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1 Introduction

The celebrated 100-year old Phragmén-Lindelöf theorem, [19, 20], is a far reaching
extension of the maximum modulus theorem for holomorphic functions. In its
simplest form, it can be stated as follows:

Theorem 1.1. Let Ω ⊂ C be a simply connected domain whose boundary contains the
point at infinity. If f is a bounded holomorphic function on Ω and lim supz→z0

| f (z)| ≤

M at each finite boundary point z0, then | f (z)| ≤ M for all z ∈ Ω.

The term Phragmén-Lindelöf also applies to a number of variations of this
result, which guarantee a bound for holomorphic functions, when conditions are
known on their growth. The two most famous variations deal with functions
which are holomorphic in an angle or in a strip, and they can be stated as follows
(see, for instance, [4, 17] as well as [1, 12]).

Theorem 1.2. Let f be a holomorphic function on an angle Ω of opening π
α . Suppose

f is continuous up to the boundary and such that, for some ρ < α, | f (z)| ≤ exp(|z|ρ)
asymptotically. If there exists an M ≥ 0 such that | f | ≤ M in ∂Ω then | f | ≤ M in Ω.

Theorem 1.3. Let f be a holomorphic function on a strip Ω of width 2γ, continuous up

to the boundary. Suppose that | f (z)| ≤ N exp(ek|z|) in Ω for some positive constants N
and k <

π
2γ . If there exists an M ≥ 0 such that | f | ≤ M in ∂Ω then | f | ≤ M in Ω.
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In some recent papers [13, 14, 15, 16] there has been a resurgence of interest
in Phragmén-Lindelöf type theorems. Specifically, [13, 14] consider solutions of
suitable partial differential equations while [15, 16] deal with the case of func-
tions of a hypercomplex variable. In the present article we obtain the analogs
of theorems 1.1, 1.2 and 1.3 for slice regular functions, a class of functions of a
quaternionic variable introduced in [9, 10] and studied in subsequent papers (e.g.
[2, 3, 7, 8, 21] and references therein).

In section 2 we will provide the necessary background about the theory of slice
regular quaternionic functions. In section 3 we give direct proofs of quaternionic
analogs of theorems 1.1 and 1.2. Finally, in section 4 we use a different approach,
which exploits the intrinsic nature of slice regular functions, to extend our results.

Acknowledgements. The first two authors are grateful to Chapman University
for the hospitality during the preparation of this paper.

2 Preliminaries

Let H denote the skew field of quaternions. Its elements are of the form q =
x0 + ix1 + jx2 + kx3 where the xl are real, and i, j, k are such that

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

We set

Re(q) = x0, Im(q) = ix1 + jx2 + kx3, |q| =
√

x2
0 + x2

1 + x2
2 + x2

3.

Re(q), Im(q) and |q| are called the real part, the imaginary part and the module of q,
respectively. The quaternion

q̄ = Re(q) − Im(q) = x0 − ix1 − jx2 − kx3

is called the conjugate of q and it satisfies

|q| =
√

qq̄ =
√

q̄q.

The inverse of any element q 6= 0 is given by

q−1 =
q̄

|q|2
.

We denote by S the unit sphere of purely imaginary quaternions, i.e.

S = {q = ix1 + jx2 + kx3 : x2
1 + x2

2 + x2
3 = 1}

so that every quaternion q which is not real (i.e. with Im(q) 6= 0) can be written as

q = x + Iy for x = Re(q), y = |Im(q)| and I = Im(q)
|Im(q)|

∈ S. Also, if we set r = |q|

then q = reIϑ for some I ∈ S and ϑ ∈ R.
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Beginning with the seminal papers of Fueter [5, 6], many mathematicians
have developed theories of holomorphicity in the quaternionic setting (for an
overview, see the introduction of [8]). More recently, beginning with [9, 10],
the authors proposed a new notion of holomorphicity (called slice regularity) for
quaternion-valued functions of a quaternionic variable. Unlike Fueter’s, this the-
ory includes the polynomials and the power series of the quaternionic variable
q of the type ∑n≥0 qnan, with coefficients an ∈ H. Furthermore, analogs of most
of the fundamental properties of holomorphic functions of one complex variable
were proven in this new setting (e.g. [2, 3, 7, 8, 21] and references therein).

Definition 2.1. Let Ω be an open set in H. A function f : Ω → H is said to be slice
regular if, for every I ∈ S, its restriction f I to the complex line LI = R + RI passing
through the origin and containing 1 and I is C1 and it satisfies

∂I f (x + yI) :=
1

2

(
∂

∂x
+ I

∂

∂y

)
f I(x + yI) = 0,

in ΩI = Ω ∩ LI .

The following result of [10], which appears in its most general form in [8], is a
key tool in the study of slice regular functions, and it will be used extensively in
section 4.

Lemma 2.2 (Splitting Lemma). If f is a slice regular function on an open set Ω then, for
every I ∈ S and every J ⊥ I in S, there exist two holomorphic functions F, G : ΩI → LI

such that
f I(z) = F(z) + G(z)J

for all z ∈ ΩI .

The following type of domains, introduced in [2, 3, 21], naturally qualify as
domains of definition of regular functions.

Definition 2.3. Let Ω be a domain in H. We say that Ω is a slice domain if Ω ∩ R is
non empty and if ΩI = Ω ∩ LI is a domain in LI for all I ∈ S.

Indeed, an analog of the identity principle holds for slice regular functions on
slice domains. It was proven in [10] and, in its most general form, in [21].

Theorem 2.4. Let f , g : Ω → H be slice regular functions on a slice domain Ω. If f and
g coincide in T ⊆ Ω and if there exists I ∈ S such that TI = T ∩ LI has an accumulation
point in ΩI , then f and g coincide in Ω.

Furthermore, an analog of the maximum modulus principle holds (see [7]).

Theorem 2.5. Let f : Ω → H be a slice regular function on a slice domain Ω. If | f | has
a relative maximum point in Ω, then f is constant in Ω.

Theorem 2.5 immediately implies the next corollary.

Corollary 2.6. Let f : Ω → H be a slice regular function on a bounded slice domain Ω.
If lim supq→q0

| f (q)| ≤ M for all q0 ∈ ∂Ω then | f | ≤ M in Ω.
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Due to the non-commutativity of H, pointwise multiplication and composi-
tion do not preserve slice regularity in general. Nevertheless, slice regularity is
preserved for the following class of functions.

Definition 2.7. Let f : Ω → H be a slice regular function. We say that f is a slice
preserving function if f (ΩI) ⊆ LI for all I ∈ S.

Indeed, the following propositions can be proven by direct computation.

Proposition 2.8. Let f , g : Ω → H be slice regular functions. If f is a slice preserving
function then the product f · g is slice regular.

Proposition 2.9. Let f : Ω → Ω′ ⊆ H and g : Ω′ → H be slice regular functions. If
f is a slice preserving function then the composition g ◦ f is slice regular.

3 The Phragmén - Lindelöf principle

In this section we will give a direct proof of the Phragmén-Lindelöf principle for
slice regular functions defined on suitable domains Ω in the quaternionic space
H. We will also study the special case in which Ω is a cone.

As in the complex case, the quaternionic Phragmén-Lindelöf principle gen-

eralizes the maximum modulus principle 2.6 to unbounded domains. Let Ĥ =
H ∪ {∞} denote the Alexandroff compactification of H. We define the extended

boundary ∂∞Ω of any Ω ⊆ Ĥ to be the boundary of the closure of Ω in Ĥ. As
customary, we will denote by ∂Ω = ∂∞Ω \ {∞} the finite boundary of Ω.

Theorem 3.1 (Phragmén-Lindelöf principle). Let Ω ⊂ H be a domain whose ex-
tended boundary contains the point at infinity and suppose that there exists a real point
t ∈ R ∩ Ω such that Ω \ (−∞, t] (or Ω \ [t,+∞)) is a slice domain. If f is a bounded
slice regular function on Ω and lim supq→q0

| f (q)| ≤ M for all q0 ∈ ∂Ω, then | f (q)| ≤

M for all q ∈ Ω.

Proof. Since q 7→ q + t and q 7→ −q are slice preserving functions, by proposition
2.9 we can assume that t = 0 and Ω \ (−∞, 0] is a slice domain. Choose r > 0
such that the closure of Br = B(0, r) is contained in Ω and let ωr(q) = q−1r for
q 6= 0. Notice that |ωr| < 1 in H \ Br, that |ωr| = 1 on ∂Br, and that ωr is a slice
preserving regular function (see [11] and references therein).

For all q ∈ H \ (−∞, 0], define the principal logarithm of q as

Log(q) = ln |q|+ arccos

(
Re(q)

|q|

)
Im(q)

|Im(q)|
.

Notice that the principal logarithm is a slice regular function and it is slice pre-

serving. By proposition 2.9, setting ωδ
r (q) := eδLog(ωr(q)) for all q ∈ H \ (−∞, 0]

defines a slice regular function. Finally, by proposition 2.8 the product ωδ
r f is

a slice regular function on Ω′ = Ω \ (Br ∪ (−∞, r]), which by hypothesis is a
slice domain when r is sufficiently small. The behavior of |ωδ

r f | on the extended
boundary ∂∞Ω′ = {∞} ∪ ∂Ω ∪ ∂Br ∪ (Ω ∩ (−∞, r]) is the following:
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1. lim supq→∞ |ωδ
r f (q)| = lim supq→∞ | f (q)| rδ

|q|δ
= 0,

2. lim supq→q0
|ωδ

r f (q)| < lim supq→q0
| f (q)| ≤ M for all q0 ∈ ∂Ω,

3. lim supq→q0
|ωδ

r f (q)| = | f (q0)| ≤ max∂Br
| f | =: Mr for all q0 ∈ ∂Br,

4. lim supq→q0
|ωδ

r f (q)| ≤ supΩ∩(−∞,r]

(
rδ

|q|δ
| f (q)|

)
=: N for all q0 ∈ Ω ∩

(−∞, r].

Let us prove that N is finite. Choose {an}n∈N ⊂ Ω ∩ (−∞, r] such that

limn→∞
rδ

|an|δ
| f (an)| = N. If N = 0, there is nothing to prove. Otherwise, by

point 1, {an}n∈N must be bounded. By possibly extracting a subsequence, we
may suppose {an}n∈N to converge to some q0 ∈ Ω ∩ (−∞, r]. If q0 ∈ ∂Ω then

N ≤ M by hypothesis. Else q0 ∈ Ω and N = rδ

|q0|δ
| f (q0)|.

As a consequence of points 1-4, lim supq→q0
|ωδ

r f | ≤ max{M, Mr, N} for all

q0 ∈ ∂∞Ω′ and, by an easy application of the maximum modulus principle 2.6,
|ωδ

r f | ≤ max{M, Mr, N} in Ω′.
Now let us prove that N ≤ max{M, Mr}. Suppose by contradiction that the

opposite inequality holds. In particular N > M and (as we explained above) there

exists q0 ∈ Ω ∩ (−∞, r]) such that N = rδ

|q0|δ
| f (q0)|. In a ball B(q0, ε) contained in

Ω \ Br, we define a new branch of logarithm log by letting

log(q) = ln |q|+

[
arccos

(
Re(q)

|q|

)
− π

]
Im(q)

|Im(q)|
.

As before, the function g = eδlogωr f is slice regular in B(q0, ε) and |g(q)| =
rδ

|q|δ
| f (q)| for all q ∈ B(q0, ε). As a consequence, |g(q0)| ≥ |g(q)| for all q ∈ B(q0, ε).

Indeed:

1. for all q ∈ (q0 − ε, q0 + ε), |g(q)| ≤ supΩ∩(−∞,r]

(
rδ

|q|δ
| f (q)|

)
= N = |g(q0)|;

2. for all q ∈ B(q0, ε) \ (q0 − ε, q0 + ε), we proved |g(q)| = |ωδ
r (q) f (q)| =

rδ

|q|δ
| f (q)| ≤ max{M, Mr, N} = N = |g(q0)|.

Hence |g| has a maximum at q0 and g must be constant. Therefore |ωδ
r f | = |g| ≡

N in B(q0, ε) \ (q0 − ε, q0 + ε). In particular ωδ
r f , which is a slice regular function

on the slice domain Ω′, has an interior maximum point. As before, the maximum
modulus principle 2.6 yields that ωδ

r f must be constant. As a consequence, there
exists a constant c such that f (q) = qδc in Ω′, a contradiction with the hypothesis
that f is bounded.

So far, we proved that |ωr|
δ| f | ≤ max{M, Mr} in Ω \ Br. We deduce that

| f | ≤
max{M, Mr}

|ωr|δ

in Ω \ Br and letting δ → 0+ we conclude that | f | ≤ max{M, Mr} in Ω \ Br.
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If we let r → 0+ we obtain | f (q)| ≤ max{M, | f (0)|} for all q ∈ Ω \ {0}, hence
for all q ∈ Ω. Finally, we prove that | f (0)| ≤ M: if it were not so, then | f | would
have a maximum at 0, a contradiction by the maximum modulus principle 2.5.

We now tackle the case in which Ω is the circular cone

C (ϕ) = {reIϑ : r > 0, |ϑ| < ϕ/2, I ∈ S}

for some ϕ < 2π. Such cones certainly satisfy the hypotheses of theorem 3.1.
Moreover, we can prove that it is not necessary to suppose that f is bounded
as long as the opening ϕ of the cone is suitably related to the growth order of f ,
defined as follows. If f is a slice regular function on Ω = C (ϕ), continuous up to
the boundary, we set

M f (r, Ω) = max{| f (q)| : q ∈ Ω, |q| = r} (1)

and define the order ρ of f as

ρ = lim sup
r→+∞

ln+ ln+ M f (r, Ω)

ln r
. (2)

Theorem 3.2 (Phragmén-Lindelöf principle for circular cones). Let f be a slice reg-
ular function in C

(
π
α

)
, continuous up to the boundary. Suppose the order ρ of f to be

strictly less than α. If there exists an M ≥ 0 such that | f | ≤ M in ∂C
(

π
α

)
then | f | ≤ M

in C
(

π
α

)
.

Proof. Choose γ such that ρ < γ < α. For q ∈ C
(

π
α

)
we define ω(q) = e−qγ

with

qγ = eγLog(q) (where Log(q) is the principal logarithm of q). For all δ > 0 we set
ωδ(q) = e−δqγ

and we have that

|ωδ(reIϑ)| = e−δrγ cos(γϑ).

For − π
2α < ϑ <

π
2α and ρ < ρ1 < γ the following holds asymptotically:

|ωδ(reIϑ) f (reIϑ)| < erρ1−δrγ cos(γϑ).

Since γ < α, we have −π
2 < γϑ <

π
2 so that cos(γϑ) > 0. Since ρ1 < γ we

conclude that in C
(

π
α

)

lim
q→∞

|ωδ(q) f (q)| = 0.

Since for all q ∈ ∂C
(

π
α

)
we have |ωδ(q) f (q)| < | f (q)| ≤ M, we conclude that

limq→q0 |ω
δ(q) f (q)| ≤ M for all q0 ∈ ∂∞C

(
π
α

)
. Applying the maximum modulus

principle 2.6, we get |ωδ f | ≤ M in C
(

π
α

)
. The inequality | f | ≤ M

|ω|δ
, which holds

for all δ > 0, yields that | f | ≤ M in C
(

π
α

)
.

In the next section we will offer an alternative proof extending theorem 3.2 to
a larger class of domains.
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4 A slicewise approach

The proofs we gave in the previous section are intrinsic to the quaternionic set-
ting. However, in the theory of slice regular functions it is often possible to use a
different technique. Specifically, one can apply the splitting lemma 2.2 to reduce
to the case of holomorphic functions of one complex variable. In this section, we
employ this technique to give different proofs of theorems 3.1 and 3.2. In fact,
this allows slight variations of the hypotheses. We also prove two other results,
which we were unable to obtain using a direct approach.

Theorem 4.1. Let Ω ⊂ H be a domain whose extended boundary contains the point
at infinity and such that, for all I ∈ S, ΩI = Ω ∩ LI is simply connected. If f is a
bounded slice regular function on Ω and lim supq→q0

| f (q)| ≤ M for all q0 ∈ ∂Ω, then

| f (q)| ≤ M for all q ∈ Ω.

Proof. Suppose that there exists p ∈ Ω such that | f (p)| > M. Possibly multiply-

ing f by the constant
f (p)
| f (p)|

, we may suppose f (p) > 0. Let I ∈ S be such that

p ∈ LI , choose J ∈ S such that J ⊥ I and let F, G : ΩI = Ω ∩ LI → LI be holo-
morphic functions such that f I = F + GJ (see lemma 2.2). Then f I(p) = F(p). On
the other hand, since |F| ≤ | f I | ≤ M in ∂ΩI ⊆ ∂Ω and |F| ≤ | f I | is bounded in
ΩI , we must have |F| ≤ M in ΩI by the complex Phragmén-Lindelöf principle
1.1.

Remark 4.2. We required ΩI to be simply connected, as in the classic (complex) Phragmén-
Lindelöf principle 1.1. Notice however that this hypothesis can be weakened (see exercise
1 in [4]).

A similar proof allows us to extend theorem 3.2 to a larger class of domains.

Definition 4.3. We call a slice domain Ω ⊂ H an angular domain if, for all I ∈ S, ΩI

is an angle {reI(ζ I+ϑ) : r > 0, |ϑ| < ϕI/2} for some ζ I , ϕI with ζ I ∈ R, 0 < ϕI < 2π.
The opening of Ω is defined to be supI∈S

|ϕI |.

The following proposition shows, once again, the surprising geometrical prop-
erties of the quaternions.

Proposition 4.4. Let Ω be an open subset of H such that, for all I ∈ S, ΩI is an angle

{reI(ζ I+ϑ) : r > 0, |ϑ| < ϕI/2}. If I 7→ ζ I and I 7→ ϕI are continuous in S then Ω is
automatically a slice domain.

Proof. In order to prove our assertion it suffices to show that at least one slice ΩI

contains a real half line. Notice that, for all I ∈ S, ΩI = Ω−I . Hence ϕI = ϕ−I

and ζ I = 2kπ − ζ−I for some k ∈ Z. Since

I 7→ (ζ I , ϕI)

is a continuous function from S ≃ S2 to R2, by the Borsuk-Ulam theorem (see
Corollary 9.3 in [18]) there exist two antipodal points of S having the same image.
In particular, there exists a J ∈ S such that ζ J = ζ−J and we conclude that ζ J = kπ
for some k ∈ Z.
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The order of a slice regular function f on an angular domain Ω is defined by
equations (1) and (2) as in the case of circular cones.

Theorem 4.5. Let f be a slice regular function on an angular domain Ω of opening π
α .

Suppose f is continuous up to the boundary and has order ρ < α. If there exists an
M ≥ 0 such that | f | ≤ M in ∂Ω then | f | ≤ M in Ω.

The proof of theorem 4.5 is completely analogous to that of theorem 4.1 and it
makes use of the Phragmén-Lindelöf principle for complex angles 1.2. As in the
complex case, the hypothesis that ρ < α cannot be weakened. Indeed, we have
the following fact.

Example 4.6. We can define a slice regular function f of order ρ > 0 on C
(

π
ρ

)
by

setting f (q) = eqρ
where qρ = eρLog(q). We notice that, for all q = re

±I π
2ρ ∈ ∂C

(
π
ρ

)
,

| f (q)| = | exp(rρe±I π
2 )| = | exp(±Irρ)| = 1, while the function f is unbounded in

C
(

π
ρ

)
.

Nevertheless, as in the complex case, when a function f has order ρ in angular
domain of opening π

ρ we can control the growth of f in terms of its type σ, defined
as

σ = lim sup
r→+∞

ln+ M f (r, Ω)

rρ . (3)

Theorem 4.7. Let Ω be an angular domain with ΩI = {reI(ζ I+ϑ) : r > 0, |ϑ| < ϕI/2}
for all I ∈ S. Let f be a slice regular function of order ρ and type σ on Ω, continuous up
to the boundary. If the opening of Ω is not greater than π

ρ and | f | is bounded by M in

∂Ω, then for all I ∈ S

| f (reI(ζ I+ϑ))| ≤ Meσrρ cos(ρϑ) (4)

for r > 0 and |ϑ| < ϕI/2.

Proof. Suppose that there exists p = reI(ζ I+ϑ) ∈ ΩI such that

| f (p)| > Meσrρ cos(ρϑ).

As in the proof of theorem 4.1, we may suppose f (p) > 0. Choosing J ∈ S with
J ⊥ I and holomorphic functions F, G : ΩI → LI such that f I = F + GJ, we have
f I(p) = F(p). Now, |F| ≤ | f I | ≤ M in ∂ΩI and F has order less than or equal
to ρ and type less than or equal to σ in ΩI . By theorem 22 in [17], we conclude

|F(p)| ≤ Meσrρ cos(ρϑ), a contradiction.

An analogous proof allows us to derive the quaternionic version of theorem
1.3.

Definition 4.8. We call a slice domain Ω ⊂ H a strip domain if, for all I ∈ S, there
exist a line ℓI in LI and a positive real number γI such that ΩI is the strip {z ∈ LI :
|z − ℓI | < γI/2}. The width of Ω is defined to be supI∈S

|γI |.
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Theorem 4.9. Let f be a slice regular function on a strip domain Ω of width γ, contin-

uous up to the boundary. Suppose that | f (q)| ≤ N exp(ek|q|) in Ω for some positive
constants N and k <

π
γ . If there exists an M ≥ 0 such that | f | ≤ M in ∂Ω then

| f | ≤ M in Ω.

The slicewise approach adopted in this section has an important bearing for
entire functions, i.e. for slice regular functions on Ω = H. Indeed, if we define
the order and the type of the entire function f by equations (1), (2) and (3), then
the quaternionic Liouville theorem proven in [10] generalizes as follows.

Theorem 4.10. Let f be a quaternionic entire function of first order at most, having type

0. In other words, for all ε > 0 we suppose | f (q)| < eε|q| when |q| is large enough. If, for
some I ∈ S, the plane LI contains a line on which | f | is bounded then f is constant.

Proof. Let J ∈ S be orthogonal to I and let F, G : LI → LI be holomorphic func-
tions such that f I = F + GJ. By the corollary to theorem 22 in [17], F and G
are constant. Hence f I is constant and, by the identity principle 2.4, f must be
constant too.
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