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Abstract

With the aid of weighted sharing method we study the uniqueness of en-
tire functions concerning general nonlinear differential polynomials sharing
fixed points. The results of the paper improve and generalize some results
due to Zhang [18] and Qi-Dou [12].

1 Introduction, Definitions and Results

Let f be a nonconstant meromorphic functions defined in the open complex plane
C. We adopt the standard notations in the Nevanlinna theory of meromorphic
functions as explained in [7], [16] and [17]. For a nonconstant meromorphic func-
tion h, we denote by T(r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying S(r, h) = o{T(r, h)} as r → ∞ possibly outside a set of finite
linear measure. A meromorphic function a(z)( 6≡ ∞) is called a small function
with respect to f , provided that T(r, a) = S(r, f ).

We say that two meromorphic function f and g share a small function a(z)
CM (counting multiplicities) if f − a and g − a have the same set of zeros with
the same multiplicities and we say that f and g share the value a IM (ignoring
multiplicities) if we do not consider the multiplicities. A finite value z0 is a fixed
point of f (z) if f (z0) = z0 and we define

E f = {z ∈ C : f (z) = z, counting multiplicities}.
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Let a ∈ C ∪ {∞}. For a positive integer p we denote by N(r, a; f |≥ p) the
counting function of those a-points of f whose multiplicities are not less than
p, where each a-point is counted according to its multiplicity. N(r, a; f |≥ p) is
defined similarly, where in counting the a-points of f we ignore the multiplicities.
We denote by Np(r, a; f ) the counting function of a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ p and p times if m > p. That is

Np(r, a; f ) = N(r, a; f ) + N(r, a; f |≥ 2) + ... + N(r, a; f |≥ p).

Clearly N1(r, a; f ) = N(r, a; f ).

In 1959, Hayman [6] proved the following theorem.

Theorem A. Let f be a transcendental entire function and let n(≥ 1) be an integer.
Then f n f ′ = 1 has infinitely many solutions.

Corresponding to which, the following result was obtained by Fang and Hua
[3] and by Yang and Hua [15] respectively.

Theorem B. Let f and g be two nonconstant entire functions, n ≥ 6 be a positive
integer. If f n f ′ and gng′ share 1 CM, then either f (z) = c1ecz, g(z) = c2e−cz, where
c1, c2 and c are three constants satisfying (c1c2)

n+1c2 = −1 or f ≡ tg for a constant t
such that tn+1 = 1.

Considering k th derivative instead of first derivative, Hennekemper [8], Chen
[2] and Wang [13] proved the following theorem which extends Theorem A.

Theorem C. Let f be a transcendental entire function and n, k be two positive integers

with n ≥ k + 1. Then ( f n)(k) = 1 has infinitely many solutions.

Corresponding to Theorem C Fang [4] proved the following theorems.

Theorem D. Let f and g be two nonconstant entire functions, and let n, k be two positive

integers with n > 2k + 4. If ( f n)(k) and (gn)(k) share 1 CM, then either f (z) = c1ecz,
g(z) = c2e−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)

n(nc)2k = 1
or f ≡ tg for a constant t such that tn = 1.

Theorem E. Let f and g be two nonconstant entire functions, and let n, k be two positive

integers with n ≥ 2k + 8. If [ f n( f − 1)](k) and [gn(g − 1)](k) share 1 CM, then f ≡ g.

So natural question arises: What can be said if the share value 1 be replaced by
a fixed point. It is worth mentioning that in the above area some investigations
has already been carried out by Fang - Qiu [5] and Lin - Yi [11].

In 2008, Zhang [18] proved the following theorems.

Theorem F. Let f and g be two nonconstant entire functions, and n, k be two positive
integers with n > 2k + 4. If E( f n)(k) = E(gn)(k) , then either

(i) k = 1, f (z) = c1ecz2
, g(z) = c2e−cz2

, where c1, c2 and c are three constants satisfying
4(c1c2)

n(nc)2 = −1 or
(ii) f ≡ tg for a constant t such that tn = 1.
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Theorem G. Let f and g be two nonconstant entire functions, and n, k be two positive
integers with n ≥ 2k + 6. If E( f n( f−1))(k) = E(gn(g−1))(k), then f ≡ g.

Recently Qi - Dou [12] replace CM sharing value by IM sharing value and
proved the following theorems.

Theorem H. Let f and g be two transcendental entire functions, and let n, k be two

positive integers with n > 5k + 7. If ( f n)(k) and (gn)(k) share z IM, then either f (z) =

c1ecz2
, g(z) = c2e−cz2

, where c1, c2 and c are three constants satisfying 4(c1c2)
n(nc)2 =

−1 or f ≡ tg for a constant t such that tn = 1.

Theorem I. Let f and g be two transcendental entire functions, and let n, k be two

positive integers with n > 5k + 11. If [ f n( f − 1)](k) and [gn(g − 1)](k) share z IM,
then f ≡ g.

Naturally one may ask the following questions which are the motivation of
the paper.
Question 1. Is it really possible in any way to relax the nature of sharing the fixed
point in Theorem F and Theorem G without changing the lower bound of n ?
Question 2. Whether one can deduce a generalized result in which Theorem H
and Theorem I will be included ?

In the paper we will concentrate our attention on the above questions and
provide an affirmative solution in this direction. To state the main results we
need the following definition known as weighted sharing of values introduced
by I. Lahiri [9, 10] which measures how close a shared value is to being shared
CM or to being shared IM.

Definition 1. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote by
Ek(a; f ) the set of all a-points of f where an a-point of multiplicity m is counted m times
if m ≤ k and k+1 times if m > k. If Ek(a; f ) = Ek(a; g), we say that f , g share the value
a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-point
of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k)
and z0 is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with
multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly
if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that
f , g share a value a IM or CM if and only if f , g share (a, 0) or (a, ∞) respectively.

Again f and g share (z, l) means that f (z) − z and g(z) − z share (0, l) where
l(≥ 0) is an integer.

In the paper, we will prove two theorems second of which will not only im-
prove Theorems F and G by relaxing the nature of sharing the fixed point and at
the same time improve and generalize Theorems H and I. We now state the main
results of the paper.

Theorem 1. Let f be a transcendental entire function and n, k be two positive inte-
gers such that n ≥ k + 2. Let P(z) = am(z)z

m + am−1(z)z
m−1 + ... + a1z + a0 or

P(z) = c0, where a0( 6= 0), a1,...,am−1, am( 6= 0), c0( 6= 0) are complex constants. Then

( f nP( f ))(k) has infinitely many fixed points.
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Theorem 2. Let f and g be two transcendental entire functions, and let n(≥ 1), k(≥ 1)

and m(≥ 1) be three integers. Let P(z) be defined as in Theorem 1. If [ f nP( f )](k) and

[gnP(g)](k) share (z, l) where l(≥ 0) is an integer, then
(i) when P(z) = am(z)zm + am−1(z)z

m−1 + ... + a1z + a0, and one of l ≥ 2 and n >

2k + m + 4; l = 1 and n >
5k+3m+9

2 ; l = 0 and n > 5k + 4m + 7 holds, either

f (z) = tg(z) for a constant t such that td = 1, where d = (n + m, ..., n + m − i, ..., n),
am−i 6= 0 for some i = 0, 1, 2, ..., m or f and g satisfy the algebraic equation R( f , g) ≡ 0,
where

R(x, y) = xn(amxm + am−1xm−1 + ... + a0)− yn(amym + am−1ym−1 + ... + a0);

(ii) when P(z) = c0, and one of l ≥ 2 and n > 2k + 4; l = 1 and n >
5k+9

2 ; l = 0

and n > 5k + 7 holds, either f (z) = c1/c
1
n
0 ecz2

, g(z) = c2/c
1
n
0 e−cz2

, where c1, c2 and c

are three constants satisfying 4n2(c1c2)
n(c)2 = −1 or f = tg for a constant t such that

tn = 1.

Corollary 1. Under the same condition of Theorem 2, we set P(z) = (z− 1). Then either
f (z) ≡ g(z) or f and g satisfy the algebraic equation R( f , g) = 0, where R(x, y) =
xn(x − 1)− yn(y − 1), provided one of the following holds:

(i) l ≥ 2, n > 2k + 5;
(ii) l = 1, n >

5k+12
2 ;

(iii) l = 0, n > 5k + 11.

Remark 1. Obviously Corollary 1 is an extension of Theorem G.

Remark 2. Clearly Theorem 2 improves Theorem F when P(z) = c0 = 1.

Remark 3. Since Theorems H and I can be obtained as the special cases of Theorem 2,
clearly Theorem 2 improves and supplements Theorems H and I.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [14] Let f be a nonconstant meromorphic function and let an(z)( 6≡ 0),
an−1(z), ... , a0(z) be meromorphic functions such that T(r, ai(z)) = S(r, f ) for i =
0, 1, 2, ..., n. Then

T(r, an f n + an−1 f n−1 + ... + a1 f + a0) = nT(r, f ) + S(r, f ).

Lemma 2. [19] Let f be a nonconstant meromorphic function, and p, k be positive inte-
gers. Then

Np

(

r, 0; f (k)
)

≤ T
(

r, f (k)
)

− T(r, f ) + Np+k(r, 0; f ) + S(r, f ), (2.1)

Np

(

r, 0; f (k)
)

≤ kN(r, ∞; f ) + Np+k(r, 0; f ) + S(r, f ). (2.2)
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Lemma 3. [10] Let f and g be two nonconstant meromorphic functions sharing (1, 2).
Then one of the following cases holds:
(i) T(r) ≤ N2(r, 0; f ) + N2(r, 0; g) + N2(r, ∞; f ) + N2(r, ∞; g) + S(r),
(ii) f = g,
(iii) f g = 1.

Lemma 4. [1] Let f and g be two nonconstant meromorphic functions sharing (1, l) and

f ′′

f ′
−

2 f ′

f − 1
6≡

g′′

g′
−

2g′

g − 1
.

Now the following hold:
(i) if l = 1 then T(r, f ) ≤ N2(r, 0; f ) + N2(r, 0; g) + N2(r, ∞; f ) + N2(r, ∞; g) +
1
2 N(r, 0; f ) + 1

2 N(r, ∞; f ) + S(r, f ) + S(r, g);
(ii) if l = 0 then T(r, f ) ≤ N2(r, 0; f ) + N2(r, 0; g) + N2(r, ∞; f ) + N2(r, ∞; g) +
2N(r, 0; f ) + N(r, 0; g) + 2N(r, ∞; f ) + N(r, ∞; g) + S(r, f ) + S(r, g).

Lemma 5. [7, 16] Let f be a transcendental meromorphic function, and let a1(z), a2(z)
be two distinct meromorphic functions such that T(r, ai(z)) = S(r, f ), i=1,2. Then

T(r, f ) ≤ N(r, ∞; f ) + N(r, a1; f ) + N(r, a2; f ) + S(r, f ).

Lemma 6. Let f and g be two nonconstant entire functions and let n, k be two posi-

tive integers. Suppose that F1 = ( f nP( f ))(k) and G1 = (gnP(g))(k) where P(z) =
am(z)zm + am−1(z)z

m−1 + ... + a1z + a0, a0( 6= 0), a1, ... ,am−1, am( 6= 0) are com-
plex constants. If there exist two nonzero constants c1 and c2 such that N(r, c1; F1) =
N(r, 0; G1) and N(r, c2; G1) = N(r, 0; F1), then n ≤ 2k + m + 2.

Proof. By the second fundamental theorem of Nevanlinna we have

T(r, F1) ≤ N(r, 0; F1) + N(r, ∞; F1) + N(r, c1; F1) + S(r, F1)

≤ N(r, 0; F1) + N(r, 0; G1) + S(r, F1). (2.3)

By (2.1), (2.2), (2.3) and Lemma 1 we obtain

(n + m)T(r, f ) ≤ T(r, F1)− N(r, 0; F1) + Nk+1(r, 0; f nP( f )) + S(r, f )

≤ N(r, 0; G1) + Nk+1(r, 0; f nP( f )) + S(r, f )

≤ Nk+1(r, 0; f nP( f )) + Nk+1(r, 0; gnP(g)) + S(r, f ) + S(r, g)

≤ (k + m + 1){T(r, f ) + T(r, g)}+ S(r, f ) + S(r, g). (2.4)

Similarly we obtain

(n + m)T(r, g) ≤ (k + m + 1){T(r, f ) + T(r, g)}+ S(r, f ) + S(r, g). (2.5)

Combining (2.4) and (2.5) we get

(n − 2k − m − 2){T(r, f ) + T(r, g)} ≤ S(r, f ) + S(r, g),

which gives n ≤ 2k + m + 2. This completes the proof of the lemma.
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Lemma 7. Suppose that f is a transcendental meromorphic function with finite number
of poles, g is a transcendental entire function, and n, k are two positive integers. Suppose
that F1 and G1 are given by Lemma 6. If F1G1 = α, where α = 1 or α = z2, then
n ≤ k + 2.

Proof. Suppose that n > k + 2. From F1G1 = α, we have

( f nP( f ))(k)(gnP(g))(k) = α.

Let z0 be a zero of f with multiplicity p. Then z0 is a zero of ( f nP( f ))(k) with
multiplicity np − k. Since g is an entire function and n > k + 2, z0 is a zero
of α with multiplicity > 2, which is impossible. Thus f has no zeros. We put

f (z) = eβ

h , where β is a nonconstant entire function and h is a polynomial. Now

(am f n+m)(k) = tm(β
′, β′′, ..., β(k), h)e(n+m)β, (2.6)

.

.

.

(a0 f n)(k) = t0(β
′ , β′′, ..., β(k), h)enβ, (2.7)

where ti(β
′, β′′, ..., β(k), h) (i = 0, 1, ..., m) are differential polynomials in β′, β′′,

. . . , β(k) with coefficients which are rational functions in h or its derivatives.
Obviously

ti(β
′, β′′, ..., β(k), h) 6= 0

for i = 0, 1, 2, ..., m, and

( f nP( f ))(k) 6= 0.

From (2.6) and (2.7) we have

tm(β
′, β′′, ..., β(k), h)emβ(z) + ... + t0(β

′ , β′′, ..., β(k), h) 6= 0. (2.8)

Since β(z) is an entire function, we obtain T(r, β(j)) = S(r, f ) for j = 1, 2, ..., k.
Hence T(r, ti) = S(r, f ) for i = 0, 1, 2, ..., m.

So from (2.8), Lemmas 1 and 5 we obtain

mT(r, f ) = T(r, tmemβ + ... + t1eβ) + S(r, f )

≤ N(r, 0; tmemβ + ... + t1eβ) + N(r, 0; tmemβ + ... + t1eβ + t0)

+S(r, f )

≤ N(r, 0; tme(m−1)β + ... + t1) + S(r, f )

≤ (m − 1)T(r, f ) + S(r, f ),

which is a contradiction. This completes the proof of the lemma.

Following lemma can be proved in the line of Lemma 9 [18].
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Lemma 8. Let f and g be two nonconstant entire functions and let n, k be two positive

integers. Suppose that F2 = (c0 f n)(k) and G2 = (c0gn)(k), where c0( 6= 0) is a com-
plex constant. If there exist two nonzero constants c1 and c2 such that N(r, c1; F2) =
N(r, 0; G2) and N(r, c2; G2) = N(r, 0; F2), then n ≤ 2k + 2.

Note 1. Though in Lemma 9 [18] authors claim that n ≤ 2k + 4, it is obvious from the
proof of Lemma 6 above that Lemma 8 holds for n ≤ 2k + 2.

Lemma 9. Suppose that F2 and G2 are given as in Lemma 8 and let n, k be two positive
integers such that n > 2k. If F2 = G2, then f = tg for a constant t such that tn = 1.

Proof. We omit the proof because it can be carried out that of Lemma 10 [18].

The following lemma can be proved in the line of the proof of Proposition 1
[5] and Theorem 4 [18].

Lemma 10. Suppose that F2 and G2 are given by Lemma 8 and let n, k be two positive in-

tegers such that n > 2k + 4. If F2G2 = z2, then f (z) = c1/c
1
n
0 ecz2

, g(z) = c2/c
1
n
0 e−cz2

,

where c1, c2 and c are three constants satisfying 4(nc)2(c1c2)
n = −1.

3 Proof of the Theorem

Proof of Theorem 1. We consider the following two cases.

Case 1. Let P(z) = am(z)zm + am−1(z)z
m−1 + ... + a2z2 + a1z + a0, where a0( 6= 0),

a1, . . . ,am−1, am( 6= 0) are complex constants. We consider F(z) = f nP( f ) and
G(z) = gnP(g). Then by Lemma 5 we have

T
(

r, F(k)
)

≤ N
(

r, 0; F(k)
)

+ N
(

r, z; F(k)
)

+ S(r, F).

Using Lemma 2 and the above inequality we obtain

(n + m)T(r, f ) ≤ T
(

r, F(k)
)

− N
(

r, 0; F(k)
)

+ Nk+1(r, 0; F) + S(r, f )

≤ N
(

r, z; F(k)
)

+ Nk+1(r, 0; F) + S(r, f )

≤ (k + m + 1)T(r, f ) + N
(

r, z; F(k)
)

+ S(r, f ).

Since n ≥ k + 2, from this we can say that F(k) = ( f nP( f ))(k) has infinitely many fixed
points.

Case 2. Let P(z) = c0, where c0 ( 6= 0) is a complex constant. We omit the proof as it
can be carried out in the line of the proof of Case 1.

Proof of Theorem 2. Let P(z) = am(z)zm + am−1(z)z
m−1 + ...+ a2z2 + a1z+ a0, where

a0( 6= 0), a1, . . . ,am−1, am( 6= 0) are complex constants. We consider F(z) =
( f nP( f ))(k)

z and G(z) =
(gnP(g))(k)

z . Then F(z) and G(z) are transcendental mero-
morphic functions that share (1, l). Let

H =

(

F′′

F′
−

2F′

F − 1

)

−

(

G′′

G′
−

2G′

G − 1

)

. (3.1)
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We assume that H 6= 0. Then from Lemma 1 and (2.1) we obtain

N2(r, 0; F) ≤ N2

(

r, 0; ( f nP( f ))(k)
)

+ S(r, f )

≤ T
(

r, ( f nP( f ))(k)
)

− (n + m)T(r, f ) + Nk+2(r, 0; f nP( f )) + S(r, f )

≤ T(r, F)− (n + m)T(r, f ) + Nk+2(r, 0; f nP( f )) + S(r, f ). (3.2)

In a similar way we obtain

N2(r, 0; G) ≤ T(r, G)− (n + m)T(r, g) + Nk+2(r, 0; gnP(g)) + S(r, g). (3.3)

Again by (2.2) we have

N2(r, 0; F) ≤ Nk+2(r, 0; f nP( f )) + S(r, f ). (3.4)

N2(r, 0; G) ≤ Nk+2(r, 0; gnP(g)) + S(r, g). (3.5)

From (3.2) and (3.3) we get

(n + m){T(r, f ) + T(r, g)} ≤ T(r, F) + T(r, G) + Nk+2(r, 0; f nP( f ))

+Nk+2(r, 0; gnP(g))− N2(r, 0; F)

−N2(r, 0; G) + S(r, f ) + S(r, g). (3.6)

Now we consider the following three cases.

Case I. Let l ≥ 2. We suppose that (i) of Lemma 3 holds. Then using Lemma 1,
(3.4) and (3.5) we obtain from (3.6)

(n + m){T(r, f ) + T(r, g)} ≤ N2(r, 0; F) + N2(r, 0; G) + 2N2(r, ∞; F)

+2N2(r, ∞; G) + Nk+2(r, 0; f nP( f ))

+Nk+2(r, 0; gnP(g)) + S(r, f ) + S(r, g)

≤ 2Nk+2(r, 0; f nP( f )) + 2Nk+2(r, 0; gnP(g))

+S(r, f ) + S(r, g)

≤ 2(k + m + 2){T(r, f ) + T(r, g)}

+S(r, f ) + S(r, g).

From this we get

(n − m − 2k − 4){T(r, f ) + T(r, g)} ≤ S(r, f ) + S(r, g),

which leads to a contradiction as n > 2k + m + 4.
Hence by Lemma 3 we have either FG = 1 or F = G. If FG = 1, then

( f nP( f ))(k)(gnP(g))(k) = z2,

a contradiction by Lemma 7. Hence F = G. That is

[ f n(am f m + am−1 f m−1 + ... + a1 f + a0)]
(k) = [gn(amgm

+am−1gm−1 + ... + a1g + a0)]
(k).
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Integrating we get

[ f n(am f m + am−1 f m−1 + ... + a1 f + a0)]
(k−1) = [gn(amgm

+am−1gm−1 + ... + a1g + a0)]
(k−1) + ck−1,

where ck−1 is a constant. If ck−1 6= 0, from Lemma 6 we obtain n ≤ 2k + m, a
contradiction. Hence ck−1 = 0. Repeating k-times, we obtain

f n(am f m + am−1 f m−1 + ... + a1 f + a0)

= gn(amgm + am−1gm−1 + ... + a1g + a0). (3.7)

Let h = f
g . If h is a constant, by putting f = gh in (3.7) we get

amgn+m(hn+m − 1) + am−1gn+m−1(hn+m−1 − 1) + ... + a0gn(hn − 1) = 0,

which implies hd = 1, where d = (n + m, ..., n + m − i, ..., n + 1, n), am−i 6= 0
for some i = 0, 1, ..., m. Thus f (z) = tg(z) for a constant t such that td = 1,
d = (n + m, ..., n + m − i, ..., n + 1, n), am−i 6= 0 for some i = 0, 1, ..., m.

If h is not a constant, then from (3.7) we can say that f and g satisfy the alge-
braic equation R( f , g) = 0, where

R(x, y) = xn(amxm + am−1xm−1 + ... + a0)− yn(amym + am−1ym−1 + ... + a0).

Case II. Let l = 1. Using Lemma 1, (i) of Lemma 4, (3.4) and (3.5) we obtain from
(3.6)

(n + m){T(r, f ) + T(r, g)} ≤ N2(r, 0; F) + N2(r, 0; G) + 2N2(r, ∞; F)

+2N2(r, ∞; G) +
1

2
N(r, 0; F) +

1

2
N(r, 0; G)

+
1

2
N(r, ∞; F) +

1

2
N(r, ∞; G)

+Nk+2(r, 0; f nP( f )) + Nk+2(r, 0; gnP(g))

+S(r, f ) + S(r, g)

≤ 2Nk+2(r, 0; f nP( f )) + 2Nk+2(r, 0; gnP(g))

+
1

2
N(r, 0; F) +

1

2
N(r, 0; G) + S(r, f ) + S(r, g)

≤ 2Nk+2(r, 0; f nP( f )) + 2Nk+2(r, 0; gnP(g))

+
1

2
Nk+1(r, 0; f nP( f )) +

1

2
Nk+1(r, 0; gnP(g))

+S(r, f ) + S(r, g)

≤

(

5k + 5m + 9

2

)

{T(r, f ) + T(r, g)}

+S(r, f ) + S(r, g).

This gives
(

n −
5k + 3m + 9

2

)

{T(r, f ) + T(r, g)} ≤ S(r, f ) + S(r, g),
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which contradicts with our assumption that n >
5k+3m+9

2 .

Case III. Let l = 0. Using Lemma 1, (ii) of Lemma 4, (3.4) and (3.5) we obtain
from (3.6)

(n + m){T(r, f ) + T(r, g)} ≤ N2(r, 0; F) + N2(r, 0; G) + 2N2(r, ∞; F)

+2N2(r, ∞; G) + 3N(r, 0; F) + 3N(r, 0; G)

+3N(r, ∞; F) + 3N(r, ∞; G)

+Nk+2(r, 0; f nP( f )) + Nk+2(r, 0; gnP(g))

+S(r, f ) + S(r, g)

≤ 2Nk+2(r, 0; f nP( f )) + 2Nk+2(r, 0; gnP(g))

+3Nk+1(r, 0; f nP( f )) + 3Nk+1(r, 0; gnP(g))

+S(r, f ) + S(r, g)

≤ (5k + 5m + 7){T(r, f ) + T(r, g)}

+S(r, f ) + S(r, g).

This gives

(n − 5k − 4m − 7){T(r, f ) + T(r, g)} ≤ S(r, f ) + S(r, g),

contradicting with the fact that n > 5k + 4m + 7.

We now assume that H ≡ 0. That is
(

F′′

F′
−

2F′

F − 1

)

−

(

G′′

G′
−

2G′

G − 1

)

= 0.

Integrating both sides of the above equality we get

1

F − 1
=

A

G − 1
+ B, (3.8)

where A( 6= 0) and B are constants. Now we consider the following three sub-
cases.

Subcase (i) Let B 6= 0 and A = B. Then from (3.8) we get

1

F − 1
=

BG

G − 1
. (3.9)

If B = −1, then from (3.9) we obtain

FG = 1,

i.e.,

( f nP( f ))(k)(gnP(g))(k) = z2,

a contradiction by Lemma 7. If B 6= −1, from (3.9), we have G = −1
BF−(B+1)

and so

N(r, B+1
B ; F) = N(r, G). Now from the second fundamental theorem, we get

T(r, F) ≤ N(r, 0; F) + N

(

r,
B + 1

B
; F

)

+ S(r, F)

≤ N(r, 0; F) + S(r, F).
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Using (2.1) we obtain from above inequality

T(r, F) ≤ N(r, 0; F) + S(r, f )

≤ T(r, F)− (n + m)T(r, f ) + Nk+1(r, 0; f nP( f )) + S(r, f ).

Hence

(n + m)T(r, f ) ≤ (k + m + 1)T(r, f ) + S(r, f ),

a contradiction as n > 2k + m + 4.

Subcase (ii) Let B 6= 0 and A 6= B. Then from (3.8) we get G = (B−A)F+(A−B−1)
BF−(B+1)

and so N(r, B+1
B ; F) = N(r, G). Proceeding as in Subcase (i) we obtain a contra-

diction.

Subcase (iii) Let B = 0 and A 6= 0. Then from (3.8) F = G+A−1
A and G =

AF − (A − 1). If A 6= 1, we have N(r, A−1
A ; F) = N(r, 0; G) and N(r, 1 − A; G) =

N(r, 0; F). So by Lemma 6 we have n ≤ 2k + m + 2, a contradiction. Thus A = 1
and hence F = G. Hence by Case I we obtain either f (z) = tg(z) for a con-
stant t such that td = 1, d = (n + m, ..., n + m − i, ..., n + 1, n), am−i 6= 0 for some
i = 0, 1, ..., m or f and g satisfy the algebraic equation R( f , g) = 0, where

R(x, y) = xn(amxm + am−1xm−1 + ... + a0)− yn(amym + am−1ym−1 + ... + a0).

Now We consider the case when P(z) = c0, where c0 ( 6= 0) is a complex constant.

Let F(z) =
(c0 f n)(k)

z and G(z) =
(c0gn)(k)

z . Then F(z) and G(z) are transcendental
meromorphic functions that share (1, l). Using Lemma 8 and proceeding in the
like manner as above we obtain either FG = 1 or F = G.
If FG = 1, then

(c0 f n)(k)(c0gn)(k) = z2.

So by Lemma 10 we obtain f (z) = c1/c
1
n
0 ecz2

,g(z) = c2/c
1
n
0 e−cz2

, where c1, c2 and

c are three constants satisfying 4(nc)2(c1c2)
n = −1.

If F = G, then by Lemma 9 we have f = tg for a constant t such that tn = 1. This
completes the proof of the theorem.

Proof of Corollary 1. Proceeding as in Theorem 2 we obtain either FG = 1 or F =

G, where F = ( f n( f−1))(k)

z and G = (gn(g−1))(k)

z .

Suppose that FG = 1. Then

( f n( f − 1))(k)(gn(g − 1))(k) = z2,

a contradiction by Lemma 7.
Hence F = G. That is

( f n( f − 1))(k) = (gn(g − 1))(k).

Arguing similarly as the proof of Case I in Theorem 2 we obtain

f n( f − 1) = gn(g − 1). (3.10)
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Let h =
f
g . If h is a constant, then substituting f = gh in (3.10) we deduce

gn+1(hn+1 − 1)− gn(hn − 1) = 0,

which implies h = 1. Thus f (z) ≡ g(z).

If h is not a constant, then from (3.10) we can say that f and g satisfy the
algebraic equation R( f , g) = 0, where

R(x, y) = xn(x − 1)− yn(y − 1).

This completes the proof of Corollary 1.
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