then u = 0 is not a solution of problem (1) for f 6= 0,

which shows u0 6= 0.

From Lemma 2.3 - Lemma 2.6, we complete the proof of Theorem 1.1. Finally,
we will prove Theorem 1.2.

Proof of Theorem 1.2. Under conditions of Theorem 1.2, the conclusions of Lem-
ma 2.1 - Lemma 2.4 for the system (1) are still true, which means there is a 2kT-
periodic solution uk ∈ Ek satisfies

ü(t) +∇V(t, u(t)) = 0 (39)

for k ∈ N. Since V is T-periodic with respect to t, we can see uk(t + nT) is still a
2kT-periodic solution of (39) for every n ∈ Z. By replacing earlier, if necessary, uk

by uk(t + nT) for some n ∈ Z, we can assume that the maximum of uk occurs in
[−T, T].

Similar to the proofs of Lemma 2.5 and Lemma 2.6, we choose a subsequence
{ukj

} of {uk} convergent to a u0 in C1
loc(R, RN), u0 is a homoclinic solution of

problem (1). Finally, we have to show that u0 6= 0. As Rabinowitz in [10], we set

ψ(s) = max
t∈[0,T],|u|≤s

(∇W(t, u), u)

|u|2
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for s > 0 and ψ(0) = 0. Then it is easy to verify that ψ is continuous, nondecreas-
ing and ψ(s) → +∞ as s → +∞. By the definition of ψ, we have

∫ kjT

−kjT
(∇W(t, ukj

(t)), ukj
(t))dt ≤ ψ(‖ukj

‖L∞

2kjT
)‖ukj

‖2
Ekj

(40)

for all j ∈ N. Since I
′
kj
(ukj

)ukj
= 0, it follows from (7) that

∫ kjT

−kjT
(∇W(t, ukj

(t)), ukj
(t))dt =

∫ kjT

−kjT
|u̇kj

(t)|2dt +
∫ kjT

−kjT
(∇K(t, ukj

(t)), ukj
(t))dt. (41)

From (40), (41), (K1), (K
′′′
2 ), Lemma 2.1 and (27), we obtain

ψ(‖ukj
‖L∞

2kjT
)‖ukj

‖2
Ekj

≥
∫ kjT

−kjT
|u̇kj

(t)|2dt +
∫ kjT

−kjT
(ukj

(t),∇K(t, ukj
(t)))dt

≥
∫ kjT

−kjT
|u̇kj

(t)|2dt + bρ
∫ kjT

−kjT
|ukj

(t)|γdt

≥
∫ kjT

−kjT
|u̇kj

(t)|2dt + bρ(C‖ukj
‖Ek

)γ−2
∫ kjT

−kjT
|ukj

(t)|2dt

≥
∫ kjT

−kjT
|u̇kj

(t)|2dt + bρ(CM1)
γ−2

∫ kjT

−kjT
|ukj

(t)|2dt

≥ C1‖ukj
‖2

Ekj
,

where C1 = min{1, bρ(CM1)
γ−2}, and hence

ψ(‖ukj
‖L∞

2kjT
) ≥ C1 > 0. (42)

By the property of ψ, there is a constant C2 > 0 such that

‖ukj
‖L∞

2kjT
≥ C2 (43)

for each j ∈ N. Consequently we get

max
t∈[−T,T]

|ukj
(t)| = ‖ukj

‖L∞

2kjT
≥ C2, j ∈ N,

which implies that

max
t∈[−T,T]

|u0(t)| ≥ C2.

Hence u0 6= 0 . The proof is completed.
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