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Abstract

We consider almost Kenmotsu manifolds with conformal Reeb foliation.
We prove that such a foliation produces harmonic morphisms, we study the
k-nullity distributions and we discuss the isometrical immersion of such a
manifold M as hypersurface in a real space form M̃(c) of constant curvature
c proving that c ≤ −1 and, if c < −1, M is totally umbilical, Kenmotsu and
locally isometric to the hyperbolic space of constant curvature −1. Finally,
the Einstein and η-Einstein conditions are discussed.

1 Introduction

Manifolds known as Kenmotsu manifolds have been studied by K. Kenmotsu in
1972 ([14]). They set up one of the three classes of almost contact Riemannian
manifolds whose automorphism group attains the maximum dimension ([23]).
Consider an almost contact metric manifold M2n+1, with structure (ϕ, ξ, η, g)
given by a tensor field ϕ of type (1, 1), a vector field ξ, a 1-form η and a Rieman-
nian metric g satisfying ϕ2 = − I + η ⊗ ξ, η(ξ) = 1, and g(ϕX, ϕY) = g(X, Y) −
η(X)η(Y) for any vector fields X and Y. The fundamental 2-form Φ is defined
by Φ(X, Y) = g(X, ϕY) for any vector fields X and Y. It is well known that the
normality of an almost contact metric manifold is expressed by the vanishing of
the tensor field N = [ϕ, ϕ] + 2dη ⊗ ξ, where [ϕ, ϕ] is the Nijenhuis torsion of ϕ
([3]). For more details, we refer to Blair’s books [3, 5]. A Kenmotsu manifold
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can be defined as a normal almost contact metric manifold such that dη = 0 and
dΦ = 2η ∧ Φ. It is well known that Kenmotsu manifolds can be characterized,
through their Levi-Civita connection, by (∇X ϕ)(Y) = g(ϕX, Y)ξ − η(Y)ϕ(X),
for any vector fields X, Y. Moreover, Kenmotsu proved that such a manifold
M2n+1 is locally a warped product ] − ε, ε[× f N2n, N2n being a Kähler manifold

and f = cet, c a positive constant. More recently in [13, 19, 15, 7], almost contact
metric manifolds such that η is closed and dΦ = 2η ∧ Φ are studied and they
are called almost Kenmotsu. Obviously, a normal almost Kenmotsu manifold is
a Kenmotsu manifold.

In section 2 we recall briefly some results we need, referring to the cited
sources for details. In contact geometry, it is a well-known fact that the vanishing
of h = 1

2Lξ ϕ, where L denotes the Lie differentiation, is equivalent to say that ξ
is a Killing vector field. As we will see, in an almost Kenmotsu manifold h = 0
means that the canonical foliation F , generated by the involutive 1-dimensional
distribution ker(ϕ) and called Reeb foliation, is conformal. Some properties of
such manifolds are investigated in section 3, showing, in particular, that F pro-
duces harmonic morphisms. In section 4, we prove that an almost Kenmotsu
manifold, whose characteristic vector field belongs to the k-nullity distribution,
has a conformal Reeb foliation; moreover, k is necessarily equal to −1. In [21],
contact metric hypersurfaces in a real space form are studied and in this paper
we study an analogous problem in the context of the almost Kenmotsu mani-
folds. If M2n+1 is an almost Kenmotsu manifold with (−1)-nullity condition and

it is isometrically immersed as hypersurface in a real space form M̃(c) of con-
stant curvature c, we prove that c ≤ −1 and, if c < −1, M2n+1 is totally umbilical
and Kenmotsu; while, if c = −1, under the additional assumption that M2n+1 is
Einstein, M2n+1 is totally geodesic and Kenmotsu. In any case M2n+1 is locally
isometric to the hyperbolic space of constant curvature −1. In the final section 5,
the Einstein and η-Einstein conditions on almost Kenmotsu manifolds with con-
formal Reeb foliation are discussed.

Finally, all manifolds are assumed to be connected; D will denote the distri-
bution ker(η); the notation for curvature and Ricci tensor fields is that used in
[16].

2 Almost Kenmotsu manifolds

We recall from [15, 7] the results we need. Let M2n+1 be an almost Kenmotsu
manifold with structure (ϕ, ξ, η, g). Since the 1-form η is closed, we have Lξη = 0
and [X, ξ] ∈ D for any X ∈ D. Then, using the expression of the Levi-Civita
connection for an almost contact metric manifold ([3]), we have:

2g((∇X ϕ)Y, Z) = 2g(g(ϕX, Y)ξ − η(Y)ϕX, Z) + g(N(Y, Z), ϕX), (1)

for any vector fields X, Y, Z. We obtain ∇ξ ϕ = 0, which implies that ∇ξξ = 0

and ∇ξX ∈ D for any X ∈ D. The tensor fields h = 1
2Lξ ϕ, is a symmetric

operator anticommuting with ϕ and h(ξ) = 0. We remark that since ∇Xξ =
−ϕ2X − ϕhX for any X ∈ Γ(TM2n+1), then h = 0 if and only if ∇ξ = −ϕ2. By
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direct computation we have

RξXξ − ϕRξ ϕXξ = −2ϕ2X + 2h2X , (2)

RXYξ = η(X)(Y − ϕhY)− η(Y)(X − ϕhX) + (∇Y ϕh)X − (∇X ϕh)Y , (3)

(Lξ g)(X, Y) = 2g(X, Y − η(Y)ξ + hϕY) . (4)

Proposition 2.1. ([15]) Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. The
integral submanifolds of D are almost Kähler manifolds with mean curvature vector field
H = −ξ. They are totally umbilical submanifolds if and only if h = 0.

Proposition 2.2. ([15, 7]) An almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) is a Ken-
motsu manifold if and only if h = 0 and the integral submanifolds of D are Kähler.

As a consequence of an analogous result proved in [9] for globally framed al-
most Kenmotsu f -manifolds, the distribution D of an almost Kenmotsu manifold
has Kähler leaves if and only if, for any X, Y ∈ Γ(TM2n+1),

(∇X ϕ)(Y) = g(ϕX + hX, Y)ξ − η(Y)(ϕX + hX) .

Theorem 2.1. ([7]) Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold such that
h = 0. Then, M2n+1 is locally a warped product M′ × f N2n, where N2n is an almost

Kähler manifold, M′ is an open interval with coordinate t, and f = cet, for some positive
constant c.

Theorem 2.2. ([7]) Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu ma-
nifold. Then, M2n+1 is a Kenmotsu manifold if and only if h = 0. Moreover, if any
of the above equivalent conditions holds, then M2n+1 has constant sectional curvature
K = −1.

Furthermore, as proved in [7], an almost Kenmotsu manifold of constant cur-
vature K is a Kenmotsu manifold and K = −1.

3 Conformal Reeb foliation and harmonic

morphisms

As it is well known in the contact case the vanishing of the tensor h = 1
2Lξ ϕ

means that the Reeb vector field is Killing. We shall see that for almost Kenmotsu
manifolds h = 0 means that the Reeb foliation is conformal (in fact homothetic)
and we shall investigate some properties of such manifolds.

We recall the following definition ([1, 11, 12]).
Let F be an n-dimensional foliation on a Riemannian manifold (N, g) of dimen-
sion m and denote by V the corresponding involutive distribution and by H its
orthogonal distribution, which is not integrable in the general case. The foliation
F is said to be
a) Riemannian if the metric g is bundle-like (with respect to F ) i.e.

∀X, Y ∈ Γ(H) , ∀V ∈ Γ(V) (LV g)(X, Y) = 0 ,
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b) conformal if

∀X, Y ∈ Γ(H) , ∀V ∈ Γ(V) (LV g)(X, Y) = λ(V)g(X, Y)

where λ is a function depending on V.
c) homothetic if it is conformal and the 1-form dual to the mean curvature vector
of H, HH, is closed.

Moreover, F Riemannian means that the distribution H has totally geodesic
leaves if it is involutive and F conformal means that H has totally umbilical
leaves if it is involutive.

Now, let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. Then the distri-
butions ker ϕ =< ξ > and D are both integrable. Since a non vanishing h admits
eigenvalues with opposite sign, (4) implies that the Reeb foliation F is confor-
mal if and only if h = 0 and this in turn means that the integral submanifolds of
D are totally umbilical. A first property of an almost Kenmotsu manifold with
conformal Reeb foliation is related to harmonic morphisms.

We recall that a harmonic morphism is a smooth map f : N → N′ between
two Riemannian manifolds (N, g) and (N′, g′) which pulls back germs of har-
monic functions on N′ to germs of harmonic functions on N. It is well known that
the connected components of a submersive harmonic morphism form a confor-
mal foliation. Then, we say that a foliation F of a smooth Riemannian manifold
(N, g) produces harmonic morphisms if each point has a neighborhood U which
supports a submersive harmonic morphism with associated foliation F|U, ([1]).
The following results are proved in [1, 6, 24].

Theorem 3.1. Let (N, g) be a Riemannian manifold of dimension m.
1) A foliation of codimension q = 2 produces harmonic morphisms if and only if it is
conformal and has minimal leaves.
2) A foliation of codimension q 6= 2 produces harmonic morphisms if and only if it is

conformal and dω = 0, where ω = (q − 2)(HH)♭ − (m − q)(HV )♭, ♭ denoting the
musical isomorphism.

Remark 3.1. A homothetic foliation with codimension q 6= 2 produces harmonic

morphisms if and only if (HH)♭ is closed.

Since in an almost Kenmotsu manifold with conformal Reeb foliation the mean
curvature vector field of D is H = −ξ and its dual 1-form −η is closed, Theorem
3.1 implies that if n > 1, then F produces harmonic morphisms and the same
happens if n = 1 since F has totally geodesic leaves.

4 The low compatibility with N(κ) distributions

We recall that the κ-nullity distribution, κ ∈ R, is defined as the distribution given
by putting for each p ∈ M2n+1

Np(κ) = {Z ∈ TpM2n+1 | RXYZ = κ(g(Y, Z)X − g(X, Z)Y)}.

As usual, when ξ belongs to a nullity distribution, we say that the related
nullity condition holds.
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Proposition 4.1. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold with confor-
mal Reeb foliation. Then, for any vector fields X and Y, one has:

RXYξ = η(X)Y − η(Y)X (5)

RXξξ = ϕ2(X). (6)

Ric(X, ξ) = −2nη(X) (7)

RξXY = −g(X, Y)ξ + η(Y)X. (8)

Proof. Since h = 0, the first formula follows immediately from (3). Moreover, (6)
follows from (5) putting Y = ξ. We consider an orthonormal basis (E1, . . . , E2n, ξ)
and computing Ric(X, ξ), we get

Ric(X, ξ) =
2n

∑
i=1

g(Ei , REiXξ) =
2n

∑
i=1

g(Ei,−η(X)Ei) = −2nη(X)

that is (7). Finally by the symmetries of the curvature tensor field we get (8).
Moreover (6) also implies that the ξ-sectional curvatures are K(X, ξ) = −1.

We notice that if (M2n+1, ϕ, ξ, η, g) is an almost Kenmotsu manifold with con-
formal Reeb foliation, then (5) implies that ξ belongs to the (−1)-nullity distribu-
tion. Now, as a consequence of the following theorem, the converse holds so that
the property of the Reeb foliation to be conformal and the (−1)-nullity condition
become equivalent.

Theorem 4.1. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. Let us suppose
that ξ belongs to the κ-nullity distribution, κ ∈ R. Then, the Reeb foliation is conformal
and κ = −1. Therefore, M2n+1 is locally a warped product of an almost Kähler manifold
and an open interval. Finally, assuming the local symmetry, M2n+1 is locally isometric
to the hyperbolic space H

2n+1(−1) of constant curvature −1.

Proof. Let X be a unit vector field orthogonal to ξ. Since ξ belongs to the κ-nullity
distribution we have RXξξ = κX and (2) implies that h2X = −(κ + 1)X. Now,

if X is a unit eigenvector of h with eigenvalue λ, we get λ2X = −(κ + 1)X and
thus −(κ + 1) = λ2 ≥ 0. It follows that κ ≤ −1 and Spec(h) = {0, λ,−λ}, with λ
constant. Computing RX ξξ by means of (3), we get

κX = ∇ξ ϕhX − ϕh∇ξ X − X + 2λϕX − λ2X,

and taking the scalar product with ϕX, we obtain λ = 0, κ = −1, and thus
K(X, ξ) = −1. Being h = 0, Theorem 2.1 ensures that M2n+1 is locally a warped
product. Obviously, if n = 1, M3 is a Kenmotsu manifold, by Proposition 2.2.
Furthermore, if M2n+1 is locally symmetric, by Theorem 2.2, it is a Kenmotsu
manifold locally isometric to H

2n+1(−1).

Now, before looking at an almost Kenmotsu manifold, with conformal Reeb

foliation, as hypersurface of a real space form M̃(c), we recall from [22, 25] the
following result in the case of H

2n+2(c), c < 0. Let ρ =
√
−1/c and consider

H
2n+2(c) = {(x1, . . . , x2n+3) ∈ R

2n+3 | x2n+3 > 0,

x2
1 + · · ·+ x2

2n+2 − x2
2n+3 = −ρ2}.
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Lemma 4.1 ([25]). Let M2n+1 be a complete hypersurface in H
2n+2(c). Suppose that,

under a suitable choice of a local orthonormal tangent frame field of TM2n+1, the shape
operator over TM2n+1 is expressed as a matrix A. If M2n+1 has at most two distinct
constant principal curvatures, then it is congruent to one of the following:

(1) M1 = {x ∈ H
2n+2(c) | x1 = 0}. In this case, A = 0, and M1 is totally geodesic.

Hence M1 is isometric to H
2n+1(c);

(2) M2 = {x ∈ H
2n+2(c) | x1 = r > 0}. In this case, A = 1/ρ2√

1/ρ2+1/r2
I2n+1

where I2n+1 denotes the identity matrix of degree 2n + 1, and M2 is isometric to
H

2n+1(−1/(ρ2 + r2));

(3) M3 = {x ∈ H
2n+2(c) | x2n+3 = x2n+2 + ρ}. In this case, A = 1

ρ I2n+1 and M3

is isometric to a Euclidean space E2n+1;

(4) M4 = {x ∈ H
2n+2(c) | ∑

2n+2
i=1 x2

i = r2 > 0}. Then A =
√

1/r2 + 1/ρ2 I2n+1

and M4 is isometric to a round sphere S2n+1(r) of radius r;

(5) M5 = {x ∈ H
2n+2(c) | ∑

k+1
i=1 x2

i = r2 > 0, ∑
2n+2
j=k+2 x2

j − x2
2n+3 = −ρ2 − r2}. In

this case, A = λIk ⊕ µI2n+1−k, where λ =
√

1/r2 + 1/ρ2 and µ = 1/ρ2√
1/ρ2+1/r2

.

M5 is isometric to Sk(r)× H
2n+1−k(−1/(r2 + ρ2)).

Remark 4.1. We notice that, except for case (1), the shape operator can not admit
zero as eigenvalue. Furthermore, assuming c < −1, the shape operator of M2 =

{x ∈ H
2n+2(c) | x1 = r =

√
1 + 1/c > 0} has only the eigenvalue

√
−(1 + c)

and M2 in H
2n+2(c) is a totally umbilical hypersurface, isometric to H

2n+1(−1),
which carries the standard Kenmotsu structure.
Finally, if c = −1 then M1 = {x ∈ H

2n+2(−1) | x1 = 0} has vanishing shape
operator and it is totally geodesic, isometric to H

2n+1(−1).

Theorem 4.2. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold with conformal

Reeb foliation and assume that M2n+1 is a hypersurface of a real space form M̃(c) of
constant curvature c. Then

i) c ≤ −1,

ii) If c < −1, then M2n+1 is Kenmotsu of constant sectional curvature K = −1 and
then locally isometric to H

2n+1(−1).

Proof. The curvature R of the immersed M2n+1 in M̃(c) reads

R(X, Y)Z = c(X ∧ Y)Z + (A(X) ∧ A(Y))Z (9)

for any X, Y, Z ∈ Γ(TM2n+1), being (X ∧ Y)Z = g(Y, Z)X − g(X, Z)Y and A
denoting the Weingarten operator.

Now, computing RXYξ and RξXY by means of (9) and comparing with (5), (8)
respectively, we obtain

(c + 1)(η(Y)X − η(X)Y) + η(AY)AX − η(AX)AY = 0 (10)
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(c + 1)(g(X, Y)ξ − η(Y)X) + g(AX, Y)Aξ − η(AY)AX = 0 (11)

Let (E1, . . . , E2n+1) be a local orthonormal basis given by eigenvectors of the
operator A, with eigenvalues µ1, . . . , µ2n+1, non necessarily distinct. Clearly, there
exists at least an eigenvector Ek such that η(Ek) 6= 0, since dim ker η = 2n.

Now, writing (10) for two distinct eigenvectors Ei, Ej, with eigenvalues µi, µj

non necessarily distinct, we obtain

(c + 1 + µiµj)(η(Ej)Ei − η(Ei)Ej) = 0 (12)

Furthermore, writing (11) for Ei 6= Ej and for X = Y = Ei, we get

(c + 1 + µiµj)η(Ej)Ei = 0 (13)

and
−(c + 1 + µ2

i )η(Ei)Ei + (c + 1)ξ + µi A(ξ) = 0 (14)

We discuss equation (12) distinguishing two cases:

(I) c + 1 + µiµj = 0, for any i, j

(II) there exist Ei 6= Ej such that c + 1 + µiµj 6= 0.

In the first case, we have µiµj = −(c + 1), for any i, j which obviously implies

µ1 = µ2 = . . . = µ2n+1 = µ with µ2 = −(c + 1) and then c ≤ −1.
Now we prove that in the case (II), we have c = −1 and ξ is an eigenvector of

A with eigenvalue µξ = 0.
Supposing that there exist Ei 6= Ej such that c + 1 + µiµj 6= 0, we get

η(Ei) = η(Ej) = 0, Ei 6= ξ, Ej 6= ξ (15)

and applying (14) to Ei

(c + 1)ξ + µi A(ξ) = 0 , (c + 1, µi) 6= (0, 0). (16)

It follows that A(ξ) ∈< ξ >, so ξ is an eigenvector of A with eigenvalue µξ . Note
that c + 1 = 0 if and only if µξ = 0. To end the proof, we show that c + 1 6= 0

gives a contradiction. From (16) we obtain ξ = − µi
c+1 A(ξ), so that µi 6= 0 and

µξ = − c+1
µi

. Analogously, µξ = − c+1
µj

so that we have µi = µj = µ and (16)

implies µξ = − c+1
µ 6= µ2

µ . Clearly the other eigenvectors verify η(Ek) = 0 and

writing (13) with Ej = ξ we get µkµξ = −c − 1 = µµξ from which µk = µ follows.
Moreover, we have A(X) = µX for any X ∈ D and µ constant along any integral
submanifold of D. Being c + 1 + µ2 6= 0 there exists a point p ∈ M2n+1 such that
c + 1 + µ2(p) 6= 0. Since h = 0, M2n+1 is locally, around p, a warped product
I × f M̄, being M̄ an integral submanifold of the distribution D through p, I an

interval and f = c′et, c′ a positive constant.
Using (9) we compute some sectional curvatures of M2n+1, obtaining for any

orthonormal vector fields X, Y ∈ D,

R(X, ξ)ξ = c(X ∧ ξ)ξ + (A(X) ∧ A(ξ))ξ = cX − c + 1

µ
µX = −X,
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R(X, Y)Y = (c + µ2)X,

and K(X, ξ) = −1, K(X, Y) = c + µ2.
Then, owing to the structure of warped product, for the sectional curvature

on M̄ we get K̄(X, Y) = K(X, Y) + 1 = c + µ2 + 1. Then, being M̄ an almost
Kähler manifold of constant curvature, it has to be Kähler and flat, contradicting
c + µ2(p) + 1 6= 0 ([4, 17, 18]).
Therefore in any case we get c ≤ −1 and i) is proved.

Now suppose that c < −1. Then, for any other choice of a local orthonor-
mal basis given by eigenvectors of the operator A, the case (I) occurs. It fol-
lows that M2n+1 is totally umbilical and A has eigenvalue

√
−c − 1. Then M2n+1

has constant sectional curvature K = −1, it is Kenmotsu, locally isometric to
H

2n+1(−1).

Remark 4.2. Under the same hypotheses of the previous theorem, if c = −1 and
case (I) always occurs, then M2n+1 is Kenmotsu, locally isometric to H

2n+1(−1)
and totally geodesic. By the contrary, if c = −1 and the two cases occur in
different local orthonormal bases given by eigenvectors of the operator A, then
A(ξ) = 0 and, as follows by Remark 4.1, A can not admit two constant eigenval-
ues.

Now, to continue about the case c = −1, we recall the following result of
Fialkow ([10]) quoted as Theorem 4 in [21].

Theorem 4.3. Let M be a hypersurface of dimension n ≥ 3 in a real space form M̃(c)
of constant curvature c. If M is Einstein with Ricci curvature ρ = (n − 1)c, then M is

either a totally geodesic hypersurface or a developable hypersurface in M̃(c). In particular
M is a space of constant curvature c.

Theorem 4.4. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold with conformal

Reeb foliation and assume that M2n+1 is a hypersurface of a space form M̃(c) of constant
curvature c. Then

a) if c = −1 and M2n+1 is Einstein, then M2n+1 is totally geodesic and Kenmotsu,

b) if M2n+1 is totally geodesic, then c = −1.

Proof. Let us suppose c = −1 and M2n+1 Einstein. Then, from (7) it follows that
Ric = −2ng = 2ncg and by Theorem 4.3, M2n+1 has constant curvature K = c =
−1 which implies that M2n+1 is totally geodesic and Kenmotsu. Finally if M2n+1

is totally geodesic then it has constant curvature K = c and, being K(X, ξ) =
−1 for X ∈ D, we get K = −1 and c = −1. Again M2n+1 is Kenmotsu. In

any case M2n+1 and M̃(c) are locally isometric to H
2n+1(−1) and H

2n+2(−1),
respectively.

5 The η-Einstein condition

In this section we discuss the η-Einstein condition in an almost Kenmotsu mani-
fold with conformal Reeb foliation. Thus we assume h = 0 and

Ric(X, Y) = ag(X, Y) + bη(X)η(Y). (17)
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or equivalently
Q(X) = aX + bη(X)ξ. (18)

where g(Q(X), Y) = Ric(X, Y) and a, b are smooth functions on M2n+1.
As proved in Proposition 8 and Corollary 9 of [14] if a Kenmotsu manifold is

η-Einstein with a or b constant, then b = 0 and the manifold is Einstein.
Now, we consider an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with con-

formal Reeb foliation and η-Einstein. From (17) we obtain Ric(ξ, ξ) = a + b and
Ric(X, X) = ag(X, X) for any X ∈ D. Since h = 0 we have also Ric(ξ, ξ) = −2n.
It follows that a + b = −2n and the scalar curvature is given by Sc = −2n + 2na.
Obviously b and a must be both constant or both non constant.

We begin considering the case of dimension 2n + 1 ≥ 5.

Theorem 5.1. Let (M2n+1, ϕ, ξ, η, g), n > 1, be an almost Kenmotsu manifold with
conformal Reeb foliation and η-Einstein. Then one of the following cases occurs: either
i): b = 0 or ii): b is not constant. They are characterized as follows:

i) M2n+1 is Einstein. Moreover the integral submanifolds of D are Einstein almost
Kähler Ricci-flat hypersurfaces.

ii) Locally, we have b = ce−2t, c 6= 0 and Q(X) = −2nX + ce−2tϕ2(X).

Proof. We consider an integral submanifold M̄ of the distribution D, which is an
almost Kähler manifold. By direct computation, since the Weingarten operator is
given by A(X) = −X, we obtain

R̄(X, Y, Z) = R(X, Y, Z) + g(Y, Z)X − g(X, Z)Y
R̄ic(X, Y) = Ric(X, Y) + 2ng(X, Y)
K̄(X, Y) = K(X, Y) + 1.

We notice that the above formulas can be obtained also using the properties of
the warped product structure M′ × f N2n ensured by Theorem 2.1 ([2, 8, 20]).

We consider the well-known formula

1

2
∇YSc = trace[X → (∇XQ)Y)]

and putting Y = ξ, choosing a ϕ-basis (ξ, E1, . . . , En, ϕE1, . . . , ϕEn), we get

(∇ξQ)ξ = 0, (∇Ei
Q)ξ = b∇Ei

ξ = bEi, (∇ϕEi
Q)ξ = b∇ϕEi

ξ = bϕEi

which imply ∇ξSc = 4nb. On the other hand ∇ξSc = ∇ξ(−2n + 2na) = 2nξ(a),
so we get ξ(b) = −ξ(a) = −2b.

Obviously b constant gives b = 0, a = −2n and M2n+1 is Einstein. For the
integral submanifold M̄, we obtain R̄ic(X, Y) = (a + 2n)g(X, Y) = 0, so M̄ is
almost Kähler Einstein and Ricci-flat.

Finally, if b, and then a, is not constant, putting ā = a|M̄, we obtain that

R̄ic(X, Y) = (ā + 2n)g(X, Y). Being n > 1, we have dim M̄ ≥ 4 and M̄ is al-
most Kähler Einstein with constant scalar curvature S̄c = 2n(2n + ā). It follows
that Z(a) = 0, Z(b) = 0 for any Z ∈ D, whereas ξ(b) = −ξ(a) = −2b. Again,

being ξ tangent to M′, locally, we can write ξ = ∂
∂t obtaining b = ce−2t, c 6= 0 and

Q(X) = −2nX + ce−2t ϕ2(X).
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Remark 5.1. We observe that the proof of i) does not depend on the condition
n > 1. Namely, if n = 1, by a theorem of Schouten and Struik, M3 is of constant
curvature K = a

2 = −1, hence Kenmotsu and locally isometric to H
3(−1).

Theorem 5.2. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold with conformal
Reeb foliation. If RXξ R = 0, for any X ∈ Γ(TM2n+1), then M2n+1 is Kenmotsu of
constant curvature K = −1.

Proof. We have to prove R(X, Y, Z) = −g(Y, Z)X + g(X, Z)Y for any X, Y, Z vec-
tor fields. Indeed, since (5) and (8) ensure that the above formula holds when at
least one of the vector fields coincides with ξ, we have to evaluate R(U, V, W) for
U, V, W orthogonal to ξ. By the hypothesis RXξ R = 0, for any X ∈ Γ(TM2n+1)
we get

RXξ R(U, V, W) = R(RXξU, V, W) + R(U, RXξ V, W) + R(U, V, RXξW) (19)

and we can assume X orthogonal to ξ. Then, using (5) and (8) in (19) the statement
easily follows.

Finally, in the 3-dimensional case, as it is well known, one has

R(X, Y, Z) = g(Y, Z)Q(X) − g(X, Z)Q(Y) + Ric(Y, Z)X
−Ric(X, Z)Y − Sc

2 {g(Y, Z)X − g(X, Z)Y} .
(20)

and we can state the following result.

Theorem 5.3. Any 3-dimensional almost Kenmotsu manifold with conformal Reeb foli-
ation is Kenmotsu and η-Einstein with a = Sc

2 + 1 and b = −(Sc
2 + 3).

Proof. Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu manifold with h = 0. Then, the
integral submanifolds of the distribution D have dimension 2, so they are Kähler
manifolds. By virtue of Proposition 2.2, M3 is Kenmotsu.
Now, computing R(X, Y, ξ) according to Proposition 4.1, using (20), we get

η(Y)Q(X) − η(X)Q(Y) =

(
Sc

2
+ 1

)
{η(Y)X − η(X)Y}.

Setting Y = ξ in this last equation, we obtain

Q(X) =

(
Sc

2
+ 1

)
X −

(
Sc

2
+ 3

)
η(X)ξ ,

which means that M3 is an η-Einstein manifold. This concludes the proof.
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