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Abstract

We give a construction that associates to a pointed topological space (X, x0)
a homotopy invariant 2κ4 which we call the secondary invariant. This con-
struction can be seen a “3-type” generalization of the classical k-invariant.

Introduction

To a pointed topological topological space (X, x0) one can associate the n-th ho-
motopy group πn(X). It is a well known result that πn(X) is a homotopy in-
variant for the space X. Moreover one can show that if f : X → Y induces
isomorphisms f∗ : πn(X) → πn(Y) for all n > 0, then the map f is a homo-
topy equivalence. The naive converse of this result is not true; namely there are
spaces X and Y that are not homotopy equivalent but have isomorphic homo-
topy groups. A fundamental problem in homotopy theory is to find under what
conditions a family of isomorphism φi : πi(X) → πi(Y) is induced by a mor-
phism f : X → Y. This is called the realization problem and it was formulated by
Whitehead. In general the problem is very difficult and highly unsolved.

The only case where a nice solution exists is for spaces X with πi(X) = 0 for
all i > 2 (these are called spaces of 2-type). The solution is in terms of the first k-
invariant introduced by Eilenberg and MacLane in [EM]. The first k-invariant is a
homotopy invariant that belongs to H3(π1(X), π2(X)). MacLane and Whitehead
have proved in [MW] that equivalence classes of so called crossed modules are in
bijection with the elements of the third cohomology group H3(G, A). They used
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this description to show that the 2-type of a topological space is determined by
triples (π1(X), π2(X), κ3), where κ3 is the k-invariant mentioned above.

A space X with the property that πi(X) = 0 for all i > n is called of n-type.
After the result of MacLane and Whitehead, there was a shift in the approach for
classification of n-types. Postnikov introduced a construction that is now known
as Postnikov invariant. Although it provides a complete classification for all n-
types, this construction is not very satisfying since it is not intrinsic to the space
X and does not have the same algebraic elegance as the first k-invariant.

Spaces of 3-type were classified by Baues [B] in terms of quadratic modules.
There are also classifications of spaces of 3-type in terms of 2-crossed modules due
to Conduche [C], and crossed squares due to Loday [L]. To our best knowledge
there is no description for the 3-type in terms of some cohomology class.

In this paper we propose a construction that associates to a pointed topolog-
ical space (X, x0) an invariant 2κ4 that is an element in a certain cohomology
group we introduce. The construction is similar with that of the first k-invariant
but also has a Postnikov-invariant flavor. We believe that 2κ4 is a natural candi-
date to classify the 3-type of a space.

Here is how the paper is organized. In the first section we recall general facts
about the first k-invariant. In the second section, as a warm up, we treat the
case of simply connected spaces. More precisely for two commutative groups
A and B we introduce the secondary cohomology group 2Hn(A, B). Then to a
simply connected topological space X we associate a topological invariant 2κ4 ∈

2H4(π2(X), π3(X)). This construction is very similar with the construction of the
k-invariant, one just has to go up one dimension. The key result is the definition
of the secondary cohomology groups. Having the right cohomology theory, the
proof that 2κ4 is an invariant is almost cut and paste from [EM].

In the third section we give the result for general topological spaces. We start
with a group G (possibly noncommutative), two G-modules A and B, a 3-cocycle
κ ∈ H3(G, A) and we define 2H4(G, A, κ; B) the secondary cohomology of the
triple (G, A, κ) with coefficients in B. One can then associate to any pointed space
(X, x0) a topological invariant 2κ4 ∈ 2H4(π1(X), π2(X), κ3 ; π3(X)). Obviously if
X is simply connected we get the invariant 2κ4 from section two. Also if π2(X) =
0 we get the second k-invariant κ4 ∈ H4(π1(X), π3(X)) introduced in [EM]. As an
application we give an algebraic description of the cohomology group H3(X, K∗).
We conclude the paper with remarks on possible generalizations and research
problems in this direction.

1 Preliminaries

We recall from [EM] and [EM1] some notations about group cohomology and the
construction of the first k-invariant.

Let G be a group and A a G-module. We set Cn(G, A) = {σ : Gn → A} and
define ∂n : Cn(G, A) → Cn+1(G, A) by

∂n(σ)(g1, ..., gn+1) = g1σ(g2, ..., gn+1)− σ(g1g2, g3, ..., gn+1) + ... +

+(−1)nσ(g1, ..., gngn+1) + (−1)n+1σ(g1, ..., gn).
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In this way we obtain a chain complex. Its homology groups are denoted by
Hn(G, A) and are called the cohomology of G with coefficients in A.

Let X be an arc connected topological space with base point x0. For each
element α ∈ π1(X) we fix a representative r(α). For each pair of elements (α, β) ∈
π1(X) × π1(X) we consider a singular 2-simplex r(α, β) : ∆2 → X such that
the edges [0, 1], [1, 2] and [0, 2] map according to r(α), r(β) and r(αβ). For α, β,
γ ∈ π1(X) we define a map R(α, β, γ) : ∂(∆3) → X such that R|[0,1,2] = r(α, β),

R|[1,2,3] = r(β, γ), R|[0,2,3] = r(αβ, γ), and R|[0,1,3] = r(α, βγ). In this way we get

an element of κ(α, β, γ) ∈ π2(X).

Theorem 1.1. [EM] The cochain (α, β, γ) → κ(α, β, γ) is a cocycle. A change of the
representatives r(α) and r(α, β) alters κ by a coboundary. Thus κ determines a unique
cohomology class κ3 ∈ H3(π1(X), π2(X)) which is a topological invariant of (X, x0).

If X is a space with the property that πi(X) = 0 for 1 < i < n, then the above
construction can generalized to obtain an invariant κn+1 ∈ Hn+1(π1(X), πn(X)).
The element κn+1 is called the (n − 1)-th k-invariant.

2 The simply connected case

2.1 Secondary cohomology for commutative groups

In this section A and B are commutative groups. For A we use multiplicative no-

tation while for B we use the additive notation. Define 2Cn(A, B) = Map(A
n(n−1)

2 ,

B). The elements of A
n(n−1)

2 are
n(n−1)

2 -tuples (ai,j)(0≤i<j≤n−1) with the index in
the lexicographic order:

(a0,1, a0,2, ..., a0,n−1, a1,2, a1,3, ..., a1,n−1, ..., an−2,n−1)

For every 0 ≤ k ≤ n + 1 we define dk
n : A

(n+1)n
2 → A

n(n−1)
2 , dk

n((ai,j)(0≤i<j≤n) =

(bi,j)(0≤i<j≤n−1) where

bi,j =















ai,j if 0 ≤ i < j < k − 1

ai,k−1ai,ka−1
k−1,k if 0 ≤ i < j = k − 1

ai,j+1 if 0 ≤ i ≤ k − 1 < j
ai+1,j+1 if k − 1 < i < j

One can check that

dk
n−1dl

n = dl−1
n−1dk

n if k < l

Let δn : 2Cn(A, B) → 2Cn+1(A, B) defined by:

δn( f ) = f d0
n − f d1

n + f d2
n − ... + (−1)n+1 f dn+1

n (2.1)
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Example 2.1. When n = 2, n = 3 or n = 4, and f ∈ 2Cn(A, B) we have

δ2( f )(a01 , a02, a12) = f (a12)− f (a02) + f (a01a02a−1
12 )− f (a01)

δ3( f )(a01 , a02, a03, a12, a13, a23) = f (a12 , a13, a23)− f (a02, a03, a23)

+ f (a01a02a−1
12 , a03, a13)− f (a01, a02a03a−1

23 , a12a13a−1
23 ) + f (a01, a02, a12)

δ4( f )(a01 , a02, a03, a04, a12, a13, a14, a23, a24, a34) =

f (a12, a13, a14, a23, a24, a34)− f (a02, a03, a04, a23, a24, a34)

+ f (a01a02a−1
12 , a03, a04, a13, a14, a34)

− f (a01 , a02a03a−1
23 , a04, a12a13a−1

23 , a14, a24)

+ f (a01 , a02, a03a04a−1
34 , a12, a13a14a−1

34 , a23a24a−1
34 )

− f (a01 , a02, a03, a12, a13, a23)

It is obvious that δn+1δn( f ) = 0 for all n ≥ 1 and all f ∈ 2Cn(A, B), which
means that we have a complex ( 2C∗(A, B), δ∗).

Definition 2.2. We denote the homology of ( 2C∗(A, B), δ∗) by 2H∗(A, B) and we
call it the secondary cohomology of the group A with coefficients in B.

2.2 The secondary k-invariant for simply connected spaces

Let X be a simply connected topological space. For any element a ∈ π2(X) we fix
a map r(a) : ∆2 → X that represents a (notice that r(a)|∂(∆2)

= x0). For each a01,

a02 and a12 ∈ π2(X) we fix a singular 3-simplex r(a01, a02, a12) : ∆3 → X such that
r(a01, a02, a12)|[0,1,2] = r(a01), r(a01, a02, a12)|[0,2,3] = r(a02), r(a01, a02, a12)|[1,2,3] =

r(a12) and r(a01, a02, a12)|[0,1,3] = r(a01a02a−1
12 ). For each a01, a02, a03, a12, a13 and

a23 ∈ π2(X) we define:

R(a01, a02, a03, a12, a13, a23) : ∂(∆4) → X (2.2)

such that the restriction of R(a01 , a02, a03, a12, a13, a23) on each of the 3-simplices
that make the boundary of ∆4 is given by:

R(a01 , a02, a03, a12, a13, a23)|[0,1,2,3] = r(a01, a02, a12)

R(a01 , a02, a03, a12, a13, a23)|[0,1,2,4] = r(a01, a02a03a−1
23 , a12a13a−1

23 )

R(a01 , a02, a03, a12, a13, a23)|[0,1,3,4] = r(a01a02a−1
12 , a03, a13)

R(a01 , a02, a03, a12, a13, a23)|[0,2,3,4] = r(a02, a03, a23)

R(a01 , a02, a03, a12, a13, a23)|[1,2,3,4] = r(a12, a13, a23)

It is obvious that R(a01, a02, a03, a12, a13, a23) determines a unique element of π3(X),
and so R ∈ 2C4(π2(X), π3(X)).
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Let’s see that R is a cocycle. Take a01, a02, a03, a04, a12, a13, a14, a23 a24 and
a34 ∈ π2(X). We notice that there exists a map F from the 3-dimensional skeleton
of ∆5 to X such that:

F|∂([0,1,2,3,4]) = R(a01 , a02, a03, a12, a13, a23)

F|∂([0,1,2,3,5]) = R(a01 , a02, a03a04a−1
34 , a12, a13a14a−1

34 , a23a24a−1
34 )

F|∂([0,1,2,4,5]) = R(a01 , a02a03a−1
23 , a04, a12a13a−1

23 , a14, a24)

F|∂([0,1,3,4,5]) = R(a01a02a−1
12 , a03, a04, a13, a14, a34)

F|∂([0,2,3,4,5]) = R(a02 , a03, a04, a23, a24, a34)

F|∂([1,2,3,4,5]) = R(a12 , a13, a14, a23, a24, a34)

Moreover each 3-simplex of ∆5 appears exactly twice (once for each orientation)
in the following element of π3(X).

R(a12 , a13, a14, a23, a24, a34)− R(a02 , a03, a04, a23, a24, a34)

+R(a01a02a−1
12 , a03, a04, a13, a14, a34)

−R(a01 , a02a03a−1
23 , a04, a12a13a−1

23 , a14, a24)

+R(a01 , a02, a03a04a−1
34 , a12, a13a14a−1

34 , a23a24a−1
34 )

−R(a01 , a02, a03, a12, a13, a23)

This means that δ4(R) = 0 and so R ∈ 2C4(π2(X), π3(X)) is a 4-cocycle.
If we keep fixed r(a) and we change r(a, b, c) with another map r′(a, b, c) we

get a map h : π2(X) × π2(X) × π2(X) → π3(X) (by gluing r and r′ along the
boundary). One can see that:

R(a01, a02, a03, a12, a13, a23)− R′(a01, a02, a03, a12, a13, a23)

= h(a12 , a13, a23)− h(a02 , a03, a23) + h(a01a02a−1
12 , a03, a13)

−h(a01, a02a03a−1
23 , a12a13a−1

23 ) + h(a01, a02, a12)

And so R and R′ are cohomologous equivalent. If we change r(a) with r′(a) then
we can chose r′(a, b, c) such that the two maps R, R′ : π2(X)6 → π3(X) are equal.
This prove that R defines an unique element 2κ4 ∈ 2H4(π2(X), π3(X)) that is a
topological invariant of (X, x0).

3 The general case

3.1 Secondary cohomology of (G, A, κ) with coefficients in B

We want to generalize the above results to topological spaces with π1(X) non-
trivial. First we need to construct an analog for 2H4(A, B). We start with a
group G (possibly noncommutative), two G-modules A and B and a 3-cocycle

κ ∈ Z3(G, A). Define 2Cn(G, A, κ; B) = Map(Gn × A
n(n−1)

2 , B). The elements of
Gn are n-tuples

(g) = (gi)(1≤i≤n)
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The elements of A
n(n−1)

2 are
n(n−1)

2 -tuples (a) = (ai,j)(0≤i<j≤n−1) with the index in
the lexicographic order:

(a) = (a0,1, a0,2, ..., a0,n−1, a1,2, a1,3, ..., a1,n−1, ..., an−2,n−1)

For every 0 ≤ k ≤ n + 1 we define dk
n : Gn+1 × A

n(n+1)
2 → Gn × A

(n−1)n
2 ,

dk
n((gi)(1≤i≤n+1), (ai,j)(0≤i<j≤n)) = ((hi)(1≤i≤n), (bi,j)(0≤i<j≤n−1)) where

hi =







gi if i < k
gigi+1 if i = k
gi+1 if k < i

bi,j =















ai,j if 0 ≤ i < j < k − 1

ai,k−1ai,k
gi+1...gk−1(a−1

k−1,k)κ(gi+1...gk−1, gk, gk+1) if 0 ≤ i < j = k − 1

ai,j+1 if 0 ≤ i ≤ k − 1 < j
ai+1,j+1 if k − 1 < i < j

Let δκ
n : 2Cn(G, A, κ; B) → 2Cn+1(G, A, κ; B) defined by:

δκ
n( f )((g); (a)) = g1 f d0

n((g); (a)) − f d1
n((g); (a))

+ f d2
n((g); (a)) − ... + (−1)n+1 f dn+1

n ((g); (a))

Example 3.1. For n = 2 or n = 3 and f ∈ 2Cn(G, A, κ; B) we have:

δκ
2( f )(g1, g2, g3; a01, a02, a12) = g1 f (g2, g3; a12)− f (g1g2, g3; a02)

+ f (g1, g2g3; a01a02
g1(a−1

12 )κ(g1 , g2, g3))− f (g1, g2; a01)

δκ
3( f )(g1 , g2, g3, g4; a01, a02, a03, a12, a13, a23)

= g1 f (g2, g3, g4; a12, a13, a23)− f (g1g2, g3, g4; a02, a03, a23)

+ f (g1, g2g3, g4; a01a02
g1(a−1

12 )κ(g1, g2, g3), a03, a13)

− f (g1, g2, g3g4; a01, a02a03
g1g2(a−1

23 )κ(g1g2, g3, g4), a12a13
g2(a−1

23 )κ(g2, g3, g4))

+ f (g1, g2, g3; a01, a02, a12)

One can check that δκ
n+1δκ

n( f ) = 0 for all f ∈ 2Cn(G, A, κ; B), and so we have
a complex ( 2C∗(G, A, κ; B), δκ

∗).

Definition 3.2. We denote the homology of the complex ( 2C∗(G, A, κ; B), δκ
∗) by

2H∗(G, A, κ; B) and we call it the secondary cohomology of (G, A, κ) with coeffi-
cients in B.

Remark 3.3. Let’s notice that the above construction depends only on the class of
κ ∈ H3(G, A). Indeed if κ = κ′+ δ2(u) then there is an isomorphism of complexes
Φu : 2C∗(G, A, κ; B) → 2C∗(G, A, κ′; B) defined by:

Φu( f )((g); (a)) = f ((g); (c)) (3.1)

where ci,j = ai,ju(gi+1...gj−1, gj). One can see that

δκ′
Φu = Φuδκ (3.2)
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ΦuΦv = Φu+v (3.3)

And so Φ is a natural transformation that allows us to identify 2H∗(G, A, κ; B)
with 2H∗(G, A, κ′; B).

Example 3.4. If A is trivial then 2Hn(G, 1, κ; B) is the usual cohomology Hn(G, B).
If G is trivial then 2H∗(1, A, κ; B) is the secondary cohomology group 2Hn(A, B)
defined in the previous section. Also it is easy to show that 2Hn(1; B) = 0 and

2Hn(A; 0) = 0.

Example 3.5. Simple computations show that

2H2(Z2, B) = {(b1, b2) ∈ B × B| 2b1 = 2b2}/{(b, b)|b ∈ B}

2H3(Z2, B) = B/2B

For example one has 2H2(Z2, Z) = 0, 2H2(Z2, Z2) = Z2, 2H3(Z2, Z) = Z2 and

2H3(Z2, Z2) = Z2.

Next we will mention some functorial properties of the secondary cohomol-
ogy. First we need to introduce the category of algebraic 2-types. An object
in this category is a triple (G, A, κ) where G is a group, A is a G-module and
κ ∈ Z3(G, A) is a 3-cocycle. A morphism between (G1, A1, κ) and (G2, A2, λ) is a
pair (u, v) where u : G1 → G2 and v : A → B are morphisms of groups with the
property that v(ga) = u(g)v(a) and the 3-cocycles v(κ) and λ(u, u, u) are equiva-
lent as elements in Z3(G1, A2). On can show that in this way we obtain a category
and that a morphism (u, v) is an isomorphism if and only if u and v are isomor-
phisms. An object in this category was called an ”algebraic 3-type” in [MW], but
considering the change (over the years) in terminology for the n-type of a topo-
logical space our notation seams appropriate. With this notations one can easily
check the following result:

Proposition 3.1. i) If B is an abelian group, then 2 Hn(∗; B) is a contravariant functor
from the category of algebraic 2-types to the category of abelian groups.
ii) If (G, A, κ) is an algebraic 3-type, then 2 Hn(G, A, κ; ∗) is a covariant functor from
the category of abelian groups to the category of abelian groups.
iii) For every morphism (u, v) from (G1, A1, κ) to (G2, A2, λ) and any G2-module B
we have a morphism (u, v)∗ : 2Hn(G2, A2, λ; B) → 2Hn(G1, A1, κ; B) where the G1-
module structure on B is induced by u.

In [CCG], the authors introduced a cohomology theory for crossed modules
(and implicitly for algebraic 3-types). Since their coefficients are abelian crossed
modules, it reasonable to believe that an appropriate specialization of that theory
will be equivalent with the secondary cohomology described in this paper. How-
ever the construction in [CCG] is not very explicit and we had some trouble to
pinpoint the precise connection with our theory.
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3.2 Secondary k-invariant

Let (X, x0) be a pointed topological space. For each α ∈ π1(X) we fix a repre-
sentative r(α) : [0, 1] → X. For each pair of elements α, β ∈ π1(X) we fix a
singular 2-simplex r(α, β) : ∆2 → X such that [0, 1], [1, 2] and [0, 2] map accord-
ing to r(α), r(β) and r(αβ). Just like in the construction of the k-invariant define
a map R(α, β, γ) : ∂(∆3) → X such that R|[0,1,2] = r(α, β), R|[1,2,3] = r(β, γ),

R|[0,2,3] = r(αβ, γ), and R|[0,1,3] = r(α, βγ). This gives us the classical k-invariant.

For each triple (α, β; a) ∈ π1(X) × π1(X) × π2(X) we consider a singular 2-
simplex r(α, β; a) : ∆2 → X such that [0, 1], [1, 2] and [0, 2] map according to r(α),
r(β) and r(αβ) and when we glue r(α, β; a) with r(α, β) along the boundary we get
a ∈ π2(X). For each (g) = (g1, g2, g3) ∈ π1(X)3 and (a) = (a01, a02, a12) ∈ π2(X)3

we fix a singular 3-simplex r((g); (a)) = r(g1, g2, g3; a01, a02, a12) : ∆3 → X such
that:

r((g); (a))|[0,1,2] = r(g1, g2; a01)

r((g); (a))|[0,2,3] = r(g1g2, g3; a02)

r((g); (a))|[1,2,3] = r(g2, g3; a12)

r((g); (a))|[0,1,3] = r(g1, g2g3; a01a02
g1(a−1

12 )κ(g1, g2, g3))

For each (g) = (g1, g2, g3, g4) ∈ π1(X)4 and (a) = (a01, a02, a03, a12, a13, a23) ∈
π2(X)6 we define:

R((g); (a)) = R(g1, g2, g3, g4; a01, a02, a03, a12, a13, a23) : ∂(∆4) → X (3.4)

such that the restriction of R((g); (a)) on each of the five 3-simplices that make
the boundary of ∆4 is given by:

R((g); (a))|[0,1,2,3] = r(g1, g2, g3; a01, a02, a12)

R((g); (a))|[0,1,2,4] = r(g1, g2, g3g4; a01, a02a03
g1g2(a−1

23 )κ(g1g2, g3, g4),

a12a13
g2(a−1

23 )κ(g2 , g3, g4))

R((g); (a))|[0,1,3,4] = r(g1, g2g3, g4; a01a02
g1(a−1

12 )κ(g1, g2, g3), a03, a13)

R((g); (a))|[0,2,3,4] = r(g1g2, g3, g4; a02, a03, a23)

R((g); (a))|[1,2,3,4] = r(g2, g3, g4; a12, a13, a23)

It is obvious that R(g1, g2, g3, g4; a01, a02, a03, a12, a13, a23) determines a unique ele-
ment of π3(X), and so R ∈ 2C4(π1(X), π2(X), κ; π3(X)).

Just like in the case X simply connected one can show that R is a 4-cocycle, i.e.
R ∈ 2Z4(π1(X), π2(X), κ; π3(X)).

We want to show that the class of R ∈ 2H4(π1(X), π2(X), κ; π3(X)) does not
depend on the choices we made. First we keep fixed r(α) and r(α, β) and r(α, β; a)
and we change r(α, β, γ; a, b, c) with another map r′(α, β, γ; a, b, c) we get a map
h : π1(X)3 × π2(X)3 → π3(X) (by gluing r and r′ along the boundary). One can
see that:

R − R′ = δκ
3(h)
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and so R and R′ are cohomologous equivalent. If we change r(α, β; a) with
r′(α, β; a) then we can chose r′(α, β, γ; a, b, c) such that the two maps
R, R′ : π2(X)6 → π3(X) are equal. If we change r(α, β) with r′(α, β)) we replace
κ with some κ′ = κ − δ2(u) which gives an isomorphism like in (3.1). If we fix
r(α, β; a) and r(α, β, γ; a, b, c) then the 4-cocycle R′ ∈ 2Z4(π1(X), π2(X), κ′ ; π3(X))
becomes Φu(R). Finally if we change r(α) with r′(α) we can chose all the other r′

such that R does not change. We have the following result.

Theorem 3.6. If (X, x0) is a topological space then the above construction defines a
topological invariant 2κ4 = R ∈ 2H4(π1(X), π2(X), κ; π3(X)).

Remark 3.7. If π2(X) = 0 then 2κ4 is the element κ4 described in the first remark
from section 5 in [EM] (see also [EM2]).

Remark 3.8. Notice that the definition of the secondary cohomology is induced
by how we add elements in π2(∆

3
2, ∆

3
1, x0) (where ∆

3
r is the r-skeleton of ∆

3). On
the other hand this is essentially equivalent with the homotopy addition lemma
(see for example [B] or [BR]). This connection (and its higher dimensional analog)
was unknowingly used in [S1] to give a new explicit description for the simplicial
group K(A, 2) (respectively for K(A, n)).

3.3 Description of the third cohomology group of a space X

We recall from [EM] the description of H2(X, K∗) in terms of π1(X), π2(X) and
κ3. Let u ∈ C2(π1(X), K∗) and v ∈ Hom(π2(X), K∗) such that

(δ2(u))(g, h, k) = v(κ(g, h, k))

v( ga) = v(a)

Let H2(π1, π2, κ; K∗) be the quotient group of all pairs (u, v) that satisfy the above
relations by the subgroup of all pairs (δ1(p), 1) where p ∈ C1(π1(X), K∗). It was
proved in [EM] that for a space X the second cohomology group H2(X, K∗) is
isomorphic with H2(π1(X), π2(X), κ; K∗).

We will give a similar description of H3(X, K∗) in terms of π1(X), π2(X),
π3(X), κ3 and 2κ4.

For ζ ∈ H3(X, K∗), the natural morphism π3(X) → H3(X) induces a group
morphism v : π3(X) → K∗. One can notice that v( αm) = v(m) for all α ∈ π1(X)
and m ∈ π3(X). Also for α, β and γ ∈ π1(X) and a, b and c ∈ π2(X) we define
u : π1(X)3 × π2(X)3 → K∗ by

u(α, β, γ, a, b, c) = ζ(r(α, β, γ, a, b, c))

Let (g) = (g1, g2, g3, g4) ∈ π1(X)4 and (a) = (a01, a02, a03, a12, a13, a23) ∈ π2(X)6

we have

δκ
3(u)((g), (a)) = v( 2κ4((g), (a)))

We define H3(π1(X), π2(X), κ3 , π3(X), 2κ4; K∗) the quotient group of all pairs
(u, v) that satisfy the above relations by the subgroup of all pairs (δκ

2(p), 1) where
p ∈ 2C2(π1(X), π2(X), κ; K∗). One can show that we have:
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Theorem 3.9. H3(X, K∗) ≃ H3(π1(X), π2(X), κ3 , π3(X), 2κ4; K∗)

Remark 3.10. If π3(X) = 0 we get H3(X, K∗) ≃ 2H3(π1(X), π2(X), κ; K∗) and so
H3(X, K∗) can be explicitly described in terms of π1(X), π2(X) and κ3. This was
also noticed in [EM] with the comment “The algebraic constructions involved are
quite cumbersome”. We hope that this paper makes the construction look more
natural.

Example 3.11. When X = S2 one has π1(S
2) = 1, π2(S

2) = π3(S
2) = Z. If we

assume that 2κ4 is trivial then we get that H3(S2) 6= 0 which is not true. This
implies that the secondary invariant 2κ4 associated to S2 is not trivial.

3.4 Conclusions and Remarks

Having a cohomological invariant that gives information about the n-type of a
space can be very useful. For example, in the case of 2-types, the existence of
the the first k-invariant κ3 allows us to avoid the formalism from the definition
of crossed modules, but still work in a purely algebraic framework. This was
used in [ST] to study 2-dimensional HQFT’s, see also [PT] for the approach with
crossed modules. We hope that the construction described in this paper will have
similar applications for problems involving 3-types.

A natural question is whether the invariant 2κ4 classify the 3-type of a space.
This problem turned out to be much more difficult then one expects (however
we are still optimistic about it). A possible approach is to show that equivalences
classes of quadratic modules are in bijection with elements of the secondary co-
homology group 2H4(G, A, κ; B) for the appropriate G, A, κ and C.

If the the above question has a positive answer one could try to define a
ternary cohomology group 3Hn(G, A, κ, B, 2κ; C). Then find a cohomology class

3κ5 ∈ 3H5(π1(X), π2(X), κ3, π3(X), 2κ4; π4(X)) that classify the 4-type of a space,
and so on. We can notice that we have a short exact sequence of complexes:

0 → C∗(G, B) → 2C∗(G, A, κ; B) → 2C∗(A, B) → 0

This suggest that at the next level we should have:

0 → 2C∗(G, A, κ; C) → 3C∗(G, A, κ, B, 2κ; C) → 3C∗(B, C) → 0

In general we expect that the cohomology theory at step n is a twist between
the cohomology from step n − 1 with an appropriate cohomology theory that de-
pends only on two groups. A first step in this direction was made in [S1] where
it was proved that the secondary cohomology 2Hn(A, ∗) corresponds to the sim-
plicial group K(A, 2) the same way the usual cohomology Hn(G, ∗) corresponds
to the simplicial group K(G, 1). The general case of the secondary cohomology

2Hn(G, A, κ; ∗) is obtained using a κ3-twist between K(G, 1) and K(A, 2). This is
similar with the results from [M] and is also the reason way we said in introduc-
tion that our construction has a Postnikov-invariant flavor.

Finally, notice that when we prove δ4δ3 = 0 we use an equality of the type

f ( f (a01 , a0,2, a12), a03, a13) = f (a01, f (a02, a03, a23), f (a12, a13, a23)) (3.5)
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where f : A × A × A → A, f (a, b, c) = abc−1. The identity (3.5) is almost the
same as the ternary associativity condition discussed in [S]. With the notations
from that paper one can take f (a, b, c) = m(a, Q(c), b) and check that f satisfy
condition (3.5).
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