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Daniel Paşca Chun-Lei Tang†

Abstract

Some new existence theorems are obtained for periodic solutions of nonau-
tonomous second-order differential systems with (q, p)–Laplacian.

1 Introduction and main results

In the last years many authors starting with Mawhin and Willem (see [1]) proved
the existence of solutions for problem

ü(t) = ∇F(t, u(t)) a.e. t ∈ [0, T],
u(0)− u(T) = u̇(0)− u̇(T) = 0,

(1)

under suitable conditions on the potential F (see [2]-[16]). Also in a series of pa-
pers (see [17]-[19]) we have generalized some of these results for the case when
the potential F is just locally Lipschitz in the second variable x not continuously
differentiable and after (see [20]-[22]) we have considered the second order in-
clusions systems with p–Laplacian. Very recent we have proved the existence of
periodic solutions for systems with (q, p)–Laplacian (see [23]-[25]).

In [16] the authors proved the following critical point theorem (see Theorem
1.1 in [16]):
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Theorem 1. Suppose that V1 and V2 are reflexive Banach spaces, ψ ∈ C1(V1 × V2, R),
ψ(v1, ·) is weakly upper semi-continuous for all v1 ∈ V1 and ψ(·, v2) : V1 → R is
convex for all v2 ∈ V2, and ψ′ is weakly continuous. Assume that

ψ(0, v2) → −∞ (2)

as ‖v2‖ → ∞ and, for every M > 0,

ψ(v1, v2) → +∞ (3)

as ‖v1‖ → ∞ uniformly for ‖v2‖ ≤ M. Then ψ has at least one critical point.

Using this theorem, in [16], the authors proved some new existence results of
periodic solutions for problem (1). The aim of this paper is to show how some of
these results can be generalized. More exactly our results represent the extensions
to second-order differential systems with (q, p)–Laplacian.

Consider the second order system















− d
dt

(

|u̇1(t)|
q−2u̇1(t)

)

= ∇u1
F(t, u1(t), u2(t)),

− d
dt

(

|u̇2(t)|
p−2u̇2(t)

)

= ∇u2 F(t, u1(t), u2(t)) a.e. t ∈ [0, T],
u1(0)− u1(T) = u̇1(0)− u̇1(T) = 0,
u2(0)− u2(T) = u̇2(0)− u̇2(T) = 0,

(4)

where 1 < p, q < ∞, T > 0, and F : [0, T]× R
N × R

N → R satisfy the following
assumption (A):

• F is measurable in t for each (x1, x2) ∈ R
N × R

N;

• F is continuously differentiable in (x1, x2) for a.e. t ∈ [0, T];

• there exist a1, a2 ∈ C(R+, R+) and b ∈ L1(0, T; R+) such that

|F(t, x1, x2)|, |∇x1
F(t, x1, x2)|, |∇x2 F(t, x1, x2)| ≤

[

a1(|x1|) + a2(|x2|)
]

b(t)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T].

The corresponding functional associated to system (4) is ϕ : W → R given by

ϕ(u1, u2) = −
1

q

∫ T

0
|u̇1(t)|

qdt −
1

p

∫ T

0
|u̇2(t)|

pdt +
∫ T

0
F(t, u1(t), u2(t))dt

where W = W
1,q
T × W

1,p
T .

Theorem 2. Suppose that assumption (A) holds and F(t, x1, x2) is convex in (x1, x2)
for a.e. t ∈ [0, T]. Assume that the following conditions are satisfied:

(A1) There exist α1, α2 ∈ L1(0, T; R+) with
∫ T

0 α1(t)dt < T
−

q

q′ ,
∫ T

0 α2(t)dt < T
−

p

p′

where 1
q +

1
q′ = 1, 1

p +
1
p′ = 1, and γ ∈ L1(0, T; R+) such that

F(t, x1, x2) ≤
1

q
α1(t)|x1|

q +
1

p
α2(t)|x2|

p + γ(t)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T].
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(A2)
∫ T

0
F(t, x1, x2)dt → +∞ as |(x1, x2)| =

√

|x1|2 + |x2|2 → ∞,

(x1, x2) ∈ R
N × R

N.

Then problem (4) has at least one solution in W.

Theorem 3. Suppose that assumptions (A) and (A1) holds and there exist

µ1, µ2 ∈ L1(0, T; R) with
∫ T

0 µi(t)dt > 0, i = 1, 2 such that F(t, x1, x2) −
1
q µ1(t)|x1|

q − 1
p µ2(t)|x2|

p is convex in (x1, x2) for a.e. t ∈ [0, T]. Then problem (4)

has at least one solution in W.

Remark 1. Theorems 2 and 3 generalizes Theorems 3.3 and 1.3 of Tang and Wu [16]. In
fact, it follows from our results by letting p = q = 2 and F(t, x1, x2) = F1(t, x1).

Remark 2. Unfortunately a similar result with Theorem 1.4 from [16], when we suppose
that there exist k1, k2 ∈ L1(0, T; R+) satisfying some conditions such that −F(t, x1, x2)+
1
q k1(t)|x1|

q + 1
p k2(t)|x2|

p is convex in (x1, x2) for a.e. t ∈ [0, T], cannot be obtain using

the same technique.

Remark 3. There are functions F satisfying our Theorem 2 and not satisfying the results
from [23] - [25]. For example, let

F(t, x1, x2) =
1

q
β1(t)|x1|

q +
1

p
β2(t)|x2|

p + β3(t)(|x1 |
2 + |x2|

2)
r
2

+ (l1(t), x1) + (l2(t), x2),

where 1 < r < min{q, p}, β1, β2, β3 ∈ L1(0, T; R+) with 0 <

∫ T
0 β1(t)dt < T

−
q

q′ ,

0 <

∫ T
0 β2(t)dt < T

−
p

p′ , 1
q + 1

q′ = 1, 1
p + 1

p′ = 1 and l1 ∈ Lq′(0, T; R
N), l2 ∈

Lp′(0, T; R
N), respectively. Then the function F satisfies our Theorem 2. But the function

F does not satisfy Theorems 1 and 3 in [25] and Theorem 2 in [23] because that F is neither
sublinear nor subquadratic. Moreover the function F does not satisfy the results in [24]
because the corresponding energy functional is unbounded either below or above.

2 Preliminaries

We introduce some functional spaces. Let T > 0 be a positive number, 1 < q, p <

∞ and 1 < q′, p′ < ∞ such that 1
q + 1

q′ = 1, 1
p + 1

p′ = 1. We use | · | to denote

the Euclidean norm in R
N. We denote by W

1,p
T the Sobolev space of functions

u ∈ Lp(0, T; R
N) having a weak derivative u̇ ∈ Lp(0, T; R

N). The norm in W
1,p
T is

defined by

‖u‖
W

1,p
T

=
(

∫ T

0

(

|u(t)|p + |u̇(t)|p
)

dt
)

1
p
.

Moreover, we use the space W defined by

W = W
1,q
T × W

1,p
T
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with the norm ‖(u1, u2)‖W = ‖u1‖W
1,q
T

+ ‖u2‖W
1,p
T

. It is clear that W is a reflexive

Banach space.
We recall that

‖u‖p =
(

∫ T

0
|u(t)|pdt

)
1
p

and ‖u‖∞ = max
t∈[0,T]

|u(t)|.

For our aims it is necessary to recall some very well know results (for proof
and details see [1]).

Proposition 4. Each u1 ∈ W
1,q
T and each u2 ∈ W

1,p
T can be written as ui(t) = ūi +

ũi(t), i = 1, 2 with

ūi =
1

T

∫ T

0
ui(t)dt,

∫ T

0
ũi(t)dt = 0.

We have the Sobolev’s inequality

‖ũ1‖∞ ≤ T
1
q′ ‖ ˙̃u1‖q, ‖ũ2‖∞ ≤ T

1
p′ ‖ ˙̃u2‖p for each u1 ∈ W

1,q
T , u2 ∈ W

1,p
T .

In [15] the authors have proved the following result (see Lemma 3.1) which
generalize a very well known result proved by Jean Mawhin and Michel Willem
(see Theorem 1.4 in [1]):

Lemma 5. Let L : [0, T] × R
N × R

N × R
N × R

N → R, (t, x1, x2, y1, y2) →
L(t, x1, x2, y1, y2) be measurable in t for each (x1, x2, y1, y2), and continuously differen-
tiable in (x1, x2, y1, y2) for a.e. t ∈ [0, T]. If there exist ai ∈ C(R+, R+),

b ∈ L1(0, T; R+), and c1 ∈ Lq′(0, T; R+), c2 ∈ Lp′(0, T; R+), 1 < p, q < ∞,
1
q + 1

q′ = 1, 1
p + 1

p′ = 1 such that for a.e. t ∈ [0, T] and every (x1, x2, y1, y2) ∈

R
N × R

N × R
N × R

N, one has

|L(t, x1, x2, y1, y2)| ≤
[

a1(|x1|) + a2(|x2|)
][

b(t) + |y1|
q + |y2|

p
]

,

|Dx1
L(t, x1, x2, y1, y2)| ≤

[

a1(|x1|) + a2(|x2|)
][

b(t) + |y2|
p
]

,

|Dx2 L(t, x1, x2, y1, y2)| ≤
[

a1(|x1|) + a2(|x2|)
][

b(t) + |y1|
q
]

,

|Dy1
L(t, x1, x2, y1, y2)| ≤

[

a1(|x1|) + a2(|x2|)
][

c1(t) + |y1|
q−1

]

,

|Dy2 L(t, x1, x2, y1, y2)| ≤
[

a1(|x1|) + a2(|x2|)
][

c2(t) + |y2|
p−1

]

,

then the function ϕ : W
1,q
T × W

1,p
T → R defined by

ϕ(u1, u2) =
∫ T

0
L(t, u1(t), u2(t), u̇1(t), u̇2(t))dt

is continuously differentiable on W
1,q
T × W

1,p
T and

〈ϕ′(u1, u2), (v1, v2)〉 =
∫ T

0

[

(Dx1
L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v1(t))

+(Dy1
L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v̇1(t))

+(Dx2 L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v2(t))

+(Dy2 L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v̇2(t))
]

dt.
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Corollary 6. Let L : [0, T]× R
N × R

N × R
N × R

N → R be defined by

L(t, x1, x2, y1, y2) = −
1

q
|y1|

q −
1

p
|y2|

p + F(t, x1, x2)

where F : [0, T]× R
N × R

N → R satisfy condition (A). If (u1, u2) ∈ W
1,q
T × W

1,p
T is a

solution of the corresponding Euler equation ϕ′(u1, u2) = 0, then (u1, u2) is a solution
of (4).

3 The proofs of the theorems

We can apply Theorem 1 with the following cast of characters:

• Let V1 = R
N × R

N, V2 = W̃ = W̃
1,q
T × W̃

1,p
T , where W̃

1,q
T = {x ∈ W

1,q
T |

∫ T
0 x(t)dt = 0} and W̃

1,p
T = {x ∈ W

1,p
T |

∫ T
0 x(t)dt = 0}; V1 and V2 are

reflexive Banach spaces;

• Let ψ : V1 × V2 → R be given by ψ(v1, v2) = ϕ(v1 + v2) = ϕ((ū1, ū2) +

(ũ1, ũ2)) where v1 = (ū1, ū2) ∈ R
N × R

N and v2 = (ũ1, ũ2) ∈ W̃
1,q
T × W̃

1,p
T ;

• By assumption (A) it is obviously that ψ ∈ C1(V1 × V2), ψ(v1, ·) is weakly
upper semi-continuous for all v1 ∈ V1 and ψ′ is weakly continuous.

To get our results remains to show that ϕ((ū1, ū2) + (ũ1, ũ2)) is convex in
(ū1, ū2) and to prove the corresponding conditions (2) and (3) for our situation:

ϕ((0, 0) + (ũ1, ũ2)) → −∞ (5)

as ‖(ũ1, ũ2)‖ → ∞ and, for every M > 0,

ϕ((ū1, ū2) + (ũ1, ũ2)) → +∞ (6)

as ‖(ū1, ū2)‖ → ∞ uniformly for ‖(ũ1, ũ2)‖ ≤ M.

Proof of the Theorem 2. Since F(t, x1, x2) is convex in (x1, x2) for a.e. t ∈ [0, T]
it is obvious that F(t, (ū1 , ū2) + (ũ1(t), ũ2(t))) is convex in (ū1, ū2) ∈ R

N × R
N,

so is
∫ T

0 F(t, (ū1 , ū2) + (ũ1(t), ũ2(t)))dt. Hence for every (ũ1(t), ũ2(t))) ∈ W̃ =

W̃
1,q
T × W̃

1,p
T ,

ϕ((ū1, ū2) + (ũ1, ũ2)) = −
1

q
‖ ˙̃u1‖

q
q −

1

p
‖ ˙̃u2‖

p
p +

∫ T

0
F(t, (ū1 , ū2) + (ũ1(t), ũ2(t)))dt

is convex in (ū1, ū2) ∈ R
N × R

N.
By the convexity of F(t, (·, ·)), assumption (A) and Sobolev’s inequality, we

have
∫ T

0
F(t, (ū1 , ū2) + (ũ1(t), ũ2(t)))dt ≥

≥ 2
∫ T

0
F
(

t,
1

2
(ū1, ū2)

)

dt −
∫ T

0
F(t,−ũ1(t),−ũ2(t))dt ≥
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≥ 2
∫ T

0
F
(

t,
1

2
(ū1, ū2)

)

dt −
∫ T

0

[

a1

(

|ũ1(t)|
)

+ a2

(

|ũ2(t)|
)

]

b(t)dt ≥

≥ 2
∫ T

0
F
(

t,
1

2
(ū1, ū2)

)

dt −
[

max
0≤s≤‖ũ1‖∞

a1(s) + max
0≤s≤‖ũ2‖∞

a2(s)
]

∫ T

0
b(t)dt ≥

≥ 2
∫ T

0
F
(

t,
1

2
(ū1, ū2)

)

dt −
[

max

0≤s≤T
1
q′ M

a1(s) + max

0≤s≤T
1
p′ M

a2(s)
]

∫ T

0
b(t)dt

for all (ū1, ū2) ∈ R
N × R

N and (ũ1, ũ2) ∈ W̃ with ‖(ũ1, ũ2)‖ ≤ M, which implies
that

ϕ((ū1, ū2) + (ũ1, ũ2)) ≥ −
1

q
‖ ˙̃u1‖

q
q −

1

p
‖ ˙̃u2‖

p
p + 2

∫ T

0
F
(

t,
1

2
(ū1, ū2)

)

dt−

−
[

max

0≤s≤T
1
q′ M

a1(s) + max

0≤s≤T
1
p′ M

a2(s)
]

∫ T

0
b(t)dt ≥

≥ −
1

q
Mq −

1

p
Mp + 2

∫ T

0
F
(

t,
1

2
(ū1, ū2)

)

dt−

−
[

max

0≤s≤T
1
q′ M

a1(s) + max

0≤s≤T
1
p′ M

a2(s)
]

∫ T

0
b(t)dt

for all (ū1, ū2) ∈ R
N × R

N and (ũ1, ũ2) ∈ W̃ with ‖(ũ1, ũ2)‖ ≤ M. Now, from
(A2) we get that ϕ((ū1, ū2) + (ũ1, ũ2)) → +∞ as |(ū1, ū2)| → ∞, (ū1, ū2) ∈ R

N ×
R

N, uniformly for (ũ1, ũ2) ∈ W̃ with ‖(ũ1, ũ2)‖ ≤ M.
By (A1) and Sobolev’s inequality, we have

ϕ(ũ1, ũ2) = −
1

q
‖ ˙̃u1‖

q
q −

1

p
‖ ˙̃u2‖

p
p +

∫ T

0
F(t, ũ1(t), ũ2(t))dt ≤

≤ −
1

q
‖ ˙̃u1‖

q
q −

1

p
‖ ˙̃u2‖

p
p +

1

q

∫ T

0
α1(t)|ũ1(t)|

qdt+
1

p

∫ T

0
α2(t)|ũ2(t)|

pdt+
∫ T

0
γ(t)dt ≤

≤ −
1

q
‖ ˙̃u1‖

q
q −

1

p
‖ ˙̃u2‖

p
p +

1

q

∫ T

0
α1(t)dt ‖ũ1‖

q
∞ +

1

p

∫ T

0
α2(t)dt ‖ũ2‖

p
∞ + ‖γ‖1 ≤

≤ −
1

q
‖ ˙̃u1‖

q
q +

1

q

∫ T

0
α1(t)dt ·T

q

q′ ‖ ˙̃u1‖
q
q −

1

p
‖ ˙̃u2‖

p
p +

1

p

∫ T

0
α2(t)dt ·T

p

p′ ‖ ˙̃u2‖
p
p + ‖γ‖1 ≤

≤ −
1

q

(

1 − T
q

q′

∫ T

0
α1(t)dt

)

‖ ˙̃u1‖
q
q −

1

p

(

1 − T
p

p′

∫ T

0
α2(t)dt

)

‖ ˙̃u2‖
p
p + ‖γ‖1

which implies that ϕ(ũ1, ũ2) → −∞ as ‖(ũ1, ũ2)‖ → ∞, (ũ1, ũ2) ∈ W̃.

Proof of the Theorem 3. Let G(t, x1, x2) = F(t, x1, x2)−
1
q µ1(t)|x1|

q − 1
p µ2(t)|x2|

p

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T]. Then G(t, (ū1, ū2) + (ũ1(t), ũ2(t)))
is convex in (ū1, ū2) ∈ R

N × R
N so is
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∫ T
0 G(t, (ū1, ū2) + (ũ1(t), ũ2(t)))dt. Hence for every (ũ1(t), ũ2(t)) ∈ W̃

ϕ((ū1, ū2) + (ũ1, ũ2)) = −
1

q
‖ ˙̃u1‖

q
q −

1

p
‖ ˙̃u2‖

p
p +

1

q

∫ T

0
µ1(t)|ū1 + ũ1(t)|

qdt+

+
1

p

∫ T

0
µ2(t)|ū2 + ũ2(t)|

pdt +
∫ T

0
G(t, (ū1 , ū2) + (ũ1(t), ũ2(t)))dt

is convex in (ū1, ū2) as a sum of three convex functions: one is convex in ū1, the
second one is convex in ū2 and the last one is convex in (ū1, ū2).

By the definition of subdifferential of convex function, we have

F(t, x1, x2)−
1

q
µ1(t)|x1|

q −
1

p
µ2(t)|x2|

p = G(t, x1, x2) ≥

≥ G(t, 0, 0) + (∇x1
G(t, 0, 0), x1) + (∇x2 G(t, 0, 0), x2) =

= F(t, 0, 0) + (∇x1
F(t, 0, 0), x1) + (∇x2 F(t, 0, 0), x2) ≥

≥ −
[

a1(0) + a2(0)
]

b(t)(1 + |x1|+ |x2|)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T]. It follows from assumption (A) and
Sobolev’s inequality that

ϕ((ū1, ū2) + (ũ1, ũ2)) ≥ −
1

q
‖ ˙̃u1‖

q
q −

1

p
‖ ˙̃u2‖

p
p +

1

q

∫ T

0
µ1(t)|ū1 + ũ1(t)|

qdt+

+
1

p

∫ T

0
µ2(t)|ū2 + ũ2(t)|

pdt− [a1(0)+ a2(0)]
∫ T

0
b(t)

(

1+ |ū1 + ũ1(t)|+ |ū2 + ũ2(t)|
)

dt ≥

≥ −
1

q
‖ ˙̃u1‖

q
q +

1

q2q |ū1|
q
∫ T

0
µ1(t)dt −

1

q
‖µ1‖1‖ũ1‖

q
∞−

−
1

p
‖ ˙̃u2‖

p
p +

1

p2p |ū2|
p
∫ T

0
µ2(t)dt −

1

p
‖µ2‖1‖ũ2‖

p
∞−

−
[

a1(0) + a2(0)
](

1 + |ū1|+ |ū2|+ ‖ũ1‖∞ + ‖ũ2‖∞

)

∫ T

0
b(t)dt ≥

≥ −
1

q
Mq +

1

q2q |ū1|
q
∫ T

0
µ1(t)dt −

1

q
‖µ1‖1T

q

q′ M−

−
1

p
Mp +

1

p2p |ū2|
p
∫ T

0
µ2(t)dt −

1

p
‖µ2‖1T

p

p′ M−

−
[

a1(0) + a2(0)
](

1 + |ū1|+ |ū2|+ (T
1
q′ + T

1
p′ )M

)

∫ T

0
b(t)dt

for all (ū1, ū2) ∈ R
N ×R

N and (ũ1, ũ2) ∈ W̃ with ‖(ũ1, ũ2)‖ ≤ M. Now condition

(6) follows from
∫ T

0 µi(t)dt > 0, i = 1, 2. Condition (5) follows like in the proof of
Theorem 2.
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