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Abstract

Suppose that X is a subspace of a Tychonoff space Y. Then the embed-
ding mapping eX,Y : X → Y can be extended to a continuous monomor-
phism êX,Y : AP(X) → AP(Y), where AP(X) and AP(Y) are the free Abelian
paratopological groups over X and Y, respectively. In this paper, we mainly
discuss when êX,Y is a topological monomorphism, that is, when êX,Y is a
topological embedding of AP(X) to AP(Y).

1 Introduction

In 1941, free topological groups were introduced by A.A. Markov in [9] with the
clear idea of extending the well-known construction of a free group from group
theory to topological groups. Now, free topological groups have become a pow-
erful tool of study in the theory of topological groups and serve as a source of
various examples and as an instrument for proving new theorems, see [1, 5, 11].

In [5], M.I. Graev extended continuous pseudometrics on a space X to invari-
ant continuous pseudometrics on F(X) (or A(X)). Apparently, the description of
a local base at the neutral element of the free Abelian topological group A(X) in
terms of continuous pseudometric on X was known to M.I. Graev, but appeared
explicitly in [10] and [11]. When working with free topological groups, it is also
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very important to know under which conditions on a subspace X of a Tychonoff
space Y, the subgroup F(X, Y) of F(Y) generated by X is topologically isomor-
phic to the group F(X), under the natural isomorphism extending the identity
embedding of X to Y. V.G. Pestov and E.C. Nummela gave some answers (see
e.g. Theorem 3.1) in [13] and [12], respectively. In the Abelian case, M.G. Tkack-
enko gave an answer in [22], see Theorem 3.2.

It is well known that paratopological groups are good generalizations of topo-
logical groups, see e.g. [1]. The Sorgenfrey line ([3, Example 1.2.2]) with the
usual addition is a first-countable paratopological group but not a topological
group. The absence of continuity of inversion, the typical situation in paratopo-
logical groups, makes the study in this area very different from that in topolog-
ical groups. Paratopological groups attract a growing attention of many math-
ematicians and articles in recent years. As in free topological groups, S. Roma-
guera, M. Sanchis and M.G. Tkackenko in [18] define free paratopological groups.
Recently, N.M. Pyrch has investigated some properties of free paratopological
groups, see [14, 15, 16]. In this paper, we will discuss the topological monomor-
phisms between free paratopological groups, and extend several results valid for
free (abelian) topological groups to free (abelian) paratopological groups.

2 Preliminaries

Firstly, we introduce some notions and terminology.
Recall that a topological group G is a group G with a (Hausdorff) topology such

that the product mapping of G × G into G is jointly continuous and the inverse
mapping of G onto itself associating x−1 with an arbitrary x ∈ G is continuous.
A paratopological group G is a group G with a topology such that the product map-
ping of G × G into G is jointly continuous.

Definition 2.1. [9] Let X be a subspace of a topological group G. Assume that

1. The set X generates G algebraically, that is < X >= G;

2. Each continuous mapping f : X → H to a topological group H extends to a

continuous homomorphism f̂ : G → H.

Then G is called the Markov free topological group on X and is denoted by F(X).

Definition 2.2. [18] Let X be a subspace of a paratopological group G. Assume
that

1. The set X generates G algebraically, that is < X >= G;

2. Each continuous mapping f : X → H to a paratopological group H extends

to a continuous homomorphism f̂ : G → H.

Then G is called the Markov free paratopological group on X and is denoted by
FP(X).
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Again, if all the groups in the above definitions are Abelian, then we get the
definitions of the Markov free Abelian topological group and the Markov free Abelian
paratopological group on X which will be denoted by A(X) and AP(X) respectively.

By a quasi-uniform space (X, U ) we mean the natural analog of a uniform space
obtained by dropping the symmetry axiom. For each quasi-uniformity U the
filter U −1 consisting of the inverse relations U−1 = {(y, x) : (x, y) ∈ U} where
U ∈ U is called the conjugate quasi-uniformity of U . We recall that the standard
base of the left quasi-uniformity GG on a paratopological group G consists of the
sets

W l
U = {(x, y) ∈ G × G : x−1y ∈ U},

where U is an arbitrary open neighborhood of the neutral element in G. If X is a
subspace of G, then the base of the left induced quasi-uniformity GX = GG | X on
X consists of the sets

W l
U ∩ (X × X) = {(x, y) ∈ X × X : x−1y ∈ U}.

Similarly, we can define the right induced quasi-uniformity on X.
We also recall that the universal quasi-uniformity UX of a space X is the finest

quasi-uniformity on X that induces on X its original topology. Throughout this
paper, if U is a quasi-uniformity of a space X then U ∗ denotes the smallest uni-
formity on X that contains U , and τ(U ) denotes the topology of X generated by
U . A quasi-uniform space (X, U ) is called bicomplete if (X, U ∗) is complete.

Definition 2.3. A function f : (X, U ) → (Y, V ) is called quasi-uniformly continu-
ous if for each V ∈ V there exists an U ∈ U such that ( f (x), f (y)) ∈ V whenever
(x, y) ∈ U, where U and V are quasi-uniformities for X and Y respectively.

Definition 2.4. A quasi-pseudometric d on a set X is a function from X × X into the
set of non-negative real numbers such that for x, y, z ∈ X: (a) d(x, x) = 0 and (b)
d(x, y) ≤ d(x, z) + d(z, y). If d satisfies the additional condition (c) d(x, y) = 0 ⇔
x = y, then d is called a quasi-metric on X.

Every quasi-pseudometric d on X generates a topology F (d) on X which has
as a base the family of d-balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) = {y ∈ X :
d(x, y) < r}.

A topological space (X, F ) is called quasi-(pseudo)metrizable if there is a quasi-
(pseudo)metric d on X compatible with F , where d is compatible with F pro-
vided F = F (d).

Denote by U ⋆ the upper quasi-uniformity on R the standard base of which
consists of the sets

Ur = {(x, y) ∈ R × R : y < x + r},

where r is an arbitrary positive real number.

Definition 2.5. Given a group G with the neutral element e, a function N : G →
[0, ∞) is called a quasi-prenorm on G if the following conditions are satisfied:

1. N(e) = 0; and

2. N(gh) ≤ N(g) + N(h) for all g, h ∈ G.
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Definition 2.6. Let X be a subspace of a Tychonoff space Y.

1. The subspace X is P-embedded in Y if each continuous pseudometric on X
admits a continuous extension over Y;

2. The subspace X is P∗-embedded in Y if each bounded continuous pseudo-
metric on X admits a continuous extension over Y;

3. The subspace X is quasi-P-embedded in Y if each continuous quasi-pseudo-

metric from (X × X, U −1
X × UX) to (R, U ⋆) admits a continuous extension

from (Y × Y, U −1
Y ×UY) to (R, U ⋆);

4. The subspace X is quasi-P∗-embedded in Y if each bounded continuous quasi-

pseudometric from (X × X, U −1
X ×UX) to (R, U ⋆) admits a continuous ex-

tension from (Y × Y, U −1
Y × UY) to (R, U ⋆).

Throughout this paper, we use G(X) to denote the topological groups F(X)
or A(X), and PG(X) to denote the paratopological groups FP(X) or AP(X). For
a subset Y of a space X, we use G(Y, X) and PG(Y, X) to denote the subgroups of
G(X) and PG(X) generated by Y respectively. Moreover, we denote the abstract
groups of F(X), FP(X) by Fa(X) and of A(X) and AP(X) by Aa(X), respectively.

Since X generates the free group Fa(X), each element g ∈ Fa(X) has the form
g = xε1

1 · · · xεn
n , where x1, · · · , xn1 ∈ X and ε1, · · · , εn = ±1. This word for g is

called reduced if it contains no pair of consecutive symbols of the form xx−1 or
x−1x. It follow that if the word g is reduced and non-empty, then it is different
from the neutral element of Fa(X). In particular, each element g ∈ Fa(X) distinct
from the neutral element can be uniquely written in the form g = xr1

1 xr2
2 · · · xrn

n ,
where n ≥ 1, ri ∈ Z \ {0}, xi ∈ X, and xi 6= xi+1 for each i = 1, · · · , n − 1. Such a
word is called the normal form of g. Similar assertions are valid for Aa(X).

We denote by N the set of all natural numbers. The letter e denotes the neutral
element of a group. Readers may consult [1, 3, 7] for notations and terminology
not explicitly given here.

3 Backgrounds

If X is an arbitrary subspace of a Tychonoff space Y, then let eX,Y be the natural
embedding mapping from X to Y. The following two theorems are well known
in the theory of free topological groups.

Theorem 3.1. [12, 13, Nummela-Pestov] Let X be a dense subspace of a Tychonoff space
Y. Then the embedding mapping eX,Y can be extended to a topological monomorphism
êX,Y : F(X) → F(Y) if and only if X is P-embedded in Y.

Theorem 3.2. [22, M.G. Tkackenko] Let X be an arbitrary subspace of a Tychonoff space
Y. Then the embedding mapping eX,Y can be extended to a topological monomorphism
êX,Y : A(X) → A(Y) if and only if X is P∗-embedded in Y.
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Obviously, if X is a subspace of a Tychonoff space Y, then the embedding
mapping eX,Y : X → Y can be extended to a continuous monomorphism êX,Y :
PG(X) → PG(Y). However, by Theorems 3.1 and 3.2, it is natural to ask the
following two questions:

Question 3.3. Let X be a dense subspace of a Tychonoff space Y. Is it true that the em-
bedding mapping eX,Y can be extended to a topological monomorphism êX,Y : FP(X) →
FP(Y) if and only if X is quasi-P-embedded in Y?

Question 3.4. Let X be a subspace of a Tychonoff space Y. Is it true that the embedding
mapping eX,Y can be extended to a topological monomorphism êX,Y : AP(X) → AP(Y)
if and only if X is quasi-P∗-embedded in Y?

In this paper, we shall give an affirmative answer to Question 3.4. Moreover,
we shall give a partial answer to Question 3.3, and prove that for a Tychonoff
space Y if X is a dense subspace of the smallest uniformity containing UY induces
on Ỹ of the bicompletion of (Y, UY) and the natural mapping êX,Y : FP(X) →
FP(Y) is a topological monomorphism then X is quasi-P-embedded in Y.

4 Quasi-pseudometrics on free paratopological groups

In this section, we shall give some lemmas and theorems in order to prove our
main results in Section 4.

We now outline some of the ideas of [18] in a form suitable for our applica-
tions.

Suppose that e is the neutral element of the abstract free group Fa(X) on X,
and suppose that ρ is a fixed quasi-pseudometric on X which is bounded by 1.
Extend ρ from X to a quasi-pseudometric ρe on X ∪ {e} by putting

ρe(x, y) =







0, if x = y,
ρ(x, y), if x, y ∈ X,
1, otherwise

for arbitrary x, y ∈ X ∪ {e}. By [18], we extend ρe to a quasi-pseudometric ρ∗ on
X̃ = X ∪ {e} ∪ X−1 defined by

ρ
∗(x, y) =















0, if x = y,
ρe(x, y), if x, y ∈ X ∪ {e},
ρe(y−1, x−1), if x, y ∈ X−1 ∪ {e},
2, otherwise

for arbitrary x, y ∈ X̃.
Let A be a subset of N such that |A| = 2n for some n ≥ 1. A scheme on A is a

partition of A to pairs {ai, bi} with ai < bi such that each two intervals [ai, bi] and
[aj, bj] in N are either disjoint or one contains the other.

If X is a word in the alphabet X̃, then we denote the reduced form and the
length of X by [X ] and ℓ(X̃) respectively.
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For each n ∈ N, let Sn be the family of all schemes ϕ on {1, 2, · · · , 2n}. As in
[18], define

Γρ(X , ϕ) =
1

2

2n

∑
i=1

ρ
∗(x−1

i , xϕ(i)).

Then we define a quasi-prenorm Nρ : Fa(X) → [0,+∞) by setting Nρ(g) = 0 if
g = e and

Nρ(g) = inf{Γρ(X , ϕ) : [X ] = g, ℓ(X̃) = 2n, ϕ ∈ Sn, n ∈ N}

if g ∈ Fa(X) \ {e}. It follows from Claim 3 in [18] that Nρ is an invariant quasi-

prenorm on Fa(X). Put ρ̂(g, h) = Nρ(g−1h) for all g, h ∈ Fa(X). We refer to ρ̂ as
the Graev extension of ρ to Fa(X).

Given a word X in the alphabet X̃, we say that X is almost irreducible if X̃ does
not contain two consecutive symbols of the form u, u−1 or u−1, u (but X may
contain several letters equal to e), see [18].

The following two lemmas are essentially Claims in the proof of Theorem 3.2
in [18].

Lemma 4.1. [18] Let ̺ be a quasi-pseudometric on X bounded by 1. If g is a reduced word
in Fa(X) distinct from e, then there exists an almost irreducible word Xg = x1x2 · · · x2n

of length 2n ≥ 2 in the alphabet X̃ and a scheme ϕg ∈ Sn that satisfy the following
conditions:

1. for i = 1, 2, · · · , 2n, either xi is e or xi is a letter in g;

2. [Xg] = g and n ≤ ℓ(g); and

3. Nρ(g) = Γρ(Xg, ϕg).

Lemma 4.2. [18] The family N = {Uρ(ε) : ε > 0} is a base at the neutral element e for
a paratopological group topology Fρ on Fa(X), where Uρ(ε) = {g ∈ Fa(X) : Nρ(g) <
ε}. The restriction of Fρ to X coincides with the topology of the space X generated by ρ.

Lemma 4.3. [4] For every sequence V0, V1, · · · , of elements of a quasi-uniformity U on
a set X, if

V0 = X × X and Vi+1 ◦ Vi+1 ◦ Vi+1 ⊂ Vi, for i ∈ N,

where ‘◦’ denotes the composition of entourages in the quasi-uniform space (X, U ), then
there exists a quasi-pseudometric ρ on the set X such that, for each i ∈ N,

Vi ⊂ {(x, y) : ρ(x, y) ≤
1

2i
} ⊂ Vi−1.

Lemma 4.4. For every quasi-uniformity V on a set X and each V ∈ V there exists a
quasi-pseudometric ρ bounded by 1 on X which is quasi-uniform with respect to V and
satisfies the condition

{(x, y) : ρ(x, y) < 1} ⊂ V.

Proof. By the definition of a quasi-uniformity, we can find a sequence V0, V1, · · · ,
Vn, · · · of members of V such that V1 = V and Vi+1 ◦ Vi+1 ◦ Vi+1 ⊂ Vi, for each
i ∈ N. Let ρ = min{1, 4ρ0}, where ρ0 is a quasi-pseudometric as in Lemma 4.3.
Then ρ is a quasi-pseudometric which has the required property.
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Given a finite subset B of N on B with |B| = 2n ≥ 2, we say that a bijection
ϕ : B → B is an Abelian scheme on B if ϕ is an involution without fixed points, that
is, ϕ(i) = j always implies j 6= i and ϕ(j) = i.

Lemma 4.5. Suppose that ρ is a quasi-pseudometric on a set X, and suppose that m1x1 +
· · · + mnxn is the normal form of an element h ∈ Aa(X) \ {e} of the length l =
∑

n
i=1 |mi|. Then there is a representation

h = (−u1 + v1) + · · ·+ (−uk + vk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
where 2k = l if l is even and 2k = l + 1 if l is odd, u1, v1, · · · , uk, vk ∈ {±x1, · · · ,±xn}
(but vk = e if l is odd), and such that

ρ̂A(e, h) = ∑
k
i=1 ρ∗(ui, vi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

In addition, if ρ̂A(e, h) < 1, then l = 2k, and one can choose y1, z1, · · · , yk, zk ∈
{x1, · · · , xn} such that

h = (−y1 + z1) + · · ·+ (−yk + zk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
and

ρ̂A(e, h) = ∑
k
i=1 ρ∗(yi, zi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4).

Proof. Obviously, we have h = h1 + · · ·+ hl , where hi ∈ {±x1, · · · ,±xn} for each
1 ≤ i ≤ l. Obviously, there exists an integer k such that 2k − 1 ≤ l ≤ 2k. Without
loss of generality, we may assume that l is even. In fact, if l = 2k − 1, then one
can additionally put h2k = e. It follows from the proof of Lemma 4.1 (see [18])
that we have a similar assertion is valid for the case of Aa(X). Then there exists
an Abelian scheme ϕ on {1, 2, · · · , 2k} such that

ρ̂A(e, h) = 1
2 ∑

2k
i=1 ρ∗(−hi, hϕ(i)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

Since the group Aa(X) is Abelian, we may assume that ϕ(2i − 1) = 2i for each
1 ≤ i ≤ k. Obviously, ϕ(2i) = 2i − 1 for each 1 ≤ i ≤ k. Hence, we have

h = (h1 + h2) · · ·+ (h2k−1 + h2k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

For each 1 ≤ i ≤ k, put ui = −h2i−1 and vi = h2i. Then it follows from (5) and
(6) that (1) and (2) are true.

Finally, suppose that ρ̂A(e, h) < 1. Since ρ(x, e) = 1 and ρ(e, x) = 1, we have
ρ∗(x, e) = 1, ρ∗(e, x) = 1, ρ∗(−x, y) = 2 and ρ∗(x,−y) = 2 for all x, y ∈ X.
However, it follows from (5) that ρ∗(−h2i−1, h2i) < 1 for each 1 ≤ i ≤ k, and
therefore, one of the elements h2i−1, h2i in X while the other is in −X. Thus, for
each 1 ≤ i ≤ k, we have h2i−1 + h2i = −yi + zi, where yi, zi ∈ X. Obviously,
yi, zi ∈ {x1, · · · , xn} for each 1 ≤ i ≤ k. Next, we only need to replace h2i−1 and
h2i by the corresponding elements ±yi and ±zi in (5) and (6), respectively. Hence
we obtain (3) and (4).

Lemma 4.6. If d is a quasi-pseudometric on a set X quasi-uniform such that it is quasi-
uniform with respect to UX, then d is continuous as a mapping from (X × X, U −1

X ×
UX) to (R, U ⋆).

Proof. Take an arbitrary point (x0, y0) ∈ X × X. It is sufficient to show that d is
continuous at the point (x0, y0). For each ε > 0, since d is quasi-uniform with
respect to UX, there exists an U ∈ UX such that d(x, y) <

ε

2 for each (x, y) ∈ U.
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Let U1 = {x ∈ X : (x, x0) ∈ U} and U2 = {y ∈ X : d(y0, y) <
ε

2}. Then U1, U2

are neighborhoods of the points x0 and y0 in the spaces (X, U −1
X ) and (X, UX)

respectively. Put V = U1 × U2. Then V is a neighborhood of the point (x0, y0) in

(X × X, U −1
X × UX). For each (x, y) ∈ V, we have

d(x, y)− d(x0, y0) ≤ d(x, x0) + d(x0, y0) + d(y0, y)− d(x0, y0)

= d(x, x0) + d(y0, y) <
ε

2
+

ε

2
= ε.

Therefore, the quasi-pseudometric d is continuous at the point (x0, y0).

Lemma 4.7. [11] Let {Vi : i ∈ N} be a sequence of subsets of a group G with identity e
such that e ∈ Vi and V3

i+1 ⊂ Vi for each i ∈ N. If k1, · · · , kn, r ∈ N and ∑
n
i=1 2−ki ≤

2−r, then we have Vk1
· · ·Vkn

⊂ Vr.

In the next theorem we prove that the family of quasi-pseudometrics
{ρ̂A : ρ ∈ PX}, where PX is the family of all continuous quasi-pseudometrics

from (X × X, U −1
X × UX) to (R, U ⋆), generates the topology of the free Abelian

paratopological group AP(X).

Theorem 4.8. Let X be a Tychonoff space, and let PX be the family of all continuous
quasi-pseudometrics from (X × X, U −1

X × UX) to (R, U ⋆) which are bounded by 1.
Then the sets

Vρ = {g ∈ AP(X) : ρ̂A(e, g) < 1}

with ρ ∈ PX form a local base at the neutral element e of AP(X).

Proof. Let V be an open neighborhood of e in AP(X). Since AP(X) is a paratopo-
logical group, there exists a sequence {Vn : n ∈ N} of open neighborhoods of e
in AP(X) such that V1 ⊂ V and Vi+1 +Vi+1 +Vi+1 ⊂ Vi for every i ∈ N. For each
n ∈ N, put

Un = {(x, y) ∈ X × X : −x + y ∈ Vn}.

Then each Un is an element of the universal quasi-uniformity UX on the space X
and Un+1 ◦ Un+1 ◦ Un+1 ⊂ Un. Hence, it follows from Lemmas 4.3 and 4.6 that
there is a continuous quasi-pseudometric ρ1 on X such that, for each n ∈ N,

{(x, y) ∈ X × X : ρ1(x, y) < 2−n} ⊂ Un.

Let ρ = min{1, 4ρ1}. Then ρ ∈ PX.
Claim: We have Vρ ⊂ V.
Indeed, let h ∈ Vρ. It follows from Lemma 4.5 that the element h can be written

in the form

h = (−x1 + y1) + · · ·+ (−xm + ym), where xi, yi ∈ X for each 1 ≤ i ≤ m,

such that
ρ̂A(e, h) = ρ(x1, y1) + · · ·+ ρ(xm, ym) < 1.

It follows from the definition of ρ and ρ1 that ρ̂ = 4ρ̂1. Therefore, we have

ρ̂1(e, h) = ρ1(x1, y1) + · · ·+ ρ1(xm, ym) <
1

4
.
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If 1 ≤ i ≤ m and ρ1(xi, yi) > 0 then we choose a ki ∈ N such that

2−ki−1 ≤ ρ1(xi, yi) < 2−ki .

And then, if 1 ≤ i ≤ m and ρ1(xi, yi) = 0 then we choose a sufficiently large
ki ∈ N such that ∑

m
i=1 2−ki <

1
2 . For every 1 ≤ i ≤ m, since −xi + yi ∈ Vki

, it
follows from Lemma 4.7 that

h = (−x1 + y1) + · · ·+ (−xm + ym) ∈ Vk1
+ · · ·+ Vkm

⊂ V1 ⊂ V.

Therefore, we have Vρ ⊂ V.

We don’t know whether a similar assertion is valid for the free paratopological
group FP(X).

However, we have the following Theorem 4.10. Our argument will be based
on the following combinatorial lemma (Readers can consult the proof in [1, Lemma
7.2.8].).

Lemma 4.9. Let g = x1 · · · x2n be a reduced element of Fa(X), where x1, · · · , x2n ∈
X ∪ X−1, and let ϕ be a scheme on {1, 2, · · · , 2n}. Then there are natural numbers
1 ≤ i1 < · · · < in ≤ 2n and elements h1, · · · , hn ∈ Fa(X) satisfying the following two
conditions:
i) {i1, · · · , in} ∪ {iϕ(1), · · · , iϕ(n)} = {1, 2, · · · , 2n};

ii) g = (h1xi1 xϕ(i1)
h−1

1 ) · · · (hnxin
xϕ(in)h

−1
n ).

A paratopological group G has an invariant basis if there exists a family L of
continuous and invariant quasi-pseudometric on G such that the family {Uρ : ρ ∈
L } as a base at the neutral element e in G, where each Uρ = {g ∈ G : ρ(e, g) < 1}.

Theorem 4.10. For each Tychonoff space X, if the abstract group Fa(X) admits the maxi-
mal paratopological group topology Finv with invariant basis such that every continuous
mapping f : X → H to a paratopological group H with invariant basis can be extended
to a continuous homomorphism f̃ : (Fa(X), Finv) → H, then the family of all sets of
the form

Uρ = {g ∈ Fa(X) : ρ̂(e, g) < 1},

where ρ is a continuous quasi-pseudometric from (X × X, U −1
X ×UX) to (R, U ⋆), with

ρ ≤ 1 constitutes a base of the topology Finv at the neutral element e of Fa(X).

Proof. For each ρ ∈ PX, put

Uρ = {g ∈ Fa(X) : Nρ(g) < 1}, and N = {Uρ : ρ ∈ PX},

where Nρ(g) is the invariant quasi-prenorm on Fa(X) defined by ρ̂(g, h) =

Nρ(g−1h). By Lemma 4.2 and Proposition 3.8 in [15], it is easy to see that N

as a base at the neutral element e of Fa(X) for a Hausdorff paratopological group
topology. We denote this topology by Finv. Since ρ̂ is invariant on Fa(X), the
paratopological group FPinv(X) = (FP(X), Finv) has an invariant basis, and
hence ρ̂ is continuous on FPinv(X).
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Let f : X → H be a continuous mapping of X to a paratopological group H
with invariant basis. Let f̃ be the extension of f to a homomorphism of Fa(X) to
H.

Claim: The map f̃ : FPinv(X) → H is a continuous homomorphism.
Let V be an open neighborhood of the neutral element of H. Then there exists

an invariant quasi-prenorm N on H such that W = {h ∈ H : N(h) < 1} ⊂ V by
Lemma 4.4. Therefore, we can define a quasi-pseudometric ρ on X by ρ(x, y) =
N( f−1(x) f (y)) for all x, y ∈ X. Next, we shall show that f̃ (Uρ) ⊂ W. Indeed,
take an arbitrary reduced element g ∈ Uρ distinct from the neutral element of
Fa(X). Obviously, we have ρ̂(e, g) < 1. Moreover, it is easy to see that g has even
length, say g = x1 · · · x2n, where xi ∈ X ∪ X−1 for each 1 ≤ i ≤ 2n. It follows
from ρ̂(e, g) < 1 that there is a scheme ϕ on {1, 2, · · · , 2n} such that

ρ̂(e, g) =
1

2

2n

∑
i=1

ρ
∗(x−1

i , xϕ(i)) < 1.

By Lemma 4.9, we can find a partition {1, 2, · · · , 2n} = {i1, · · · , in} ∪ {iϕ(1), · · · ,

iϕ(n)} and a representation of g as a product g = g1 · · · gn such that

gk = hkxik
xϕ(ik)

h−1
k for each k ≤ n, where hk ∈ Fa(X). Since N is invariant,

we have

N( f̃ (g)) ≤
n

∑
i=1

N( f̃ (gk)) =
n

∑
i=1

N( f̃ (xk) f̃ (xϕ(k)))

= ρ
∗(x−1

1 , xϕ(1)) + · · ·+ ρ
∗(x−1

n , xϕ(n))

< 1.

Therefore, we have f̃ (g) ∈ W, and it follows that f̃ (Uρ) ⊂ W ⊂ V. Hence f̃ is a
continuous homomorphism.

5 Topological monomorphisms between free paratopological

groups

In order to prove one of our main theorems, we also need the following lemma.

Lemma 5.1. Let (X, UX) be a quasi-uniform subspace of a Tychonoff space (Y, UY).
Then X is quasi-P∗-embedded in Y.

Proof. Let d be a bounded, continuous quasi-pseudometric from (X × X, U −1
X ×

UX) to (R, U ⋆). One can assume that d is bounded by 1
2 . For each i ∈ N, take

a Vi ∈ UY satisfying Vi ∩ (X × X) ⊂ {(x, y) ∈ X × X : d(x, y) <
1
2i }, and

then by [20, Chap. 3, Proposition 2.4 and Theorem 2.5], take a continuous quasi-

pseudometric di from (Y × Y, U −1
Y × UY) to (R, U ⋆) such that di is bounded by

1, quasi-uniform with respect to UY and {(x, y) ∈ Y × Y : di(x, y) < 1
4} ⊂ Vi. Put

ρ(x, y) = 8
∞

∑
i=1

1

2i
di(x, y).
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One can easily prove that ρ is a continuous quasi-pseudometric from (Y × Y,

U
−1

Y × UY) to (R, U ⋆). Moreover, it is easy to see that ρ is quasi-uniform with
respect to UY and satisfies d(x, y) ≤ ρ(x, y) for all x, y ∈ X. Put

ρ
′(x, y) = inf{ρ(x, a) + d(a, b) + ρ(b, y) : a, b ∈ X}, where x, y ∈ Y.

Let
d̃ = min{ρ(x, y), ρ

′(x, y)}.

Obviously, d̃ is quasi-uniform with respect to UY. It follows from Lemma 4.6

that d̃ is a continuous quasi-pseudometric from (Y × Y, U −1
Y × UY) to (R, U ⋆).

Moreover, we have d̃|X × X = d. Therefore, X is quasi-P∗-embedded in Y.

Now, we shall prove our main theorem, which gives an affirmative answer to
Question 3.4.

Theorem 5.2. Let X be an arbitrary subspace of a Tychonoff space Y. Then the natural
mapping êX,Y : AP(X) → AP(Y) is a topological monomorphism if and only if X is
quasi-P∗-embedded in Y.

Proof. Necessity. Let d be an arbitrary bounded continuous quasi-pseudometric

from (X × X, U −1
X ×UX) to (R, U ⋆), where UX is the universal quasi-uniformity

on X. Then Ud = {(x, y) ∈ X × X : d(x, y) < 1} ∈ UX. Put Vd = {g ∈
AP(X) : d̂(e, g) < 1}. Then Vd is a neighborhood of the neutral element of
AP(X). Since AP(X) ⊂ AP(Y), it follows from Theorem 4.8 that there is some
continuous quasi-pseudometric ρ from (Y × Y, U −1

Y × UY) to (R, U ⋆) such that
Vρ ∩ AP(X) ⊂ Vd, where UY is the universal quasi-uniformity on Y and Vρ =
{g ∈ AP(Y) : ρ̂(e, g) < 1}. Note that Uρ = {(x, y) ∈ Y × Y : ρ(x, y) < 1} ∈ UY

and Uρ ∩ (X × X) ⊂ Ud. Moreover, one can see that ρ̂(e, x−1y) = ρ(x, y) and

d̂(e, x−1y) = d(x, y) for all x, y. Therefore, (X, UX) is a quasi-uniform subspace of
(Y, UY). Hence X is quasi-P∗-embedded in Y by Lemma 5.1.

Sufficiency. Let X be quasi-P∗-embedded in Y. Denote by eX,Y the identity
embedding of X in Y. Obviously, the monomorphism êX,Y is continuous. Next,

we need to show that the isomorphism ê−1
X,Y : AP(X, Y) → AP(X) is continuous.

Assume that U is a neighborhood of the neutral element eX in AP(X). It follows
from Theorem 4.8 that there is a continuous quasi-pseudometric ρ from (X ×
X, U −1

X × UX) to (R, U ⋆) such that Vρ = {g ∈ AP(X) : ρ̂A(eX, g) < 1} ⊂ U.
Without loss of generality, we may assume that ρ ≤ 1 (otherwise, replace ρ with
ρ′ = min{ρ, 1}). Since X is quasi-P∗-embedded in Y, the quasi-pseudometric ρ

can be extended to a continuous quasi-pseudometric d from (Y × Y, U −1
Y × UY)

to (R, U ⋆). Suppose that d̂A is the Graev extension of d over AP(Y). It follows

from Theorem 4.8 again that Vd = {g ∈ AP(Y) : d̂A(eY, g) < 1} is an open
neighborhood of the neutral element eY in AP(Y). Obviously, one can identify
the abstract group Aa(X) with the subgroup êX,Y(Aa(X)) = Aa(X, Y) of Aa(Y)
generated by the subset X of Aa(Y). Since d | X = ρ, it follows from Lemma 4.5

that, for each h ∈ Aa(X, Y), d̂A(eY, h) = ρ̂A(eY, h). Hence we have Aa(X, Y) ∩
Vd = Vρ, that is, AP(X, Y) ∩ Vd = êX,Y(Vρ). Therefore, the isomorphism ê−1

X,Y :

AP(X, Y) → AP(X) is continuous.
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In order to give a partial answer to Question 3.3, we need to prove some lem-
mas.

Lemma 5.3. Let X be a Tychonoff space. Then the restriction GX = GPG(X) | X of the

left uniformity GPG(X) of the paratopological group PG(X) to the subspace X ⊂ PG(X)
coincides with the universal quasi-uniformity UX of X.

Proof. Since the topology on X generated by the left uniformity GPG(X) of PG(X)
coincides with the original topology of the space X, we have GX ⊂ UX. Next,
we need to show that UX ⊂ GX. Take an arbitrary element U ∈ UX. It follows
from Lemmas 4.4 and 4.6 that there exists a continuous quasi-pseudometric ρ

from (X × X, U −1
X × UX) to (R, U ⋆) such that {(x, y) ∈ X × X : ρ(x, y) < 1} ⊂

U. By Theorem 3.2 in [18], the quasi-pseudometric ρ on set X extends to a left
invariant quasi-pseudometric ρ̂ on the abstract group PG(X). One can see that

ρ̂ is continuous from (PG(X) × PG(X), UPG(X) × U
−1

PG(X)
) to (R, U ⋆). It follows

from Theorem 4.8 that V = {g ∈ PG(X) : ρ̂(e, g) < 1} is an open neighborhood
of the neutral element e in PG(X). If x, y ∈ X and x−1y ∈ V, then

ρ(x, y) = ρ̂(x, y) = ρ̂(e, x−1y) < 1,

which implies that the element W l
V = {(g, h) ∈ G × G : g−1h ∈ V} of GPG(X)

satisfies W l
V ∩ (X × X) ⊂ U. Therefore, UX ⊂ GX.

Lemma 5.4. [17] The finest quasi-uniformity of each quasi-pseudometrizable topological
space is bicomplete.

Lemma 5.5. Let X be a subspace of a Tychonoff space Y, and let X be τ(ŨY
∗
)-dense in

(Ỹ, ŨY), where UY is the universal quasi-uniformity and (Ỹ, ŨY) is the bicompletion of
(Y, UY). Then the following conditions are equivalent:

1. X is quasi-P∗-embedded in Y;

2. X is quasi-P-embedded in Y;

3. UY | X = UX;

4. X ⊂ Y ⊂ X̃, where (X̃, ŨX) is the bicompletion of (X, UX).

Proof. Obviously, (2) ⇒ (1). Hence it is suffices to show that (1) ⇒ (3) ⇒ (4) ⇒
(2).

(1) ⇒ (3). Assume that X is quasi-P∗-embedded in Y. For each U ∈ UX, it
follows from Lemmas 4.4 and 4.6 that there exists a bounded continuous quasi-

pseudometric ρX from (X × X, U −1
X × UX) to (R, U ⋆) such that

WX = {(x, x′) ∈ X × X : ρX(x, x′) < 1} ⊂ U.

Since X is quasi-P∗-embedded in Y, let ρY be an extension of ρX to a continuous

quasi-pseudometric from (Y × Y, U −1
Y ×UY) to (R, U ⋆). Put

WY = {(y, y′) ∈ Y × Y : ρY(y, y′) < 1}.
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Then it is obvious that WY ∈ UY and WY ∩ (X × X) = WX ⊂ U. Therefore, the
quasi-uniformity UY | X is finer than UX. Moreover, it is clear that UY | X ⊂ UX.
Hence UY | X = UX.

(3) ⇒ (4). Assume that UY | X = UX. Let (Ỹ, ŨY) be the bicompletion of
quasi-uniform space (Y, UY). Because ŨY | Y = UY, we have ŨY | X = UX.

Moreover, since X is τ(ŨY
∗
)-dense in Ỹ and X ⊂ Y, (Ỹ, ŨY) is the bicompletion

of the quasi-uniform space (X, UX). Hence X ⊂ Y ⊂ X̃.
(4) ⇒ (2). Assume that Y ⊂ X̃. Consider an arbitrary continuous quasi-

pseudometric ρ from (X × X, U −1
X × UX) to (R, U ⋆). Let (X, ρ) be the quasi-

metric space obtained from (X, ρ) by identifying the points of X lying at zero
distance one from another with respect to ρ. Let π : X → X be the natural quo-
tient mapping. Obviously, ρ(x, y) = ρ(π(x), π(y)) for all x, y ∈ X. Suppose that
UX is the universal quasi-uniformity on X. Then π is a quasi-uniformly contin-

uous map from (X, UX) to (X, UX) by [2]. Moreover, by Lemma 5.4, (X, UX)
is bicomplete. Therefore, it follows from Theorem 16 in [8] that π admits a
quasi-uniformly continuous extension π : (X̃, ŨX) → (X, UX). Since Y ⊂ X̃,

we can define a continuous mapping of d from (Y × Y, U −1
Y ×UY) to (R, U ⋆) by

d(x, y) = ρ(π(x), π(y)) for all x, y ∈ Y. Clearly, the restriction of d to X coincides
with ρ. Hence X is quasi-P-embedded in Y.

Theorem 5.6. Let X be an arbitrary τ(ŨY
∗
)-dense subspace of a Tychonoff space Y. If

the natural mapping êX,Y : FP(X) → FP(Y) is a topological monomorphism, then X is
quasi-P-embedded in Y.

Proof. Assume that the monomorphism êX,Y : FP(X) → FP(Y) extending the
identity mapping eX,Y : X → Y is a topological embedding. Therefore, it is easy
to see that we can identify the group FP(X) with the subgroup FP(X, Y) of FP(Y)
generated by the set X. We denote by GX and GY the left quasi-uniformities of the
groups FP(X) and FP(Y), respectively. Since FP(X) is a subgroup of FP(Y),
we obtain that GY | FP(X) = GX. Moreover, it follows from Lemma 5.3 that
GX | X = UX and GY | Y = UY. Hence we have

GY | X = GX | X = UX.

Therefore, it follows from Lemma 5.5 that X is quasi-P-embedded in Y.

Question 5.7. Let X be an arbitrary τ(ŨY
∗
)-dense subspace of a Tychonoff space Y. If X

is quasi-P-embedded in Y, is the natural mapping êX,Y : FP(X) → FP(Y) a topological
monomorphism?

In [21], O.V. Sipacheva has proved that if Y is a subspace of a Tychonoff X
then the subgroup F(Y, X) of F(X) is topologically isomorphic to F(Y) iff Y is
P∗-embedded in X. In [22], M.G. Tkackenko has proved that if Y is a subspace of
a Tychonoff X then the subgroup A(Y, X) of A(X) is topologically isomorphic to
A(Y) iff Y is P∗-embedded in X.Therefore, we have the following question:

Question 5.8. Let X be an arbitrary subspace of a Tychonoff space Y. Is it true that the
subgroup PG(Y, X) of PG(X) is topologically isomorphic to PG(Y) iff Y is quasi-P∗-
embedded in X?
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