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Abstract

It is well known after R. Swan that K̃0(R[X, Y, Z]/(X2 + Y2 + Z2 − 1)) is
isomorphic to the integers Z, whenever R is a field of characteristic not two
which contains the squared root of −1, see [6, Corollary 10.8] and [7, §7].

First, we give explicit idempotent matrices γp of order two, correspond-
ing to the integer p, in the isomorphism above, if R is a field of charac-
teristic zero. Then, we use the algebraic de Rham cohomology of Kähler
differentials to define Brouwer degree for polynomial homomorphisms of
R[X, Y, Z]/(X2 + Y2 + Z2 − 1) to itself, and relate the problem of finding
hermitian representatives for R = K(i), K a field not containing i, to some
unsolved problems of representing Brouwer degrees by polynomial maps
[8].

Introduction

It is well known that K̃0 of the coordinate ring A = R[X, Y, Z]/(X2 +Y2 + Z2 − 1)
of the algebraic 2-sphere S2(R) over a field R is isomorphic to the integers Z,
whenever R is of characteristic not two, and contains i, the squared root of −1, see
[6, Corollary 10.8] and [7, §7]. Regarding the elements of K̃0(A) as stable classes
of idempotent matrices over the ring A, the generator of K̃0(A) is represented by
the matrix

γ1 =
1

2

(

1 + Z X + iY
X − iY 1 − Z

)

,
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and so the element p[γ1] is represented by the idempotent matrix of order 2p,













γ1 0 . . 0
0 . . . .
. . . . .
. . . . 0
0 . . 0 γ1













.

It seems interesting to give representatives of p[γ1] by matrices of order two
because of the obvious bijection between rank one idempotent matrices of order
two over A and polynomial maps from the two sphere S2(R) to itself, given by

1

2

(

1 + R P + iQ
P − iQ 1 − R

)

⇆ (P, Q, R)

for P, Q, R ∈ R[X, Y, Z].
Observe that even for R = K(i) being the algebraic extension of a field K (not

containing i) by i the coefficients of polynomials P and Q belong to R and not
necessarily to K, and so the matrices above need not to be hermitian.

Let Ap(X), Bp(X) ∈ Z[ 1
2 , X] be the unique polynomials with deg Ap(X) =

p − 1, deg Bp(X) = p − 1 and Ap(X)(1 + X)p + Bp(X)(1 − X)p = 2, p ≥ 1,
[1, Proposition 1.7], and consider

γp =
1

2

(

Ap(Z)(1 + Z)p Bp(Z)(X + iY)p

Ap(Z)(X − iY)p Bp(Z)(1 − Z)p

)

,

γ−p =
1

2

(

Ap(Z)(1 + Z)p Bp(Z)(X − iY)p

Ap(Z)(X + iY)p Bp(Z)(1 − Z)p

)

the idempotent matrices of order two [1, p. 66].
The matrices above make sense over R[X, Y, Z]/(X2 + Y2 + Z2 − 1) and we

show in Section 1 that they represent p[γ1] and −p[γ1], respectively, provided
the field R is of characteristic zero.

We also have

γp =
1

2

(

1 + ZRp(Z2) P(X, Y, Z) + iQ(X, Y, Z)
P(X, Y, Z) − iQ(X, Y, Z) 1 − ZRp(Z

2)

)

,

γ−p =
1

2

(

1 + ZRp(Z2) P(X,−Y, Z) + iQ(X,−Y, Z)
P(X,−Y, Z) − iQ(X,−Y, Z) 1 − ZRp(Z2)

)

,

where

P =
1

2
(Ap(Z)(X − iY)p + Bp(Z)(X + iY)p),

Q =
i

2
(Ap(Z)(X − iY)p − Bp(Z)(X + iY)p)

and Rp(Z) ∈ Z[ 1
2 , Z] is the polynomial of degree p − 1 given by

ZRp(Z
2) = Ap(Z)(1 + Z)p − 1 = 1 − Bp(Z)(1 − Z)p ,
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see [1, p. 60].
Note that Rp(X2) is the polynomial r(X) in [9, p. 494]. These Rp(X) were later

used in [8] with the notations

Rp(X) = ϕp−1(1 − X) = αp−1(1 − X).

In Section 2, we define Brouwer degree for polynomial self-maps S2(R) →
S2(R) of the 2-sphere S2(R) over R and show that if R contains the field of al-
gebraic real numbers Ralg, then the polynomials P and Q of the matrices γp, for
p an odd integer, can be taken in Ralg[X, Y, Z], so the matrices are hermitian for

R = Q̄, the field of algebraic numbers.
In particular, we show that the polynomial maps

(P(X, Y, Z), Q(X, Y, Z), ZRp(Z
2)) : S2(R) → S2(R),

(resp.
(P(X,−Y, Z), Q(X,−Y, Z), ZRp (Z

2)) : S2(R) → S2(R))

have Brouwer degree p (resp. −p). Further, for p to be odd and R = Q̄, they
restricts to polynomial maps

S2(Ralg) → S2(Ralg).

For the reals R, polynomial maps S2(R) → S2(R) of any given odd Brouwer
degree were first given by F.J. Turiel [8]. The case of even Brouwer degree remains
open.

If R is one of the fields R, C (the field of complex numbers) or H (the skew-
algebra of quaternions), the Grassmannian of r-planes in Rn, Gn,r(R), is canoni-
cally diffeomorphic to the manifold of idempotent matrices ϕ over R, which are
hermitians, i.e., ϕ̄t = ϕ, and whose trace equals r. This manifold can be replaced
by that of idempotent matrices Idemn,r(R), of order n with the trace r, because
the inclusion Gn,r(R) ⊂ Idemn,r(R) is a strong deformation retract with retraction
map given by ϕ → ϕ(ϕ + ϕ̄t − In)−1, [1, Lemma 1.1]. If we apply this retraction
map to our idempotent matrix γp, (resp. γ−p) for p ≥ 1, we obtain the rank one
hermitian idempotent matrix

γ̃p =
1

(1 + Z)p + (1 − Z)p

(

(1 + Z)p (X + iY)p

(X − iY)p (1 − Z)p

)

,

(resp. γ̃−p =
1

(1 + Z)p + (1 − Z)p

(

(1 + Z)p (X − iY)p

(X + iY)p (1 − Z)p

)

).

Unfortunately, these idempotent matrices do not make sense in R[X, Y, Z]/(X2 +
Y2 + Z2 − 1) because of the denominator (1 + Z)p + (1 − Z)p .
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1 Chern classes for idempotent matrices and K̃0(A)

It is well known, after R. Swan [5], the equivalence between isomorphisms classes
of vector bundles and that of finitely generated projective modules over the ring
of continuous functions on the base or, equivalently, the idempotent matrices over
the ring of those functions.

Given a smooth complex vector bundle ξ, represented by an idempotent ma-
trix ϕ of order n, over the ring of smooth functions on the base, the Chern classes
of ξ in the standard de Rham cohomology of differential forms, are given as fol-
lows:

det(ϕ(dϕ)2 + In) = 1 + c1(ϕ(dϕ)2) + · · ·+ cn(ϕ(dϕ)2),

where cp is the p-th characteristic coefficient for p = 1, . . . , n. Then, cp(ϕ(dϕ)2) is

a closed form and 1
(−2πi)p cp((ϕ(dϕ)2) represents the p-th Chern class of ξ.

In the same way, for any idempotent matrix ϕ over a commutative R-algebra

A of characteristic zero, we define the p-th Chern class of ϕ as the class in H
2p
dR(A)

of cp(ϕ(dϕ)2), where cp denotes the p-th characteristic coefficient. It is well known

that these classes depend only on the stable class of ϕ in K̃0(A), and so there are

well defined maps cp : K̃0(A) → H
2p
dR(A) (see for instance [2]). These classes were

first defined for projective modules by H. Ozeki [4].
Here H∗

dR(A) denotes the algebraic de Rham cohomology of A which we recall
now:

Ω1
R(A) = I/I2 is the A-module of Kähler differentials, where I is the kernel

of multiplication A ⊗R A → A, for a ∈ A, da is the class of a ⊗ 1 − 1 ⊗ a in
Ω1

R(A), Ω
p
R(A) is the p-th exterior power of Ω1

R(A) and d : A → Ω1
R(A) extends

to a differential of degree 1. The cohomology of this complex is the algebraic de
Rham cohomology of A denoted by H∗

dR(A).

In the case of A = R[X, Y, Z]/(X2 + Y2 + Z2 − 1), Ω1
R(A) is the A-projective

module generated by dX, dY, dZ with the relation XdX +YdY + ZdZ = 0, Ω2
R(A)

is the A-free module generated by ω = XdYdZ + YdZdX + ZdXdY, Ω
p
R(A) = 0

for p ≥ 3 and H2
dR(A) = R[ω] ∼= R [3].

For the sake of completeness, since we are going to use only the first Chern
class, we prove in the following lemma (cf. [2, Lemma]) that this class gives a
homomorphism c1 : K̃0(A) → H2

dR(A).

Lemma 1.1. Let A a commutative ring and suppose that ϕ and ψ are equivalent idem-
potent matrices over A. Then tr (ψ(dψ)2) − tr (ϕ(dϕ)2) belongs to the image of d :
Ω1

R(A) → Ω2
R(A).

Proof. Suppose we have matrices a and b over A such that ab = ϕ, ba = ψ.
Then,

tr (ψ(dψ)2 − ϕ(dϕ)2) = tr (ba(db · a + bda)2 − ab(da · b + adb)2) =

tr (badb.adb · a + babda · bda + badb · abda + babdadb · a

− abda · bda · b − abadb · adb − abda · badb − abadbda · b) =

tr (2ψdb · ϕda + ϕdadb − dbda · ψ).
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But,

tr (ψdb · ϕda) = −tr (ϕdaψdb) = −tr (ϕ2daψdb) = −tr (aψbda · ψdb) =

− tr(ψbda · ψdb · a) =−tr (ψbda · ψdψ) + tr(ψbda · ψbda) =

− tr (ψbda · ψdψ) = −tr (bdaψdψ · ψ) = 0,

and so
tr (ψ(dψ)2 − ϕ(dϕ)2) = tr (ϕdadb − dbda · ψ).

On the other hand,

d(tr (abadb)) = tr (dabadb + adb · adb + abdadb) =

tr (−dbda · ψ + ϕdadb + adb · adb) = tr (ϕdadb − dbda · ψ)

and the proof is complete.

Write ∼ for the congruence on the cocycle module Ker d (modulo the cobound-
ary module Im d) in H2

dR(A). To compute the first Chern class for the idempotent
matrices γp, we need:

Lemma 1.2. For any polynomial F(Z) it holds F′(Z)ω ∼ (Z2F(Z))′ω. In particular,
(P(Z2)F(Z))′ ∼ P(1)F′(Z)ω, for polynomials F(Z), P(Z).

Proof. Observe that

F′(Z)ω = F′(Z)(−XdY + YdX) + F′(Z)ZdXdY =

d(F(Z)(−XdY + YdX)) + (2F(Z) + ZF′(Z))dXdY ∼ (Z2F(Z))′ω.

Proposition 1.3. Let A = R[X, Y, Z]/(X2 +Y2 +Z2 − 1) and R be an integral domain
such that the field of rationals Q ⊆ R. Then, c1(γ

p) = − i
2 p[ω] ∈ H2

dR(A).

Proof. A straightforward computation gives

tr (γp(dγp)2) = − i

2
p(ZRp(Z

2))′ω ∼ − i

2
p(ZRp(1))

′ω = − i

2
pω,

because of Lemma 1.2, and so tr(γp(dγp)2)) represents the class − i
2 p[ω].

Now, we are in a position to state the main result of this section.

Theorem 1.4. For any integers p and q, [γp] = p[γ1], [γp] + [γq] = [γp+q] and the
group homomorphism 2ic1 : K̃0(A) → H2

dR(A) = R[ω] ∼= R factorizes throughout an

isomorphism K̃0(A) → Z.

Proof. For any γp, by R. Swan [6, Corollary 10.8] and [7, §7], there exists an
integer q such that [γp] = q[γ1]. But, 2ic1([γ

p]) = p[ω] and clearly 2ic1(q[γ
1]) =

q[ω]. Thus, p = q, and [γp] = p[γ1].
Therefore [γp] + [γq] = (p + q)[γ1] = [γp+q] for any integers p, q, and the

proof is complete because K̃0(A) is free generated by [γ1], and 2ic1([γ
1]) = [ω].



854 M. Golasiński – F. G. Ruiz

Remark 1.5. Theorem 1.4 says in particular that there exist matrices M and N
over A and a natural number r such that

MN =





γp 0 0
0 γq 0
0 0 Ir





and

NM =

(

γp+q 0
0 I2+r

)

,

where Is denotes the identity matrix of order s.
We do not know if actually r = 0, i.e.,

MN =

(

γp 0
0 γq

)

and

NM =

(

γp+q 0
0 1

)

.

2 Polynomial maps from spheres to spheres, Brouwer degree,

and idempotent matrices

Let R be a field of characteristic zero and S2(R) = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}
the 2-sphere over R. We say that a map f = ( f0, f1, f2) : S2(R) → S2(R) is
polynomial if there are polynomials F0, F1, F2 ∈ R[X, Y, Z] such that f j(x, y, z) =

Fj(x, y, z) for all (x, y, z) ∈ S2(R) and j = 0, 1, 2.

Let A = R[X, Y, Z]/(X2 + Y2 + Z2 − 1). It is known after M. Kong [3], that
H2

dR(A) = R[ω] ∼= R. This allows us to imitate topology to define Brouwer degree

B( f ) of a polynomial map f = ( f0, f1, f2) : S2(R) → S2(R) by the formula

[ f ∗(ω)] = B( f )[ω].

It is clear that f ∗(ω) = tr ( f ∗(γ1)d( f ∗(γ1))2), and so B( f )[ω] = c1([ f
∗(γ1)]) =

− i
2 p[ω], where p is an integer because of Theorem 1.4. Therefore, B( f ) = p ∈ Z.

For any integer n ≥ 1 consider now the polynomials An(X), Bn(X) in Z[ 1
2 , X],

of degree p − 1, uniquely determined by An(X)(1 + X)n + Bn(X)(1 − X)n = 2,
[1, Proposition 1.7].

Since Pn(X) = 1 − Bn(X)(1 − X)n = −(1 − An(X))(1 + X)n = −Pn(−X),
there exists a unique polynomial Rn(X) of degree ≤ n − 1 with Pn(X) = 1 −
Bn(X)(1 − X)n = XRn(X2). Moreover, from 1 − XRn(X2) = Bn(X)(1 − X)n, we
deduce as in [1] that

(∗) Rn(X) =
n−1

∑
k=0

1

22k

(

2k

k

)

(1 − X)k

which leads to the recursive formula

(∗∗) Rn+1(X)− Rn(X) =
1

22n

(

2n

n

)

(1 − X)n.
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From this also follows that

(∗ ∗ ∗) Pn+1(X)− Pn(X) = X(Rn+1(X
2)− Rn(X

2)) =
1

22n

(

2n

n

)

X(1 − X2)n.

Observe that polynomials An(X), Bn(X), Pn(X) and Rn(X) are in Z[ 1
2 , X]. Now,

we list some further properties of polynomials An(X), Bn(X), Pn(X) and Rn(X).

(1) For all n ≥ 1, the polynomial Pn(X) coincides with the polynomial pn(X)
given by

pn(x) =
2n − 1

22n−2

(

2n − 2

n − 1

)

∫ x

0
(1 − t2)n−1dt, for x ≥ 0.

Notice that the formula (∗ ∗ ∗) also holds for the polynomials pn(X) because

pn+1(X) and pn(X)+ 1
22n (

2n
n )X(1− X2)n vanish at 0 and have the same derivative

2n+1
22n (2n

n )(1 − X2)n. Finally, we get pn(X) = Pn(X) by using the recursive formula

above and the obvious fact that p1(X) = P1(X) = 1.

Remark 2.1. (1) By [1, p. 60], Pn(1) = 1 and so Pn(X) coincides with the polyno-

mial p(X) defined in [9, p. 494]. In particular, α given there equals to 2n−1
22n−2 (

2n−2
n−1 ).

(2) Rn(X2) = r(X) for the polynomial r(X) in [9, p. 494].

(2) The polynomials Rn(X) were later used in [8] with the notations

ϕn−1(1 − X) = αn−1(1 − X) = Rn(X).

In fact, by [1, p. 60], R
(k)
n (1) = (−1)k (2k)!

k!
1

22k , coincides with ( 1√
x
)(k)(1) for

k = 0, . . . , n − 1. Therefore, Rn(X) is the (n − 1)−th partial sum of the Taylor
expansion of the function 1√

x
at 1.

(3) Rn(x) > 0 for any real number x, if n is odd.

In fact, by (∗), Rn(x) > 0 if x ≤ 1 and

xRn(x
2) = Pn(x) =

2n − 1

22n−2

(

2n − 2

n − 1

)

∫ x

0
(1 − t2)n−1dt > 0

for x > 0 gives the result.

(4) Rn(X) has a unique real zero βn > 1 of order one, if n is even.
In fact, we already know that Rn(x) > 0 if x ≤ 1. If x > 1 then

P′
n(x) =

2n − 1

22n−2

(

2n − 2

n − 1

)

(1 − x2)n−1
< 0.

This shows that Pn(x) is decreasing for x > 1. But Pn(1) = 1 and Pn(+∞) = −∞.
Therefore, Pn(x) has a unique real zero > 1 and the relation XRn(X2) = Pn(X)
gives that Rn(X) has a unique real zero βn > 1 for even n.
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To show that βn has order one, observe that the relation

Rn(X) + 2XR′
n(X) =

2n − 1

22n−2

(

2n − 2

n − 1

)

(1 − X)n−1

determined by (1) gives

2βnR′
n(βn) =

2n − 1

22n−2

(

2n − 2

n − 1

)

(1 − βn)
n−1.

Consequently, R′
n(βn) < 0 and βn is the root of Rn(X) with order one.

(5) The complex zeros of Rn(X) are two by two conjugates and all have order
one.

In fact, the relation

Rn(X) + 2XR′
n(X) =

2n − 1

22n−2

(

2n − 2

n − 1

)

(1 − X)n−1

yields R′
n(α) 6= 0 provided Rn(α) = 0. This shows that all zeros of Rn(X) have

multiplicity one. To finish the proof, decompose the real polynomials Rn(X) as
product of primes factors (which are of degrees one or two).

(6) Bn(x) > 0 and An(x) > 0 for any real number x, if n is odd.

In fact, suppose Bn(α) = 0. Then, α 6= 1 because Bn(1) = 1
2n (

2n
n ) > 0 and

0 = Bn(α)(1 − α)n = 1 − Pn(α). Hence, Pn(α) = 1 and this gives α = 1, because
Pn(x) is increasing. Thus, we arrive to a contradiction.

Finally, An(x) = Bn(−x) > 0 for any real number x and odd n.

(7) An(X) has a unique real zero αn if n is even, αn > 1 and its multiplicity is
one. Similarly, −αn is the unique real zero of Bn(X) for n even and its multiplicity
is one.

In fact, Bn(X), being a real polynomial of odd degree n− 1, has at least one real
zero. On the other hand, Pn(x) is decreasing for x < −1 or x > 1, and increasing
in the interval (−1, 1). Therefore, the formula Bn(X)(1 − X)n = 1 − Pn(X) gives
Bn(x)(1 − x)n

> 0 and so Bn(x) > 0 for x ∈ [−1, 1], because Pn(x) < Pn(1) = 1
for x ∈ [−1, 1) and Bn(1) > 0. But also Bn(x) > 0 for x > 1, because Pn(1) = 1 <

Pn(x).
Now, if Bn(α) = 0 for some α < −1 then Pn(α) = 1. But Pn(x) is decreasing

for x < −1 and so there is a unique α < −1 such that Pn(α) = 1. This shows that
Bn(X) has a unique real zero −αn < −1.

To show that −αn has order one, observe that Bn(X)(1 − X)n = 1 − Pn(X)
gives

B′
n(−αn)(1 + αn)

n = −2n − 1

22n−2

(

2n − 2

n − 1

)

(1 − α2
n)

n−1
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and so B′
n(−αn) 6= 0, because αn 6= ±1.

(8) The complex zeros of An(X), resp. Bn(X), are two by two conjugates and
have multiplicity one.

In fact, by the formula An(X)(1 + X)n = 1 + Pn(X), we get

nAn(X)(1 + X)n−1 + A′
n(X)(1 + X)n = P′

n(X) =
2n − 1

22n−2

(

2n − 2

n − 1

)

(1 − X2)n−1.

Thus, for An(α) = 0, we have certainly α 6= ±1 and

A′
n(α)(1 + α)n =

2n − 1

22n−2

(

2n − 2

n − 1

)

(1 − α2)n−1

shows that A′
n(α) 6= 0.

To finish the proof, decompose An(X) as product of real prime factors.

(9) Write n = 2m + 1 or n = 2m + 2, according to n being odd or even, and let
an1 ± ibn1, . . . , anm ± ibnm be the complex zeros of An(X). Then, we have

An(X) =

{

(−1)n−1

22n−2 (2n−2
n−1 )∏

m
k=1((X − ank)

2 + b2
nk) if n = 2m + 1,

(−1)n−1

22n−2 (2n−2
n−1 )(X − αn)∏

m
k=1((X − ank)

2 + b2
nk) if n = 2m + 2.

Hence,

Bn(X) =

{

(−1)n−1

22n−2 (2n−2
n−1 )∏

m
k=1((X + ank)

2 + b2
nk) if n = 2m + 1,

− (−1)n−1

22n−2 (2n−2
n−1 )(X + αn)∏

m
k=1((X + ank)

2 + b2
nk) if n = 2m + 2.

Define complex polynomials

Γn(X) =
1

2n−1

√

(

2n − 2

n − 1

) m

∏
k=1

(X − ank + ibnk)

of degree m, where we have chosen bnk > 0, k = 1, . . . , m. Then, we get

An(X) =

{

|Γn(X)|2 if n = 2m + 1,

(αn − X)|Γn(X)|2 if n = 2m + 2

and

Bn(X) =

{

|Γn(−X)|2 if n = 2m + 1.

(αn + X)|Γn(−X)|2 if n = 2m + 2.

In particular, for p a positive integer, we have

γp =























1
2

(

1 + ZRp(Z2) |Γp(−Z)|2(X + iY)p

|Γp(Z)|2(X − iY)p 1 − ZRp(Z2)

)

if p = 2m + 1,

1
2

(

1 + ZRp(Z2) (αp − Z)|Γp(−Z)|2(X + iY)p

(αp + Z)|Γp(Z)|2(X − iY)p 1 − ZRp(Z2)

)

if p = 2m + 2.
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and

γ−p =































1
2

(

1 + ZRp(Z
2) |Γp(−Z)|2(X − iY)p

|Γp(Z)|2(X + iY)p 1 − ZRp(Z2)

)

if p = 2m + 1,

1
2

(

1 + ZRp(Z2) (αp − Z)|Γp(−Z)|2(X − iY)p

(αp + Z)|Γp(Z)|2(X + iY)p 1 − ZRp(Z2)

)

if p = 2m + 2.

For an odd positive integer p = 2m + 1 write

γ̃p =
1

2

(

1 + ZRp(Z2) Γp(Z)Γp(−Z)(X + iY)p

Γ̄p(Z)Γ̄p(−Z)(X − iY)p 1 − ZRp(Z2)

)

,

(resp.

γ̃−p =
1

2

(

1 + ZRp(Z2) Γp(Z)Γp(−Z)(X − iY)p

Γ̄p(Z)Γ̄p(−Z)(X + iY)p 1 − ZRp(Z2)

)

, )

and let P(X, Y, Z), Q(X, Y, Z) be real polynomials such that P + iQ =
Γp(Z)Γp(−Z)(X + iY)p.

Define then, for an odd positive integer

γ̃2p =
1

2





1 − P2 −PQ + iZRp(Z2) −PZRp(Z2)− iQ
−PQ − iZRp(Z2) 1 − Q2 −QZRp(Z2) + iP
−PZRp(Z

2) + iQ −QZRp(Z
2)− iP 1 − Z2Rp(Z

2)2





and similarly define γ̃−2p as the matrix obtained from γ̃2p by replacing Y by −Y
in the polynomials P and Q.

With the help of polynomials and properties, we have proved above the fol-
lowing:

Proposition 2.2. (1) For any positive integer the idempotent matrices γp, (resp. γ−p)
produce polynomial maps

(P(X, Y, Z), Q(X, Y, Z), ZRp (Z
2)) : S2(Q[i]) → S2(Q[i])

of Brouwer degree p (resp.

(P(X,−Y, Z), Q(X,−Y, Z), ZRp (Z
2)) : S2(Q[i]) → S2(Q[i])

of Brouwer degree −p), where P and Q are the polynomials given in Introduction.
(2) For p an odd integer the class of γ̃p coincides with that of γp in K̃0(A) and produce

polynomial maps of Brouwer degree p,

(Re(Γp(Z)Γp(−Z)(X + iY)p), Im(Γp(Z)Γp(−Z)(X + iY)p), ZRp(Z
2)) :

S2(Ralg) → S2(Ralg),

for p positive and

(Re(Γp(Z)Γp(−Z)(X − iY)p), Im(Γp(Z)Γp(−Z)(X − iY)p), ZRp(Z
2)) :

S2(Ralg) → S2(Ralg),

for a negative p.
(3) The class of γ̃2p coincides with that of γ2p for any odd integer p.
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Remark 2.3. The case (1) appears in [1], where it is also extended to produce poly-
nomial maps Sn(C) → Sn(C) with coefficients in Z[ 1

2 , i] of any Brouwer degree p
and algebraic degree 2|p| − 1.

The matrices

1

2

(

1 + ZRp(Z2) (X + iY)p

Ap(Z)Bp(Z)(X − iY)p 1 − ZRp(Z2)

)

,

(resp.
1

2

(

1 + ZRp(Z2) (X − iY)p

Ap(Z)Bp(Z)(X + iY)p 1 − ZRp(Z2)

)

)

are also equivalent to γp (resp. γ−p) and produce polynomial maps S2(C) →
S2(C), given by Wood [9], with coefficients in Z[ 1

2 , i] having Brouwer degree p
and algebraic degrees 3p − 2.

The case (2) is done by F.J. Turiel [8], where he has observed that for p odd the
polynomial Ap(Z)Bp(Z) = |Fp(Z2)|2 for some complex polynomial Fp.

The case (3) is simply obtained by looking at topology, but the proof is alge-
braic.

It is not known whether γp, for p even admits a hermitian and idempotent
representative of order two for R = K(i), where K is a field of characteristic
zero not containing i. Or equivalently, whether there are polynomial maps from
S2(K) → S2(K) with any even Brouwer degree.

We do not know either if hermitian matrices of order three are enough to rep-
resent all elements α ∈ K̃0(A) with 2ic1(α) = 2r[ω] for some r. But certainly order

four suffices, because the class of

(

γ2p 0
0 1

)

coincides with that of

(

γ2p−1 0
0 γ1

)

.
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