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Abstract

Let Ω be an n-dimensional convex domain with finite inradius
δ0 = supx∈Ω δ, where δ = dist(x, ∂Ω), and let (p, q) be a pair of positive
numbers. For functions vanishing at the boundary of the domain and any
ν ∈ [0, p/q] we prove the following Hardy-type inequality

∫

Ω

|∇ f |2
δp−1

dx ≥ h
∫

Ω

| f |2
δp+1

dx +
λ2

δ
q
0

∫

Ω

| f |2
δp−q+1

dx

with two sharp constants

h =
p2 − ν2q2

4
≥ 0 and λ =

q

2
λν(2p/q) > 0,

where z = λν(p) is the Lamb constant defined as the first positive root of
the equation pJν(z) + 2zJ′ν(z) = 0 for the Bessel function Jν. We prove that
z = λν(p) as a function in p can be found as the solution of an initial value
problem for the differential equation

dz

dp
=

2z

p2 − 4ν2 + 4z2
.

For n = 1 our inequality is an improvement of the original Hardy in-
equality for finite intervals. For n ≥ 1 and p = q/2 = 1 it gives a new sharp
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form of the Hardy-type inequality due to H. Brezis and M. Marcus. The case
h = 0, ν = 1/2, p = 1 and q = 2 coincides with sharp eigenvalue estimates
due to J. Hersch for n = 2, and L. E. Payne and I. Stakgold for n ≥ 3.

1 Introduction

The aim of this paper is to obtain a new sharp Hardy-type inequality which
constructs a bridge between Hardy-type inequalities of the classical form and
sharp estimates of the first eigenvalue λ1(Ω) of the Laplacian under the Dirichlet
boundary condition for n-dimensional convex domains Ω.

Let Ω be an open set in the Euclidean space R
n. There are two famous results

on sharp estimates of the first eigenvalue. The first one is the Rayleigh-Faber-
Krahn isoperimetric inequality (see, for instance, C. Bandle [5])

λ1(Ω) ≥ ω2/n
n

(vol (Ω))2/n
j2n/2−1,

where ωn is the volume of the unit ball in Rn and jν is the first positive zero of
the Bessel function Jν of order ν. The second result concerns convex domains of
finite inradius δ0 defined as

δ0 = δ0(Ω) = sup
x∈Ω

δ,

where

δ = dist(x, ∂Ω).

Namely, for any n-dimensional convex domain there is the sharp inequality

λ1(Ω) ≥ π2

4δ2
0(Ω)

. (1)

For n = 1 it follows from the Poincaré estimate λ1(Ω) ≥ π2/(diam (Ω))2, for
n = 2 the inequality (1) is due to J. Hersch [9], for n ≥ 3 it is proved by L. E.
Payne and I. Stakgold [16]. The inequality (1) means that

∫

Ω
|∇ f |2 dx ≥ π2

4δ2
0(Ω)

∫

Ω
| f |2 dx, ∀ f ∈ H1

0(Ω), (2)

where Ω is an open and convex set in Rn, the space H1
0(Ω) is the closure of the

family C1
0(Ω) of smooth functions f : Ω → R with finite Dirichlet integral and

supported in Ω. On the other hand, for n-dimensional convex domains there are
the following Hardy-type inequalities

∫

Ω
|∇ f |2 dx ≥ 1

4

∫

Ω

| f |2
δ2

dx, ∀ f ∈ H1
0(Ω), (3)
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and
∫

Ω
|∇ f |2 dx ≥ 1

4

∫

Ω

| f |2
δ2

dx +
1

4 (diam (Ω))2

∫

Ω
| f |2 dx, ∀ f ∈ H1

0(Ω). (4)

It is well known that the constant 1/4 in (3) is sharp for any convex subdomain
of Rn although there is no function f 6≡ 0, f ∈ H1

0(Ω) for which equality in (3)
is actually attained. The sharpness of 1/4 is proved by Hardy for n = 1 (see [8]
and [12]) and by T. Matskewich and P. E. Sobolevskii [15] and by M. Marcus, V.
J. Mitzel and Y. Pinchover [14] for n ≥ 2. The inequality (4) is due to H. Brezis
and M. Marcus [6] (see also E. B. Davies [7] for inequalities of this type, and M.
Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev [10] for a generaliza-
tion to convex domains of finite volume).

In [4] we proved a new sharp form of the inequality (4). Namely, for any
convex domain Ω of finite inradius δ0 it was proved that

∫

Ω
|∇ f |2 dx ≥ 1

4

∫

Ω

| f |2
δ2

dx +
λ2

0

δ2
0

∫

Ω
| f |2 dx, ∀ f ∈ H1

0(Ω), (5)

where λ0 = 0.940... is a Lamb constant defined as the first zero in (0,+∞) of the
function J0(x) − 2xJ1(x), J0 and J1 being the Bessel functions of order 0 and 1,
respectively. The inequality (5) is sharp for all dimensions n ≥ 1.

Let Ω be an n-dimensional convex domain. Suppose that p ∈ (0,+∞) and
q ∈ (0,+∞). The main aim of this paper is to obtain a new Hardy-type inequality
with two sharp constants h ∈ [0,+∞) and λ ∈ [0,+∞) such that

∫

Ω

|∇ f |2
δp−1

dx ≥ h
∫

Ω

| f |2
δp+1

dx +
λ2

δ
q
0

∫

Ω

| f |2
δp−q+1

dx (6)

for all differentiable functions f : Ω → R vanishing at the boundary of the do-
main. More precisely, we will suppose that f belongs to the space H1

0(Ω, δ1/2−p/2)
that is the closure of smooth functions supported in Ω and having finite integral
∫

Ω
|∇ f |2δ1−p dx.

If λ = 0 in (6) then it is known that the sharp value of h is p2/4 (see [8] for
n = 1, p > 0 and Ω = (0,+∞), the case p = 1 and n ≥ 1 corresponds to the
inequality (3), for p > 0 and n ≥ 2 it is proved in [2] and [3]). Consequently, in
the general case we have to consider h such that

0 ≤ h ≤ p2/4.

We will use the term ”extremal domain Ω0” for an inequality (6) with two sharp
constants h ∈ [0,+∞) and λ ∈ [0,+∞) in the usual sense: For any ε > 0 there exist
functions fε ∈ H1

0(Ω, δ1/2−p/2) and gε ∈ H1
0(Ω, δ1/2−p/2) such that

∫

Ω0

|∇ fε|2
δp−1

dx < (h + ε)
∫

Ω0

| fε|2
δp+1

dx +
λ2

δ
q
0

∫

Ω0

| fε|2
δp−q+1

dx

and
∫

Ω0

|∇gε|2
δp−1

dx < h
∫

Ω0

|gε|2
δp+1

dx +
λ2 + ε

δ
q
0

∫

Ω0

|gε|2
δp−q+1

dx.
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2 Main results

We will fix h ≥ 0 and consider λ as the constant best possible in (6) for the set of
all n-dimensional convex domains with fixed inradius δ0. It will be shown that
such a constant satisfies the inequalities 0 < λ ≤ jp/q−1 q/2, where jν be the first
positive zero of the Bessel function Jν of order ν. The upper estimate for λ is a
corollary of our first theorem which deals with the case h = 0.

Theorem 1. Suppose that p ∈ (0,+∞) and q ∈ (0,+∞). If Ω is an n-dimensional
convex domain of finite inradius δ0, then the sharp inequality

∫

Ω

|∇ f |2
δp−1

dx ≥
q2 j2p/q−1

4δ
q
0

∫

Ω

| f |2
δp−q+1

dx, ∀ f ∈ H1
0(Ω, δ1/2−p/2),

is valid. Finite intervals (a, b) ⊂ R for n = 1 and domains of the form (a, b)×Rn−1 ⊂Rn for n ≥ 2 are extremal domains.

The known asymptotic formula 9.5.14 in [1] implies that jν−1/ν = 1+O(ν−2/3)
as ν → +∞. Hence, q jp/q−1 → p as q → 0. Thus, Theorem 1 presents the men-
tionned above inequality

∫

Ω

|∇ f |2
δp−1

dx ≥ p2

4

∫

Ω

| f |2
δp+1

dx, ∀ f ∈ H1
0(Ω, δ1/2−p/2),

as a limit case as q → 0.

Also, taking p = 1 in Theorem 1 gives an inequality from our paper [4]. Next,
as a corollary we give two cases that correspond to the equations

p/q = 3/2 and p/q = 1/2

using the known facts

J1/2(x) =

√

2

π

sin x√
x

, J− 1/2(x) =

√

2

π

cos x√
x

.

and, consequently, j−1/2 = π/2 and j1/2 = π (see, for instance, [11], p. 439).

Corollary 1. For any p ∈ (0,+∞) and n-dimensional convex domains Ω of finite inra-
dius δ0 there are the following sharp inequalities

∫

Ω

|∇ f |2
δp−1

dx ≥ (π/3)2

δ
2p/3
0

p2
∫

Ω

| f |2
δp/3+1

dx, ∀ f ∈ H1
0(Ω, δ1/2−p/2),

and
∫

Ω

|∇ f |2
δp−1

dx ≥ π2 p2

4δ
2p
0

∫

Ω

| f |2
δ1−p

dx, ∀ f ∈ H1
0(Ω, δ1/2−p/2).
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Since H1
0(Ω, 1) = H1

0(Ω), the latter inequality for p = 1 gives the Poincaré-
Hersch-Payne-Stakgold inequality (2).

To formulate the next theorem we need the Lamb constant z = λν(p) defined
as the first positive root of the equation

pJν(z) + 2zJ′ν(z) = 0 (ν ≥ 0). (7)

The zeros of 2zJ′ν(z) + pJν(z) for ν > 0 have been studied by H. Lamb in [13]
(see also G.N. Watson [17], p.502). For this reason we shall call λν(p) Lamb’s
constant. It is clear that 0 < λν(p) < jν. According to H. Lamb (compare [13], p.
272), for large p one has the approximation

λν(p) ≈ (1 − 2/p)jν .

The main result of this paper is the following theorem on the Hardy-type inequal-
ity (6) with two sharp constants h and λ.

Theorem 2. Suppose that p ∈ (0,+∞), q ∈ (0,+∞), ν ∈ [0, p/q], and λν(p) is the
Lamb constant. For any n-dimensional convex domain Ω of finite inradius δ0 the sharp
inequality

∫

Ω

|∇ f |2
δp−1

dx ≥

p2 − ν2q2

4

∫

Ω

| f |2
δp+1

dx +
q2λ2

ν(2p/q)

4δ
q
0

∫

Ω

| f |2
δp−q+1

dx, ∀ f ∈ H1
0(Ω, δ1/2−p/2),

is valid. Finite intervals (a, b) ⊂ R for n = 1 and domains of the form (a, b)×Rn−1 ⊂Rn for n ≥ 2 are extremal domains.

Clearly, one can write the inequality of Theorem 2 as follows.
If Ω is an n-dimensional convex domain of finite inradius, p and q are positive

numbers, then for any f ∈ H1
0(Ω, δ1/2−p/2) and any h ∈ [0, p2/4]

∫

Ω

|∇ f |2
δp−1

dx ≥ h
∫

Ω

| f |2
δp+1

dx +
q2

4δ
q
0

λ2
ν(2p/q)

∫

Ω

| f |2
δp−q+1

dx,

where

ν =

√

p2 − 4h

q
.

Since λ0(1) = λ0 = 0.940..., Theorem 2 implies our inequality (5) (see [4]).
Letting ν = p/q in Theorem 2 gives that the first constant h = 0. In this case

the Lamb equation (7) is equivalent to the equation Jν−1(z) = 0 because of the
identity (see, for instance, E. Kamke [11], p. 439)

ν Jν(x) + x J′ν(x) = x Jν−1(x), x > 0, ν > 0.

Hence, one has
λp/q(2p/q) = jp/q−1.
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Thus, Theorem 2 contains Theorem 1 as a particular case and we have to prove
Theorem 2, only. The proof will be considered in Section 3.

In Section 4 we will examine properties of the Lamb constant z = λν(p) con-
sidering it as a function which is defined implicitly by the equation (7) for any
p > 0. It is interesting that z = λν(p) may be found as the solution of the initial
value problem :

dz

dp
=

2z

p2 − 4ν2 + 4z2
, z

∣

∣

p=2ν
:= λν(2ν) = jν−1 (8)

in the case ν > 0, and

dz

dp
=

2z

p2 + 4z2
, z

∣

∣

p=1
:= λ0(1) = λ0 = 0.940... (9)

for ν = 0. Using these differential equations we easily obtain bounds and asymp-
totic formulas for the monotonic increasing function z = λν(p) of the variable
p ∈ (0, ∞).

3 Proof of Theorem 2

In the sequel we will use the Bessel function

Jν(x) =
∞

∑
k=0

(−1)k x2k+ν

22k+ν k! Γ(k + 1 + ν)

for some ν ≥ 0, and the function

y = Fν,p,q(x) = x
p
2 Jν

(

λν(2p/q) x
q
2

)

, x ∈ [0, 1].

One has

4x1− p
2 F′

ν,p,q(x)/q =
2p

q
Jν

(

λν(2p/q) x
q
2

)

+ 2x
q
2 λν(2p/q)J′ν

(

λν(2p/q) x
q
2

)

.

Using this equation and the definition of the Lamb constant and the facts that
Fν,p,q(x) > 0 and F′

ν,p,q(x) > 0 for small positive x, we obtain

F′
ν,p,q(1) = 0, Fν,p,q(x) > 0, x ∈ (0, 1] and F′

ν,p,q(x) > 0, x ∈ (0, 1). (10)

We need some preparatory assertions. Namely, in two lemmas we examine our
basic one-dimensional inequality that is an improvement of the original Hardy
inequality for finite intervals.

Lemma 1. Let λν(p) be the Lamb constant. If p ∈ (0,+∞), q ∈ (0,+∞) and ν ∈
[0, p/q] and f is an absolutely continuous function in [0, 1] such that f (0) = 0 and
f ′/tp/2−1/2 ∈ L2[0, 1], then

∫ 1

0

f ′2(t)
tp−1

dt ≥ p2 − ν2q2

4

∫ 1

0

f 2(t)

tp+1
dt +

q2λ2
ν(2p/q)

4

∫ 1

0

f 2(t)

tp−q+1
dt. (11)
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If ν = 0, then there is no admissible function f 6≡ 0 for which equality in (11) is actually
attained. If 0 < ν ≤ p/q, then equality in (11) occurs if and only if f (t) = CFν,p,q(t),
where C is a constant.

Proof of Lemma 1. If 0 < ν ≤ p/q, then one may prove the inequality (11)
using the classical variational calculus. This is not possible for the case ν = 0,
when the Hardy term dominates. We will give an unified proof.

Clearly, we will need some properties of Bessel’s functions. As is known (see
E. Kamke [11], p. 440), the function y = Fν,p,q(x) is a solution of the differential
equation

x2y′′ + (1 − p)xy′ +
(

p2 − ν2q2

4
+

q2λ2
ν(2p/q)

4x−q

)

y = 0, x ∈ R. (12)

Using the expansion for the Bessel function it is easy to obtain that

lim
t→0+

tF′
ν,p,q(t)

Fν,p,q(t)
= c1,

F′2
ν,p,q(t)

tp−1
=

c2

t1−νq
(1 + O(tq)) as t → 0+, (13)

where

c1 =
p + νq

2
> 0, c2 =

λ2ν
ν (2p/q)(p + νq)2

4q2νΓ2(1 + ν)
> 0.

For an absolutely continuous function f : [0, 1] → R with properties f (0) = 0
and f ′/tp/2−1/2 ∈ L2[0, 1] one has that

f 2(t) ≤
(

∫ t

0
| f ′(x)| dx

)2

≤
∫ t

0
xp−1 dx

∫ t

0

f ′2(x)
xp−1

dx ≤ tp

p

∫ t

0

f ′2(x)
xp−1

dx.

This together with the the first equation from (13) imply that

lim
t→0+

f 2(t)F′
ν,p,q(t)

tp−1Fν,p,q(t)
= 0. (14)

We have

0 ≤ P :=
∫ 1

0

1

tp−1

(

f ′(t)−
F′

ν,p,q(t)

Fν,p,q(t)
f (t)

)2

dt

=
∫ 1

0

f ′2(t)
tp−1

dt −
∫ 1

0

F′
ν,p,q(t)

tp−1Fν,p,q(t)
d f 2(t) +

∫ 1

0

F′2
ν,p,q(t) f 2(t)

tp−1F2
ν,p,q(t)

dt.

Integrating by parts and using the asymptotic behavior (14) and the differential
equation (12) one easily obtains

0 ≤ P =
∫ 1

0

f ′2(t)
tp−1

dt +
∫ 1

0

t2F′′
ν,p,q(t) + (1 − p)tF′

ν,p,q(t)

tp+1Fν,p,q(t)
f 2(t) dt

=
∫ 1

0

f ′2(t)
tp−1

dt −
∫ 1

0

[

p2 − ν2q2

4tp+1
+

q2λ2
ν(2p/q)

4tp−q+1

]

f 2(t) dt,
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which is the inequality to prove.
Clearly, P = 0 if and only if f (t) = CFν,p,q(t), where C is a constant, in particu-

lar, C = 0. According to the second formula in (13), the function F′
ν,p,q/tp/2−1/2 ∈

L2[0, 1] for ν > 0, only. Hence, for ν = 0 we have to put C = 0. For ν > 0 any
constant C is admissible.

This completes the proof of Lemma 1.
For ν > 0 both constants in (11)

p2 − ν2q2

4
and

q2λ2
ν(2p/q)

4

are sharp because of the existence of the extremal functions Fν,p,q(t) 6≡ 0. In the
next lemma we will prove that the constants are sharp in the case ν = 0, too.

Lemma 2. If p ∈ (0,+∞) and q ∈ (0,+∞) and λ0(2p/q) is the Lamb constant, then
for any ε > 0 there exist two functions fε and gε that satisfy the conditions of Lemma 1
and the following inequalities

∫ 1

0

f ′2ε (t)

tp−1
dt <

(

p2

4
+ ε

)

∫ 1

0

f 2
ε (t)

tp+1
dt +

q2λ2
0(2p/q)

4

∫ 1

0

f 2
ε (t)

tp−q+1
dt, (15)

and

∫ 1

0

g′2ε (t)
tp−1

dt <
p2

4

∫ 1

0

g2
ε (t)

tp+1
dt +

(

q2λ2
0(2p/q)

4
+ ε

)

∫ 1

0

g2
ε (t)

tp−q+1
dt. (16)

Proof of Lemma 2. Let ε > 0. Without loss of generality we suppose that
ε ≤ 1. We will define functions fε and gε explicitly.

Consider first the function fε(t) := t(p+ε/(p+1))/2. Straightforward computa-
tions give that

∫ 1

0

f ′2ε (t)

tp−1
dt =

(

p +
ε

p + 1

)2 p + 1

4ε
< (p2 + 4ε)

p + 1

4ε
=

p2 + 4ε

4

∫ 1

0

f 2
ε (t)

tp+1
dt,

which implies the inequality (15).
Next, we consider the function

gε(t) = tα/2F0,p,q(t) = t
p+α

2 J0

(

λ0(2p/q) t
q
2

)

for some α = α(ε) ∈ (0, q]. By computations as in the proof of Lemma 1 one has

Pε :=
p2

4

∫ 1

0

g2
ε (t)

tp+1
dt +

(

q2λ2
0(2p/q)

4
+ ε

)

∫ 1

0

g2
ε (t)

tp−q+1
dt −

∫ 1

0

g′2ε (t)
tp−1

dt

= ε
∫ 1

0

g2
ε (t)

tp−q+1
dt −

∫ 1

0

1

tp−1

(

g′ε(t)−
F′

0,p,q(t)

F0,p,q(t)
gε(t)

)2

dt



Sharp Hardy-type inequalities with Lamb’s constants 731

Since

g′ε(t)−
F′

0,p,q(t)

F0,p,q(t)
gε(t) =

α

2
t

p+α
2 −1 J0

(

λ0(2p/q) t
q
2

)

one easily gets

Pε = ε
∫ 1

0
tα+q−1 J2

0

(

λ0(2p/q) t
q
2

)

dt − α2

4

∫ 1

0
tα−1 J2

0

(

λ0(2p/q) t
q
2

)

dt

≥ ε
∫ 1

0
t2q−1 J2

0

(

λ0(2p/q) t
q
2

)

dt − α

4
max

0≤t≤j0
J2
0(t).

Clearly, Pε > 0 for sufficiently small α. This implies the inequality (16).
The proof of Lemma 2 is complete.
Proof of Theorem 2. During this proof we suppose that

h =
p2 − ν2q2

4
and λ =

q

2
λν(2p/q), (17)

where λν(p) is the Lamb constant.
Consider first the case n = 1. If Ω is a finite interval (a, b), then δ0 = (b − a)/2

and δ = δ(x) = min{x − a, b − x}. We have to prove the inequality

∫ b

a

| f ′(x)|2
δp−1(x)

dx ≥ h
∫ b

a

| f (x)|2
δp+1(x)

dx +
λ2

δ
q
0

∫ b

a

| f (x)|2
δp−q+1(x)

dx (18)

for all functions f ∈ H1
0((a, b), δ1/2−p/2).

On the one hand, by the change τ = yt of variables for any constant y > 0 the
inequality (11) of Lemma 1 implies that

∫ y

0

| f ′(τ)|2
τp−1

dτ ≥ h
∫ y

0

| f (τ)|2
τp+1

dτ +
λ2

yq

∫ y

0

| f (τ)|2
τp−q+1

dτ (19)

for all functions f ∈ H1
0((0, 2y), δ1/2−p/2).

On the other hand, the inequality (18) is the sum of the inequalities

∫ a+δ0

a

| f ′(x)|2
(x − a)p−1

dx ≥ h
∫ a+δ0

a

| f (x)|2
(x − a)p+1

dx +
λ2

δ
q
0

∫ a+δ0

a

| f (x)|2
(x − a)p−q+1

dx

and
∫ b

b−δ0

| f ′(x)|2
(b − x)p−1

dx ≥ h
∫ b

b−δ0

| f (x)|2
(b − x)p+1

dx +
λ2

δ
q
0

∫ b

b−δ0

| f (x)|2
(b − x)p−q+1

dx,

each of them is equivalent to the inequality (19) with y = δ0 by the changes
x − a = τ and b − x = τ of variables.

Clearly, Lemmas 1 and 2 imply that the constants (17) in the inequality (18)
are sharp. In particular, for 0 < ν ≤ p/q equality in (18) holds if and only if
f (x) = CG(x), where C is a constant and the extremal function G is defined by
the equations

G(a + δ0t) = Fν,p,q(t) = G(b − δ0t), t ∈ [0, 1].
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This completes the proof of Theorem 2 in the case n = 1.
Now, let n ≥ 2. We will use the way from [2] to extend one-dimensional

inequalities to convex domains in Rn , n ≥ 2. More precisely, we will use the
following assertion (see [2] , Section 6 for a proof):

Let Ω be an open and convex set in Rn with finite inradius δ0 := δ0(Ω), let δ =
dist(x, ∂Ω) and let p, q, h and λ be some non-negative constants. If the inequality (19)
is valid for any y ∈ (0, δ0] and any f ∈ H1

0((0, 2y), t1/2−p/2) then

∫

Ω

|∇ f |2
δp−1

dx ≥ h
∫

Ω

| f |2
δp+1

dx +
λ2

δ
q
0

∫

Ω

| f |2
δp+q−1

dx

for any f ∈ H1
0(Ω, δ1/2−p/2).

Thus, the inequality of Theorem 2 is implied by Lemma 1.
To complete the proof of Theorem 2 one has to prove that the constants are

sharp in the case n ≥ 2, too. Since the constants are invariant under linear trans-
formation of domains it is sufficient to consider the domains

Ω1 = (0, 2) and Ωn = (0, 2)×Rn−1 (n ≥ 2)

and to prove the following assertion:
For any ε > 0 there exist functions fn,ε and gn,ε that belong to

H1
0(Ωn, δ1/2−p/2) and satisfy the inequalities

An :=
∫

Ωn

|∇ fn,ε|2
δp−1

dx − (h + ε)
∫

Ωn

| fn,ε|2
δp+1

dx − λ2

δ
q
0

∫

Ωn

| fn,ε|2
δp+q−1

dx < 0

and

Bn :=
∫

Ωn

|∇gn,ε|2
δp−1

dx − h
∫

Ωn

|gn,ε|2
δp+1

dx − λ2 + ε

δ
q
0

∫

Ωn

|gn,ε|2
δp+q−1

dx < 0.

As in our paper [4] we proceed by mathematical induction on the dimension
n. For n = 1 the assertion follows from Lemmas 1 and 2. Suppose that the
inequalities An < 0 and Bn < 0 are valid for n, n ≥ 1. We define functions fn+1,ε

and gn+1,ε for any α = α(ε) > 0 as the products

fn+1,ε(x) = fn,ε(x
′) ϕα(xn+1) and gn+1,ε(x) = gn,ε(x

′) ϕα(xn+1),

where x = (x′, xn+1), x′ ∈ Ωn, xn+1 ∈ R, and ϕα : R→ [0, 1] is the even function,
defined in [0, ∞) by equations

ϕα(t) = 1, t ∈ [0, 1/α]; ϕα(t) = 0, t ∈ [1 + 1/α,+∞),

and

ϕα(t) =
(

1 − (t − 1/α)2
)2

, t ∈ (1/α, 1 + 1/α).

Using the function ϕ(t) = (1 − t2)2 and the equations

δ = dist(x, ∂Ωn+1) ≡ dist(x′ , ∂Ωn),
∫ +∞

−∞
ϕ2

α(t) dt =
2

α
+ 2

∫ 1

0
ϕ2(t) dt
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and straightforward computations one gets that

An+1 =
2

α
An + A′

n − A′′
n and Bn+1 =

2

α
Bn + B′

n − B′′
n ,

where

A′
n = 2

∫ 1

0
dt
∫

Ωn

|∇ fn,ε(x′)|2 ϕ2(t) + f 2
n,ε(x

′)ϕ′2(t)

δp−1
dx′,

B′
n = 2

∫ 1

0
dt
∫

Ωn

|∇gn,ε(x′)|2ϕ2(t) + g2
n,ε(x

′)ϕ′2(t)

δp−1
dx,′

A′′
n = 2

∫ 1

0
ϕ2(t) dt

(

(h + ε)
∫

Ωn

| fn,ε(x′)|2
δp+1

dx′ +
λ2

δ
q
0

∫

Ωn

| fn,ε(x′)|2
δp+q−1

dx′
)

and

B′′
n = 2

∫ 1

0
ϕ2(t) dt

(

h
∫

Ωn

|gn,ε(x
′)|2

δp+1
dx′ +

λ2 + ε

δ
q
0

∫

Ωn

|gn,ε(x
′)|2

δp+q−1
dx′
)

.

The quantities An, A′
n, A′′

n , Bn, B′
n and B′′

n are not dependent on α. Since An < 0
and Bn < 0, it is clear that An+1 < 0 and Bn+1 < 0 for sufficiently small positive
α.

This completes the proof of Theorem 2.

4 Lamb’s constant as a function

Let
Φ(p, z) := pJν(z) + 2zJ′ν(z).

We consider the Lamb equation (7) with z ∈ (0, jν) as the identity

Φ(p, z) = 0 (0 < p < ∞)

which implicitly defines the function z = λν(p), 0 < p < ∞. Using the identity
Φ(p, z) = 0 and the Bessel differential equation

z2 J′′ν (z) + zJ′ν(z) + (z2 − ν2)Jν(z) = 0

one easily derives that

∂Φ

∂p
dp +

∂Φ

∂z
dz = Jν(z) dp − p2 − 4ν2 + 4z2

2z
Jν(z) dz = 0

which implies differential equations (8) and (9).
Case ν = 0. It is obvious from (7) and (9) that z is a positive and monotonic

increasing function of the variable p > 0. Further, the formula (7) implies that
λ0(p)J′0(λ0(p)) → 0 as p → 0. As j′0, the first positive zero of J′0, is bigger than
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λ0, we conclude that λ0(p) → 0 as p → 0. Using the Taylor expansion of J0 at the
origin and (7) we get

λ0(p) =
√

p

(

1 − 1

16
p + O(p2)

)

as p → 0.

For p → ∞, formula (7) implies that J0(λ0(p)) → 0 as p → ∞, therefore λ0(p) →
j0 as p → ∞.

Thus, for any p ∈ (0, ∞) one has

lim
p→0

λ0(p) = 0 < λ0(p) < j0 = lim
p→∞

λ0(p). (20)

To get an asymptotic expansion of λ0(p) near the point at infinity, we may use (9)
and get

1

2

d

dp
ln z =

1

p2
− 4j20

p4

(

1 + O

(

1

p2

))

as p → ∞.

By integration and exponentiation we conclude that

λ0(p) = j0

(

1 − 2

p
+

2

p2
− 4(1 − 2j20)

3p3
+ O

(

1

p4

)

)

as p → ∞.

Case ν > 0. According to the differential equation (8), dz/dp > 0 whenever
p ≥ 2ν. To prove that the function λν is monotonic increasing in (0, ∞) we pro-
ceed as follows. We get from (7) that

lim
p→∞

λν(p) = jν, and lim
p→0

λν(p) = j′ν,

where j′ν is the first positive zero of J′ν. To obtain the second lim we have used the
Taylor expansion of Jν at the origin.

Since jν > j′ν > ν for ν > 0 (see [17], p. 485), we derive from (8) that dz/dp > 0
for any p ∈ (0, ∞). Consequently, λν is a monotonic increasing function of the
variable p ∈ (0, ∞) and one has the following assertion.

If ν > 0 then for any p ∈ [2ν, ∞)

λν(2ν) = jν−1 ≤ λν(p) < jν = lim
p→∞

λν(p). (21)

and for any p ∈ (0, 2ν]

lim
p→0

λν(p) = j′ν < λ0(p) ≤ jν−1 = λν(2ν), (22)

where j′ν is the first positive zero of the derivative J′νof the Bessel function.
It is clear from (8) that

lim
p→0

λν(p)− j′ν
p

=
j′ν

2((j′ν)2 − ν2)
.
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For p → ∞, ν > 0, we may proceed analogously to the case ν = 0 and we can
improve Lamb’s asymptotic expansion to any desirable extent, for example

λν(p) = jν

(

1 − 2

p
+

2

p2
− 4(2ν2 + 1 − 2j2ν)

3p3
+ O

(

1

p4

))

as p → ∞.

Clearly, in addition to estimates (20), (21) and (22) one can derive several new
estimates for λν(p) using the differential equations (8) and (9) together with the
fact that ln z is a concave function in both cases ν = 0 and ν > 0 because of the
inequality

d2 ln z

dp2
= − 4p + 16zz′

(p2 − 4ν2 + 4z2)2
< 0.

Finally, we attract reader’s attention to some facts on the bounds for the Lamb
constants, i.e. on the quantities jν and j′ν:

j0 = 2.4048... and
√

ν(ν + 2) < j′ν < jν <

√

2(ν + 1)(ν + 3)

for any positive ν (see G.H. Watson [17], pp. 485-486).

5 A remark

In the proof of the inequality of Theorem 2 we do not use the restriction 4h =
p2 − ν2q2 ≥ 0. Consequently, the inequality holds for any positive ν, but h < 0 in
the case ν > p/q and this changes the type of the inequality. For instance, letting
p → 0+ gives the following inequality for convex domains of finite inradius and
all positive numbers q and ν : For functions f vanishing at the boundary of the domain

∫

Ω
δ|∇ f |2 dx +

ν2q2

4

∫

Ω

| f |2
δ

dx ≥ q2 j′2ν
4δ

q
0

∫

Ω

| f |2
δ1−q

dx,

where j′ν is the first positive zero of the derivative J′ν of Bessel’s function Jν.
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