Secondary Cohomology and k-invariants*

Mihai D. Staic

Abstract

We give a construction that associates to a pointed topological space (X, x¢)
a homotopy invariant ,x* which we call the secondary invariant. This con-
struction can be seen a “3-type” generalization of the classical k-invariant.

Introduction

To a pointed topological topological space (X, xp) one can associate the n-th ho-
motopy group 7,(X). It is a well known result that 7r,(X) is a homotopy in-
variant for the space X. Moreover one can show that if f : X — Y induces
isomorphisms f, : m,(X) — m,(Y) for all n > 0, then the map f is a homo-
topy equivalence. The naive converse of this result is not true; namely there are
spaces X and Y that are not homotopy equivalent but have isomorphic homo-
topy groups. A fundamental problem in homotopy theory is to find under what
conditions a family of isomorphism ¢; : 7;(X) — m;(Y) is induced by a mor-
phism f : X — Y. This is called the realization problem and it was formulated by
Whitehead. In general the problem is very difficult and highly unsolved.

The only case where a nice solution exists is for spaces X with 71;(X) = 0 for
all i > 2 (these are called spaces of 2-type). The solution is in terms of the first k-
invariant introduced by Eilenberg and MacLane in [EM]. The first k-invariant is a
homotopy invariant that belongs to H3(7r1(X), 712(X)). MacLane and Whitehead
have proved in [MW] that equivalence classes of so called crossed modules are in
bijection with the elements of the third cohomology group H*(G, A). They used
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this description to show that the 2-type of a topological space is determined by
triples (711 (X), m2(X), %), where «2 is the k-invariant mentioned above.

A space X with the property that 77;(X) = 0 for all i > # is called of n-type.
After the result of MacLane and Whitehead, there was a shift in the approach for
classification of n-types. Postnikov introduced a construction that is now known
as Postnikov invariant. Although it provides a complete classification for all n-
types, this construction is not very satisfying since it is not intrinsic to the space
X and does not have the same algebraic elegance as the first k-invariant.

Spaces of 3-type were classified by Baues [B] in terms of quadratic modules.
There are also classifications of spaces of 3-type in terms of 2-crossed modules due
to Conduche [C], and crossed squares due to Loday [L]. To our best knowledge
there is no description for the 3-type in terms of some cohomology class.

In this paper we propose a construction that associates to a pointed topolog-
ical space (X, xg) an invariant »x* that is an element in a certain cohomology
group we introduce. The construction is similar with that of the first k-invariant
but also has a Postnikov-invariant flavor. We believe that »x* is a natural candi-
date to classify the 3-type of a space.

Here is how the paper is organized. In the first section we recall general facts
about the first k-invariant. In the second section, as a warm up, we treat the
case of simply connected spaces. More precisely for two commutative groups
A and B we introduce the secondary cohomology group 2H"(A, B). Then to a
simply connected topological space X we associate a topological invariant ,x* €
2H*(715(X), 13(X)). This construction is very similar with the construction of the
k-invariant, one just has to go up one dimension. The key result is the definition
of the secondary cohomology groups. Having the right cohomology theory, the
proof that x* is an invariant is almost cut and paste from [EM].

In the third section we give the result for general topological spaces. We start
with a group G (possibly noncommutative), two G-modules A and B, a 3-cocycle
k € H3(G,A) and we define ,H*(G, A, x; B) the secondary cohomology of the
triple (G, A, k) with coefficients in B. One can then associate to any pointed space
(X, x0) a topological invariant ,x* € H*(7r1(X), m(X), x%; 713(X)). Obviously if
X is simply connected we get the invariant ,x* from section two. Also if 715(X) =
0 we get the second k-invariant x* € H*(7r1(X), 713(X)) introduced in [EM]. As an
application we give an algebraic description of the cohomology group H?(X, K*).
We conclude the paper with remarks on possible generalizations and research
problems in this direction.

1 Preliminaries

We recall from [EM] and [EM1] some notations about group cohomology and the
construction of the first k-invariant.

Let G be a group and A a G-module. We set C"(G,A) = {0 : G" — A} and
define 9,, : C"(G, A) — C"T1(G, A) by

In(0)(81 - 8n+1) = 810(82, s Gn+1) — (8182, 83/ Q1) + o+
+(=1)"0(81, - gugn+1) + (=1)" (g1, - gn)-
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In this way we obtain a chain complex. Its homology groups are denoted by
H"(G, A) and are called the cohomology of G with coefficients in A.

Let X be an arc connected topological space with base point xy. For each
element w € 711 (X) we fix a representative r(«a). For each pair of elements («, B) €
m1(X) x m1(X) we consider a singular 2-simplex r(«, ) : Ay — X such that
the edges [0,1], [1,2] and [0, 2] map according to r(«), (B) and r(aB). For «, B,
v € m(X) we define a map R(a, B,7y) : 9(A3) — X such that Rjjg12] = r(a, B),
Riji3 = 7(B,7), Rippz = r(aB,7), and Rjjp 1,3 = r(a, By). In this way we get
an element of x(a, B, v) € m(X).

Theorem 1.1. [EM] The cochain («,B,v) — «(«,B,7y) is a cocycle. A change of the
representatives r(a) and r(w, B) alters x by a coboundary. Thus k determines a unique
cohomology class x> € H3(rt1(X), 12(X)) which is a topological invariant of (X, xo).

If X is a space with the property that 77;(X) = 0 for 1 < i < n, then the above
construction can generalized to obtain an invariant " ! € H"*1(7ry(X), 7,(X)).
The element " ! is called the (n — 1)-th k-invariant.

2 The simply connected case

2.1 Secondary cohomology for commutative groups

In this section A and B are commutative groups. For A we use multiplicative no-

tation while for B we use the additive notation. Define ,C" (A, B) = Map(An(nE : ,

n(n—1) I’l(l’l—l) . . .
B). The elements of A~ 7 are —5—-tuples (a;;)(o<i<j<n—1) With the index in

the lexicographic order:

(00,1, 0,2, s 0,n—1,41,2, 13/, s AL,n—1s ++» an—z,n—l)

(n+1)n n(n—1)
- > A2 zdlfz((ai,j)(ogiqgn) =

For every 0 < k < n+ 1 we define dt : A
(bi/f)(0§i<j§n—1) where

a;if0<i<j<k—1
‘ ai,k—lai,kak__ll’k if0<i<j=k-—1
! a1 if0<i<k—1<;j
a1 ifk—1<i<j
One can check that
df_dl, = di Tt dk itk < 1

Let §, : 2C"(A,B) — 2C"*1(A, B) defined by:

On(f) = fdy — fy + fdy — . (=1)" L fdy ™ (2.1)
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Example 2.1. Whenn =2,n=3orn =4,and f € ,C"(A, B) we have

52(f) (01, a02,a12) = f(a12) — f(ao2) + f(ao1amay, ) — f(ao)

03(f)(ao1, a0, ags, 12,413, a23) = f(a12,a13,a23) — f(ao2, a3, a23)
+f(agranayy , aos, a13) — f(a01, 02803053 , A12813053") + f(ao1, a2, 412)

04(f)(ao1, a02, a03, Aos, A12, 413, A14, 23, A4, A34) =
f(a12,a13,a14, 23,424, a34) — f(a02, 03, A04, 423, A24, A34)
+f(an 002611_21, 03, A04, 413, 414, 434)

—f(ao1, 002003612_31, ao4, 012611302_31, (14, 024)

+f(ao1, 02, A0300405,., A12, A1301405,", 02302403,

—f(ao1, a2, a03, a12, 413, 423)

It is obvious that 6,,116,(f) = O for alln > 1 and all f € ,C"(A, B), which
means that we have a complex (2C*(A, B), dx).

Definition 2.2. We denote the homology of (,C*(A, B),d.) by 2H*(A, B) and we
call it the secondary cohomology of the group A with coefficients in B.

2.2 The secondary k-invariant for simply connected spaces

Let X be a simply connected topological space. For any element a € 7,(X) we fix
amap r(a) : Ay — X that represents a (notice that 7(a)3(a,) = xo). For each agy,
agp and a1y € 1 (X) we fix a singular 3-simplex r(ag1, agp, a412) : Az — X such that
r(ao1, Aoz, ‘112)|[0 12] = r(ao1), r(ao, aoz,alz)no 23] = r(aoz), r (6101,6102,6112)\[1 23] =
(6112) and 1”(&101,&102, 6112)”0 1,3] = = 1”(&101&1026112 ) For each ao1, 402, 403, 412, 413 and
a3 € (X)) we define:

R(ao1,a02, 403, A12, 13, 423) : 0(Ag) — X (2.2)

such that the restriction of R(ag1, a0, 403, 412, 413, a23) on each of the 3-simplices
that make the boundary of A4 is given by:

R(ao1, a02, 403, 412, 413, ﬂ23)\ 0,1,2,3] = r(ao1, a0z, 112)
R(6101,ﬂ02,ﬂo3,6112,6113,5123)\ 0,1,2,4] 7(6101,ﬂozﬂo30231,61126113ﬂ23 )
R(ao1, a02, 403, 412, 413, 423)|[0,1,3,4] = r(ag1a02aL, , 03, 413)
R(ao1, a0z, a3, A12, 813, 423) 0,2,3,4) = (402, 403, 823)
R(ao1, aoz, 403, 412, 6113,ﬂ23)\ 1,2,34] = r(a1z, a13,a23)

It is obvious that R(ag1, a0z, A3, 412, 413, 423) determines a unique element of 713(X),
and so R € ,C*(mp(X), m3(X)).
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Let’s see that R is a COCYCle. Take ag1, agy, ags, ags, A12, A13, A14, A3 dpg and
az4 € 1(X). We notice that there exists a map F from the 3-dimensional skeleton
of As to X such that:

Fao1,234) = R o1, A2, A03, 412, 413, 423 )

(
Fa(01,2,35) = = R(ag1, ao, 6103”0461311, a1z, ﬂ13ﬂ14ﬂ3_41, ﬂ23ﬂ24613_41)
Fa(01,245) = R(ao, 00200302_31, ao4, 012611302_31, a14,a24)
F|a([0,1,3,4 5)) = R(an 002511_21, 03, o4, 113, 414, A34)
Fa(j02345])) = R(aoz, a03, o, a23, a24, a34)
Fa(n,2345) = R(a12, 13,414, a23, 824, a34)

Moreover each 3-simplex of As appears exactly twice (once for each orientation)
in the following element of 713(X).

R(a1, a13,a14, 423, 24, a34) — R(ao2, A03, A04, 423, 124, A34)
+R(ﬂ01 ﬂozﬂl_zlf ao3, 404,213,414, 6134)

—R(agq, a02a03a2_31, ao4, 012ﬂ1302_31, (14, 024)

+R(ao1, ao2, ﬂo3ﬂ04613_41, a1z, ﬂ136114ﬂ3_41, ﬂ23ﬂ24ﬂ3_41)
—R(ao1, a2, ao3, a12, 413, a23)

This means that 64(R) = 0 and so R € ,C*(r»(X), 73(X)) is a 4-cocycle.

If we keep fixed r(a) and we change r(a, b, ¢) with another map r’'(a,b, c) we
getamap h : mp(X) x mp(X) x mp(X) — m3(X) (by gluing r and 1’ along the
boundary). One can see that:

/
R(ﬂm,ﬂoz,6103,ﬂ12,ﬂ13,6123) —R (ﬂ01,ﬂ02,0103,012,“13,6123)
1
= h(a2, a13,a23) — h(aoz, a3, a23) + h(ag1anay, , 403, a13)
1 1
—h(ag, 02003055 , 012013055 ) + h(ag1, ag, a12)

And so R and R’ are cohomologous equivalent. If we change r(a) with #/(a) then
we can chose (a, b, c) such that the two maps R, R’ : 715(X)® — m3(X) are equal.
This prove that R defines an unique element >x* € H*(mp(X), m3(X)) that is a
topological invariant of (X, xo).

3 The general case

3.1 Secondary cohomology of (G, A, x) with coefficients in B

We want to generalize the above results to topological spaces with 771(X) non-
trivial. First we need to construct an analog for ,H*(A, B). We start with a
group G (possibly noncommutative), two G-modules A and B and a 3-cocycle
x € Z3(G,A). Define ,C"(G, A,«x; B) = Map(G"
G" are n-tuples

). The elements of

(8) = (8i) (1<i<n)
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n(n—1) _
The elements of A~ 2 are w

-tuples (a) = (a; ) (0<i<j<n—1) With the index in
the lexicographic order:

(a) = (00,1, A0,2/ -1 A0,n—1,812, 137 s AL n—17 -+~ an—z,n—l)

. (n+1) (n=1)
For every 0 < k < n+ 1 we define df : G"! x AT 5 G'x ATz,

d ((8i) (1<i<nt1) (i) 0<i<j<n)) = ((hi)1<i<n)s (bi)) (0<icj<n—1)) Where

gi ifi <k
hi=4q gigiv1ifi=k

ai,]-if0§i<j<k—1

b — ) i1 ST (@l (St 81, 8k 8ki1) O i < j =k —1
b ﬂi,j+1if0§i§k—1<j

Let 0% : ,C"(G, A, x; B) — 2,C""1(G, A, «; B) defined by:

S ()((8); () = g1fdy((8); (a)) — fdn((g); (a))
+fdn((8); (@) — o (=1)" i TH((2); (a))
Example 3.1. Forn =2orn =3 and f € ,C"(G, A, x; B) we have:

05(f)(81,82, 835 401,402, a12) = §1f(82, 83, 412) — (8182, 835 02)
+£(81, 82835 201402 gl(ﬂle)’((gl,gz,g3)) — (81,82, 90)

53 (f) (81,82, 83, 845 401, 402, A03, A12, 413, 423 )
= 81f(82, 83, 84; 412,413, 823) — f(8182, 3, 845 A02, A03, 423 )
+£(81, 8283, 94 401802 51 (a5, )k (81, §2,83), 403, 413)
—£(81, 82, 83845 801, 02003 $18? (a3 )k (182, 83, 84, 1213 82 (155"
+£(81,82, 83; A01, A2, 412)
One can check that 6} 05 (f) = O for all f € 2C"(G, A, «; B), and so we have
a complex (2C*(G, A, x; B), 5%).

)x(82,83,84))

Definition 3.2. We denote the homology of the complex (,C*(G, A, x; B), 6¥) by
2H*(G, A, x; B) and we call it the secondary cohomology of (G, A, x) with coeffi-
cients in B.

Remark 3.3. Let’s notice that the above construction depends only on the class of
k € H3(G, A). Indeed if x = ' + 6,(u) then there is an isomorphism of complexes
®, : ,C*(G, A, x;B) — 2C*(G, A, «’; B) defined by:

D (f)((g); (a)) = f((g): (¢)) (3.1)

where ¢; j = ai’ju(gi+1...gj_1,g]'). One can see that

5 P, = P, 0" (3.2)
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@u@’z) — (Du_’_'z) (3.3)

And so @ is a natural transformation that allows us to identify ,H*(G, A, x; B)
with ,H*(G, A, «’; B).

Example 3.4. If A is trivial then ;H"(G, 1, x; B) is the usual cohomology H" (G, B).
If G is trivial then ,H*(1, A, x; B) is the secondary cohomology group »H"(A, B)
defined in the previous section. Also it is easy to show that ,H"(1; B) = 0 and
H"(A;0) = 0.

Example 3.5. Simple computations show that

2H%(Z5,B) = {(by,by) € B x B| 2b; = 2b,}/{(b,b)|b € B}

,H*(Z,,B) = B/2B

For example one has yH?(Z,,Z) = 0, yH*(Z5,Z,) = Z, 2H?*(Zy,Z) = Z5 and
2H3(Z2,Zs) = Zs.

Next we will mention some functorial properties of the secondary cohomol-
ogy. First we need to introduce the category of algebraic 2-types. An object
in this category is a triple (G, A,x) where G is a group, A is a G-module and
x € Z3(G, A) is a 3-cocycle. A morphism between (Gy, A1, ) and (Gy, A, A) is a
pair (u,v) where u : G; — Gy and v : A — B are morphisms of groups with the
property that v(ga) = u(g)v(a) and the 3-cocycles v(x) and A(u, u, u) are equiva-
lent as elements in Z3(Gy, Az). On can show that in this way we obtain a category
and that a morphism (u, v) is an isomorphism if and only if u and v are isomor-
phisms. An object in this category was called an ”algebraic 3-type” in [MW], but
considering the change (over the years) in terminology for the n-type of a topo-
logical space our notation seams appropriate. With this notations one can easily
check the following result:

Proposition 3.1. i) If B is an abelian group, then » H" (x; B) is a contravariant functor
from the category of algebraic 2-types to the category of abelian groups.

ii) If (G, A, x) is an algebraic 3-type, then , H"(G, A, x; x) is a covariant functor from
the category of abelian groups to the category of abelian groups.

iii) For every morphism (u,v) from (Gy, A1,x) to (Gp, Az, A) and any Gp-module B
we have a morphism (u,v)* : ,H"(Gy, Az, A; B) — 2H"(G1, A1, k; B) where the G-
module structure on B is induced by u.

In [CCG], the authors introduced a cohomology theory for crossed modules
(and implicitly for algebraic 3-types). Since their coefficients are abelian crossed
modules, it reasonable to believe that an appropriate specialization of that theory
will be equivalent with the secondary cohomology described in this paper. How-
ever the construction in [CCG] is not very explicit and we had some trouble to
pinpoint the precise connection with our theory.
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3.2 Secondary k-invariant

Let (X, xg) be a pointed topological space. For each & € 711(X) we fix a repre-
sentative r(a) : [0,1] — X. For each pair of elements a, € 7m1(X) we fix a
singular 2-simplex r(«, B) : A, — X such that [0,1], [1,2] and [0,2] map accord-
ing to r(«), r(B) and r(apB). Just like in the construction of the k-invariant define
a map R(a, B,7) : 9(A3) — X such that Rip12 = r(e,B), Rinps = r(B,7),
Rjjo23) = r(aB,7), and Rg 13 = r(a, B). This gives us the classical k-invariant.

For each triple («,B;a) € nl(X) x 7111(X) x m2(X) we consider a singular 2-
simplex r(«, B;a) : Ay — X such that [0,1], [1,2] and [0, 2] map according to r(«),
r(B) and r(af) and when we glue r(a, §; a) with r(«, B) along the boundary we get
a € m(X). Foreach (¢) = (g1,92,¢3) € m(X)?and (a) = (agy1, an, a12) € m(X)3
we fix a singular 3-simplex r((g); (a)) = r(g1,82, 83 401,402, 412) : Az — X such
that:

V((g);(“))|[0,1,2} = r(8g1,82;a01)

r((8); (4)) 02,3 (8182, 83;02)

r(();(a)n23 = (82 83 012)

r((8); (@)jo13 = r(g1,8283; o1 a02 ¥ (ay, )k (81,82, 83))

For each (g) = (81,82, 83,84) € m1(X)* and (a) = (ap1, ao, ao3, 12, 413, 423) €
75 (X)® we define:

R((g); (a)) = R(g1, 82,83, 84; 01, A2, 03, A12, 413, 423) = (Ag) — X (3.4)

such that the restriction of R((g); (a)) on each of the five 3-simplices that make
the boundary of A4 is given by:

R((8); () 0,1,23 = 7(81,82, 83; 401, 302, A12)
R((£); (a)) 101,04 = 7(81, 82, 83843 Go1, B02803 182 (35 ) (8182, 83, 84),
a12013 % (a3 ) (82, 83, 84))
R((8); (@) j01,3.4] = (81,8283, 843 a01a02 5 (a3 )k (81, 82, 83), 403, 413)
R((g); (a))\[o,z,3,4] = (8182, 83, 84 402, 403, 423)
R((8); () 1,234 = 7(82, 83, 45 412, 313, A23)
It is obvious that R(g1, 2, §3, S4; Go1, 402, A3, 412, 413, 423 ) determines a unique ele-
ment of 713(X), and so R € ,C*(7r1(X), m2(X), x; 713(X)).
Just like in the case X simply connected one can show that R is a 4-cocycle, i.e.
R € »Z4(m (X), ma(X), x; 3 (X)).
We want to show that the class of R € H*(711(X), m2(X), x; 13(X)) does not
depend on the choices we made. First we keep fixed r(a) and r(«, ) and r(«, B; a)
and we change r(«, B,v;a,b,c) with another map r'(«, 8, 7;4,b,¢) we get a map

h:m(X)? x mp(X)? — m3(X) (by gluing r and ' along the boundary). One can
see that:

R—R = d(h)
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and so R and R’ are cohomologous equivalent. If we change r(a, 5;a) with
r'(a,B;a) then we can chose #'(«,B,7;4,b,c) such that the two maps
R,R": my(X)® — m3(X) are equal. If we change r(«, 8) with 7’(a, B)) we replace
k with some ¥’ = x — J,(u) which gives an isomorphism like in (3.1). If we fix
r(a,B;a) and r(a, B,7;a,b,c) then the 4-cocycle R’ € ,Z*(m1(X), mp(X), «'; m3(X))
becomes @, (R). Finally if we change r(«) with '(«) we can chose all the other 7/
such that R does not change. We have the following result.

Theorem 3.6. If (X, xg) is a topological space then the above construction defines a
topological invariant ,x* = R € 2H*(r11(X), ma(X), x; 713(X)).

Remark 3.7. If 15(X) = 0 then ,x* is the element x* described in the first remark
from section 5 in [EM] (see also [EM2]).

Remark 3.8. Notice that the definition of the secondary cohomology is induced
by how we add elements in 71,(A3, A3, x) (where A? is the r-skeleton of A%). On
the other hand this is essentially equivalent with the homotopy addition lemma
(see for example [B] or [BR]). This connection (and its higher dimensional analog)
was unknowingly used in [S1] to give a new explicit description for the simplicial
group K(A,2) (respectively for K(A, n)).

3.3 Description of the third cohomology group of a space X

We recall from [EM] the description of H?(X, K*) in terms of 711(X), 72(X) and
3. Let u € C?(711(X),K*) and v € Hom(7»(X), K*) such that

(02(u))(8, b k) = v(x(8,h,k))
v(8a) = v(a)

Let H?(7ty, 715, k; K*) be the quotient group of all pairs (u, v) that satisfy the above
relations by the subgroup of all pairs (6;(p), 1) where p € C!(711(X), K*). It was
proved in [EM] that for a space X the second cohomology group H?(X,K*) is
isomorphic with H2(7t1(X), 72 (X), k; K*).

We will give a similar description of H3(X,K*) in terms of 7(X), m(X),
m3(X), k3 and Hx*.

For { € H3(X,K*), the natural morphism 73(X) — H3(X) induces a group
morphism v : 713(X) — K*. One can notice that v(*“m) = v(m) for all & € 11 (X)
and m € m3(X). Also for &, f and v € 71(X) and a4, b and ¢ € m(X) we define
u:m(X)3 x m(X)® — K* by

u(w, B,7,a,b,¢) = L(r(w,,7,a,b,0))

Let (g) = (91,82,93,84) € m1(X)* and (a) = (ag1, doa, a3, 412, 413, 423) € 712(X)°
we have

35(u)((g), (2)) = v(2x*((g), (1))

We define H? (7 (X), mp(X), %, m3(X), 2x*; K*) the quotient group of all pairs
(u,v) that satisfy the above relations by the subgroup of all pairs (65 (p), 1) where
p € 2C%(mr1(X), m2(X), x; K*). One can show that we have:
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Theorem 3.9. H3(X,K*) ~ H3(m1(X), mp(X), k3, m3(X), 2x*; K*)

Remark 3.10. If 73(X) = 0 we get H3(X, K*) ~ ,H?(m(X), m(X), x; K*) and so
H3(X, K*) can be explicitly described in terms of 711 (X), 715(X) and «3. This was
also noticed in [EM] with the comment “The algebraic constructions involved are
quite cumbersome”. We hope that this paper makes the construction look more
natural.

Example 3.11. When X = S? one has 71 (S5?) = 1, m(S?) = m3(S?) = Z. If we
assume that »x? is trivial then we get that H>(S?) # 0 which is not true. This
implies that the secondary invariant ,x* associated to S? is not trivial.

3.4 Conclusions and Remarks

Having a cohomological invariant that gives information about the n-type of a
space can be very useful. For example, in the case of 2-types, the existence of
the the first k-invariant x> allows us to avoid the formalism from the definition
of crossed modules, but still work in a purely algebraic framework. This was
used in [ST] to study 2-dimensional HQFT’s, see also [PT] for the approach with
crossed modules. We hope that the construction described in this paper will have
similar applications for problems involving 3-types.

A natural question is whether the invariant x* classify the 3-type of a space.
This problem turned out to be much more difficult then one expects (however
we are still optimistic about it). A possible approach is to show that equivalences
classes of quadratic modules are in bijection with elements of the secondary co-
homology group »H*(G, A, «; B) for the appropriate G, A, ¥ and C.

If the the above question has a positive answer one could try to define a
ternary cohomology group 3H"(G, A, «, B, 2x; C). Then find a cohomology class
3k° € 3H (1 (X), ma(X), k2, 13(X), 2x*; 14(X)) that classify the 4-type of a space,
and so on. We can notice that we have a short exact sequence of complexes:

0— C*(G,B) = 2C*(G,A,x;B) — ,C*(A,B) —» 0
This suggest that at the next level we should have:
0— zc*(G,A,K,' C) — 3C*(G,A,K, B, 2K, C) — 3C*(B, C) —0

In general we expect that the cohomology theory at step n is a twist between
the cohomology from step n — 1 with an appropriate cohomology theory that de-
pends only on two groups. A first step in this direction was made in [S1] where
it was proved that the secondary cohomology »H" (A, *) corresponds to the sim-
plicial group K(A,2) the same way the usual cohomology H" (G, *) corresponds
to the simplicial group K(G,1). The general case of the secondary cohomology
2H"(G, A, x; %) is obtained using a x>-twist between K(G, 1) and K(A,2). This is
similar with the results from [M] and is also the reason way we said in introduc-
tion that our construction has a Postnikov-invariant flavor.
Finally, notice that when we prove 463 = 0 we use an equality of the type

f(f(ao1,a02,a12), a03,a13) = f(ao1, f(ao2, ao3, a23), f(a12,a13, 423)) (3.5)
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where f : AXAXA — A, f(a,bc) = abc~ L. The identity (3.5) is almost the
same as the ternary associativity condition discussed in [S]. With the notations
from that paper one can take f(a,b,c¢) = m(a,Q(c),b) and check that f satisfy
condition (3.5).
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