# On entire solutions of $f^{2}(z)+c f^{\prime}(z)=h(z)$ 

Weiran Lü Chungchun Yang


#### Abstract

We investigate the existence of entire solutions of non-linear differential equations of type $f^{2}(z)+c f^{\prime}(z)=h(z)$, where $h(z)$ is a given entire function, whose zeros form an $A$-set. As a by-product of the studies, we give a negative answer to an open question raised in [4].


## 1 Introduction

We assume that the reader is familiar with the usual notations and basic results of the Nevanlinna theory, see, e.g. [2]. As an application of the theory and a study on the growth of an entire function $f(z)$, when $f(z)$ and its $l$ th $(l \geq 2)$ derivative $f^{(l)}(z)$ have only a finite number of zeros, the following special case was obtained.
Theorem $\mathbf{A}([1])$. If $f(z)$ is an entire function with the property that $f(z)$ and $f^{\prime \prime}(z)$ have only a finitely many number of zeros, then $f(z)=P(z) e^{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials.

In the same paper, the following result was derived.
Theorem B. Let $f(z)$ be an entire function and $f f^{\prime \prime} \neq 0$. Then $f(z)=e^{a z+b}$, where a and $b$ are constants.

The above result was extended as follows.
Theorem C([4]). Let $f(z)$ be a non-constant entire function with $f(z) \neq 0$. If $f^{\prime \prime}(z)$ can be expressed as $f^{\prime \prime}(z)=[H(z)]^{m}$ for some entire function $H(z)$ and an integer $m \geq 3$,

[^0]then $f(z)=e^{a z+b}$, when $m$ is even, and where $a$ and $b$ are constants, while when $m$ is odd, $f(z)=e^{p(z)}$, where $p(z)$ is a polynomial.
Remark. By examining the proof Theorem $C$ more carefully, one can easily find that even when $m$ is odd $\geq 3$, the polynomial $p(z)$ in the theorem, in fact, must be linear. Thus only the case $m=2$ has been left to be resolved.

That is, we have
Theorem D. Let $f(z)$ be a transcendental entire function such that $f(z) \neq 0$ and $f^{\prime \prime}(z)=[H(z)]^{m}$ for some entire function $H(z)$ and an integer $m \geq 3$. Then $f(z)=$ $e^{a z+b}$, for some constants $a(\neq 0)$ and $b$.

Moreover, the following question was raised in [4].
Conjecture. Let $f(z)$ be a transcendental entire function with $f(z) \neq 0$. Suppose that $f^{\prime \prime}(z)=h^{2}(z)$ for some entire function $h(z)$, then $f(z)$ must be of order 1 and has the form $f=e^{a z+b}$, for some constants $a(\neq 0)$ and $b$.

## 2 Notations and the main result

Here, we give a negative answer to the conjecture, by constructing a counterexample as follows.
Example. Let $f(z)=e^{g(z)}$, where $g(z)$ is an entire function. Then

$$
\begin{equation*}
f^{\prime \prime}(z)=\left\{g^{\prime 2}(z)+g^{\prime \prime}(z)\right\} e^{g(z)} \tag{2.1}
\end{equation*}
$$

By setting $G(z)=g^{\prime}(z)$ in the above equation, we consider the following differential equation:

$$
\begin{equation*}
G^{2}(z)+G^{\prime}(z)=(G(z)+c)^{2}, \tag{2.2}
\end{equation*}
$$

where $c$ denotes a constant.
It follows that $G^{\prime}-2 c G-c^{2}=0$, and hence $G(z)=-\frac{c}{2}+\frac{1}{2 c} e^{2 c z}$. Thus

$$
f^{\prime \prime}(z)=\left\{G^{2}(z)+G^{\prime}(z)\right\} e^{\int G d z}=\left\{[G(z)+c] e^{\frac{1}{2} \int G d z}\right\}^{2}=h^{2}(z),
$$

where $h(z)=[G(z)+c] e^{\frac{1}{2} \int G d z}$. Note if $c \neq 0$, then $f(z)$ is of infinite order.
Remarks 1. When $c \neq 0, G(z)+c=\frac{c}{2}+\frac{1}{2 c} e^{2 c z}$, which is of order 1 and whose zeros lie on a straight line. 2. Clearly, if the constant $c$ in the equation (2.2) is replaced by an arbitrary given entire function $A(z)$, then the equation (2.2) always has some entire solution. Moreover, if $A(z)$ is not a constant, then the solution is of order no less than 1.

Before stating our main result, we introduce the following notion.
Definition. A sequence $\left\{a_{n}\right\}$ of complex numbers is called a generalized $A$ - set, if there exists a linear function $L(z)=a z+b$ such that

$$
\begin{equation*}
\sum_{L\left(a_{n}\right) \neq 0}\left|\operatorname{Im} \frac{1}{L\left(a_{n}\right)}\right|<+\infty . \tag{2.3}
\end{equation*}
$$

Remark. When $L(z) \equiv z$, then a generalized $A$-set is called an $A$-set. Particularly, if all except a finitely many of $\left\{a_{n}\right\}$ lie on a straight line, then $\left\{a_{n}\right\}$ forms an $A$ - set ([3]).

Theorem 2.1. Let $h(z)$ be a given entire function of order greater than 1 or order 1 of maximal-type, with all its zeros $\left\{a_{n}\right\}$ forming a generalized $A$-set. Then for any nonzero constant $c$, there exists no entire function $f(z)$ that satisfies the following differential equation

$$
\begin{equation*}
f^{2}(z)+c f^{\prime}(z)=h(z) \tag{2.4}
\end{equation*}
$$

Corollary 2.2. Let c denote a non-zero constant, $p(z)$ a non-zero polynomial, and $\Gamma(z)$ the Gamma function. Then the following differential equation

$$
f^{2}(z)+c f^{\prime}(z)=\frac{p(z)}{\Gamma(z)}
$$

has no entire solution.
Here as an extension of Theorem 2.1, we would like to pose the following:
Conjecture: For any non-constant polynomial $c(z)$ and a non-zero polynomial $p(z)$, the following differential equation

$$
f^{2}(z)+c(z) f^{\prime}(z)=\frac{p(z)}{\Gamma(z)}
$$

has no entire solution.

## 3 Proof of the Theorem

In order to prove our result, the following lemma will be used.
Lemma 3.1. ([3, Theorem 6]) Suppose that $f(z)$ is meromorphic and of the form

$$
\begin{equation*}
f(z)=\frac{P_{1}(z)}{P_{2}(z)} e^{Q(z)} \tag{3.1}
\end{equation*}
$$

where $P_{1}(z), P_{2}(z)$ and $Q(z)$ are entire functions. Assume that

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{\log T\left(t, P_{1}\right)+\log T\left(t, P_{2}\right)}{t^{2}} d t<+\infty \tag{3.2}
\end{equation*}
$$

If, in addition, the zeros of $f f^{(n)}$, for some integer $n \geq 2$, form an $A$-set, then $Q(z)$ is of exponential type and

$$
\log T(r, f)=O(r)
$$

Remark. Clearly, from the proof of the lemma, the assertion of the lemma remains to be valid if the zeros of $f f^{(n)}$ form a generalized $A$-set.

Now we proceed with the proof of the theorem.

Assume that $f(z)$ is an entire solution of the eq. (2.4) and set

$$
F(z)=e^{k \int f(z) d z}
$$

where $k$ is a constant such that $1 / k=c$. Then

$$
F^{\prime \prime}(z)=k^{2} f^{2}(z)+k f^{\prime}(z)=k^{2}\left\{f^{2}(z)+c f^{\prime}(z)\right\}
$$

Note the zeros of $F^{\prime \prime}(z)$ are the zeros of $f^{2}(z)+c f^{\prime}(z)$, which, by assumption, form a generalized $A$-set. It follows that the zeros of $F F^{\prime \prime}$ form a generalized $A$-set. Hence, by the lemma, one concludes immediately that $k \int f(z) d z$ is of exponential type, and so is $f(z)$. On the other hand, from the eq. (2.4), $f$ has an order greater than 1 or order 1 of maximal-type, a contradiction. This also proves the theorem.

Finally, we conclude the paper with the following:
Question: Let $f(z)$ be a transcendental entire function. Then for any integer $n \geq 3$, can $f^{(n)}$ be expressed as $h^{n}$, for some entire function $h(z)$ ?

Acknowledgement. The authors are grateful to the referee for several valuable suggestions and comments. This works was supported by the Fundamental Research Funds for the Central Universities (No.10CX04038A).

## References

[1] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., 70(1959), 9-42.
[2] $\qquad$ , Meromorphic Functions, Clarendon Press, Oxford, 1964.
[3] S. Hellerstein and C. C. Yang, Half-plane Tumura-Clunie theorems and real zeros of successive derivatives, J. London Math. Soc., 4(2)(1972),469-481.
[4] C. C. Yang, On the zeros of an entire function, Accademia Nazionale Dei Lincei, Serie VIII, Vol. XLIX, fasc,1-2(1970), 27-29.

Department of Mathematics, China University of Petroleum, Dongying 257061, P. R. China email:uplvwr@yahoo.com.cn

Department of Mathematics, Nanjing University, Nanjing , P. R. China email:chungchun.yang@gmail.com


[^0]:    Received by the editors February 2011.
    Communicated by F. Brackx.
    2000 Mathematics Subject Classification : 30D35,34A20.
    Key words and phrases : value distribution theory; differential equation; entire solution; generalized $A$-set.

