Ergodic characterizations of character amenability and contractibility of Banach algebras

Rasoul Nasr-Isfahani

Mehdi Nemati

Abstract

For a nonzero character ϕ on a Banach algebra \mathfrak{A} , we investigate some relations between ϕ -amenability of \mathfrak{A} and ergodic theory. As the main result, we give a characterization for ϕ -amenability of \mathfrak{A} in terms of antirepresentations of \mathfrak{A} on a Banach space.

1 Introduction

Throughout, let \mathfrak{A} denote a Banach algebra and let $\phi \in \sigma(\mathfrak{A})$, the set of all nonzero characters from \mathfrak{A} onto \mathbb{C} . The notion of ϕ -amenability of \mathfrak{A} was introduced and studied by Kaniuth, Lau and Pym [4]; see also Hu, Monfared and Traynor [3] and Kaniuth, Lau and Pym [5].

This is a considerable generalization of the concept of left amenability for a Lau algebra; that is, a Banach algebra \mathfrak{L} which is the predual of a W^* -algebra \mathfrak{M} such that the identity u of \mathfrak{M} is a character on \mathfrak{L} ; the class of Lau algebras was introduced and studied by Lau [8] in 1983 which he called *F*-algebras. Later on, in his useful monograph, Pier [16] introduced the name "Lau algebra". Several authors have studied and investigated the concept of left amenability of Lau algebras; see for example Lau [9], Lau and Wong [10], Mohammadzadeh and the first author [13, 14].

Received by the editors August 2010 - In revised form in December 2010. Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification : Primary 46H05. Secondary 43A07, 43A15.

Key words and phrases : Banach algebra, character amenable, character contractible, ergodic antirepresentation.

Moreover, the concept of ϕ -contractibility was introduced and studied by Hu, Monfared and Traynor [3]; see also [1] and [15].

Our aim in this paper is to give some characterizations of ϕ -amenability and ϕ -contractibility in terms of ϕ -ergodic antirepresentations of \mathfrak{A} . In order to establish these results, we introduce ϕ -ergodic antirepresentations of \mathfrak{A} and give a version of Mean Ergodic Theorem for \mathfrak{A} .

2 Ergodic antirepresentations

For a nonzero character ϕ on a Banach algebra \mathfrak{A} , consider the semigroup

$$S_1(\mathfrak{A},\phi) = \{a \in \mathfrak{A} : \phi(a) = 1\}.$$

Let \mathfrak{X} be a Banach space. For the Banach space $\mathcal{B}(\mathfrak{X})$ of all bounded operators on \mathfrak{X} , recall that the *strong operator topology* on $\mathcal{B}(\mathfrak{X})$ is the locally convex topology determined by the family { $\mathcal{P}_{\xi} : \xi \in \mathfrak{X}$ } of seminorms on $\mathcal{B}(\mathfrak{X})$, where

$$\mathcal{P}_{\xi}(A) = \parallel A(\xi) \parallel$$

for all $\xi \in \mathfrak{X}$ and $A \in \mathcal{B}(\mathfrak{X})$.

An *antirepresentation* T of \mathfrak{A} on \mathfrak{X} is a norm continuous, linear map $T : a \mapsto T_a$ from \mathfrak{A} into $\mathcal{B}(\mathfrak{X})$ such that

$$T_{ab} = T_b T_a$$

for all $a, b \in \mathfrak{A}$. In this case, we put

$$\begin{array}{lll} K(T,\phi) &=& \cap \{ \text{ kernel } (T_a - I) : a \in S_1(\mathfrak{A},\phi) \}, \\ R(T,\phi) &=& \text{ The closure of the span of } \cup \{ \text{ range } (T_a - I) : a \in S_1(\mathfrak{A},\phi) \}, \\ \Sigma(T,\phi) &=& K(T,\phi) + R(T,\phi), \text{ and} \\ C_{\xi}(T,\phi) &=& \text{ The closure of } \{ T_a(\xi) : a \in S_1(\mathfrak{A},\phi) \}, \end{array}$$

for all $\xi \in \mathfrak{X}$. Note that $K(T, \phi)$ and $R(T, \phi)$ are closed subspaces of \mathfrak{X} .

We say that an antirepresentation *T* of \mathfrak{A} on a Banach space \mathfrak{X} is ϕ -ergodic if there is a bounded net $(E_{\gamma})_{\gamma \in \Gamma}$ in $\mathcal{B}(\mathfrak{X})$ such that

 $(\mathcal{E}_{\ell}) E_{\gamma}(T_a - I) \to 0$ in the strong operator topology for all $a \in S_1(\mathfrak{A}, \phi)$, $(\mathcal{E}_c) E_{\gamma}(\xi) \in C_{\xi}(T, \phi)$ for all $\xi \in \mathfrak{X}$ and $\gamma \in \Gamma$.

In order to demonstrate broader interest on the subject, let us point out that the sets ker(T - I) and $\overline{(T - I)(\mathfrak{A})}$ are considered in when *T* is a power bounded operator on a commutative Banach algebra \mathfrak{A} in the interesting recent papers [6, 7] by Kaniuth, Lau and Ülger.

We commence with the following version of the Mean Ergodic Theorem for an arbitrary Banach algebras.

Theorem 2.1. Let \mathfrak{A} be a Banach algebra with $\phi \in \sigma(\mathfrak{A})$ and let T be a ϕ -ergodic antirepresentation of \mathfrak{A} on a Banach space \mathfrak{X} with $(E_{\gamma})_{\gamma \in \Gamma}$ satisfying (\mathcal{E}_{ℓ}) and (\mathcal{E}_{c}) . Then the following statements hold.

(a) $E_{\gamma}(\xi_K) = \xi_K$ for all $\xi_K \in K(T,\phi)$ and $\gamma \in \Gamma$ and $E_{\gamma}(\xi_R) \to 0$ for all $\xi_R \in R(T,\phi)$. In particular, for each $\xi \in \Sigma(T,\phi)$, the net $(E_{\gamma}(\xi))_{\gamma \in \Gamma}$ is norm convergent to an element of $K(T,\phi) \cap C_{\xi}(T,\phi)$.

(b) $\Sigma(T,\phi) = K(T,\phi) \oplus R(T,\phi)$. (c) $T_a(\Sigma(T,\phi)) \subseteq \Sigma(T,\phi)$ for all $a \in S_1(\mathfrak{A},\phi)$. (d) $C_{\xi}(T,\phi) \subseteq \Sigma(T,\phi)$ for all $\xi \in \Sigma(T,\phi)$. (e) $E_{\gamma}(\Sigma(T,\phi)) \subseteq \Sigma(T,\phi)$ for all $\gamma \in \Gamma$. (f) If $P : \Sigma(T,\phi) \to K(T,\phi)$ is the projection associated with the direct sum

$$\Sigma(T,\phi) = K(T,\phi) \oplus R(T,\phi),$$

then $E_{\gamma}(\xi) \to P(\xi)$ and $K(T,\phi) \cap C_{\xi}(T,\phi) = \{P(\xi)\}$ for all $\xi \in \Sigma(T,\phi)$.

Proof. (a). First, note that $C_{\xi_K}(T, \phi) = \{\xi_K\}$ for all $\xi_K \in K(T, \phi)$ and so

$$E_{\gamma}(\xi_K) = \xi_K$$

for all $\gamma \in \Gamma$ by (\mathcal{E}_c) . It follows from (\mathcal{E}_ℓ) that $E_{\gamma}(\eta) \to 0$ for all

$$\eta \in \cup \{ \text{ range } (T_a - I) : a \in S_1(\mathfrak{A}, \phi) \}.$$

This together with the fact that (E_{γ}) is bounded imply that $E_{\gamma}(\xi_R) \to 0$ for all $\xi_R \in R(T, \phi)$.

(b). $K(T, \phi) \cap R(T, \phi) = \{0\}$ by (a), and hence

$$\Sigma(T,\phi) = K(T,\phi) \oplus R(T,\phi).$$

(c). If $a, b \in S_1(\mathfrak{A}, \phi)$, then $ba \in S_1(\mathfrak{A}, \phi)$ and so for each $\xi \in \mathfrak{X}$,

$$T_a(T_b - I)(\xi) = (T_{ba} - I)(\xi) - (T_a - I)(\xi) \in R(T, \phi).$$

This shows that $T_a(R(T, \phi)) \subseteq R(T, \phi)$ whence

$$T_a(\Sigma(T,\phi)) \subseteq \Sigma(T,\phi).$$

(d). Fix $\xi \in \Sigma(T, \phi)$. To prove $C_{\xi}(T, \phi) \subseteq \Sigma(T, \phi)$, let $\eta \in C_{\xi}(T, \phi)$. Then there is a net (a_{δ}) in $S_1(\mathfrak{A}, \phi)$ such that $T_{a_{\delta}}(\xi) \to \eta$. Write

$$\xi = \xi_K + \xi_R,$$

where $\xi_K \in K(T, \phi)$ and $\xi_R \in R(T, \phi)$. Since $T_{a_{\delta}}(R(T, \phi)) \subseteq R(T, \phi)$ and $R(T, \phi)$ is closed, it follows that

$$\eta - \xi_K = \lim_{\delta} T_{a_{\delta}}(\xi - \xi_K) = \lim_{\delta} T_{a_{\delta}}(\xi_R) \in R(T, \phi)$$

So, we have shown that $C_{\xi}(T, \phi) \subseteq \Sigma(T, \phi)$ for all $\xi \in \Sigma(T, \phi)$.

(e). The inclusion $E_{\gamma}(\Sigma(T, \phi)) \subseteq \Sigma(T, \phi)$ follows from the part (d) and (\mathcal{E}_c) .

(f). The first assertion follows from (a). For the second, fix $\xi \in \Sigma(T, \phi)$ and note that

$$P(\xi) \in K(T,\phi) \cap C_{\xi}(T,\phi)$$

by (a). To prove the converse inclusion, let $\eta \in K(T, \phi) \cap C_{\xi}(T, \phi)$. Then

 $T_{a_{\delta}}(\xi) \to \eta$

for some net (a_{δ}) in $S_1(\mathfrak{A}, \phi)$, and therefore

$$\eta - \xi = \lim_{\delta} (T_{a_{\delta}} - I)(\xi) \in R(T, \phi).$$

Consequently, $P(\eta - \xi) = 0$ and so $\eta = P(\xi)$ as required.

For $\phi \in \sigma(\mathfrak{A})$, we say that an antirepresentation *T* of \mathfrak{A} on a Banach space \mathfrak{X} is *two-sided* ϕ *-ergodic* if there is a bounded net $(E_{\gamma})_{\gamma \in \Gamma}$ in $\mathcal{B}(\mathfrak{X})$ satisfying (\mathcal{E}_{ℓ}) , (\mathcal{E}_{c}) , and

 (\mathcal{E}_r) $(T_a - I)E_{\gamma} \to 0$ in the strong operator topology for all $a \in S_1(\mathfrak{A}, \phi)$.

Theorem 2.1 does not give the closedness of $\Sigma(T, \phi)$ in \mathfrak{X} . The following result shows that $\Sigma(T, \phi)$ is closed in \mathfrak{X} if in addition (\mathcal{E}_r) holds.

Proposition 2.2. Let \mathfrak{A} be a Banach algebra with $\phi \in \sigma(\mathfrak{A})$ and let T be a two-sided ϕ -ergodic antirepresentation of \mathfrak{A} on a Banach space \mathfrak{X} with $(E_{\gamma})_{\gamma \in \Gamma}$ satisfying (\mathcal{E}_{ℓ}) , (\mathcal{E}_{c}) , and (\mathcal{E}_{r}) . Then $\Sigma(T, \phi)$ is the closed subspace of \mathfrak{X} consisting of all $\xi \in \mathfrak{X}$ such that $(E_{\delta}(\xi))$ is weakly convergent in \mathfrak{X} for some subnet (E_{δ}) of (E_{γ}) .

Proof. Using Theorem 2.1(a), $(E_{\gamma}(\xi))$ is norm (and hence weakly) convergent to an element of $K(T, \phi) \cap C_{\xi}(T, \phi)$ for all $\xi \in \Sigma(T, \phi)$.

Now, let $\xi \in \mathfrak{X}$ and suppose that $(E_{\delta}(\xi))$ is weakly convergent to $\eta \in \mathfrak{X}$ for some subnet (E_{δ}) of (E_{γ}) . We must show that

$$\xi \in \Sigma(T, \phi).$$

Note that $\eta \in C_{\xi}(T, \phi)$ because $C_{\xi}(T, \phi)$ is convex in \mathfrak{X} and $E_{\delta}(\xi) \in C_{\xi}(T, \phi)$ for all δ . Also, by (\mathcal{E}_r) , for each $a \in S_1(\mathfrak{A}, \phi)$ and $f \in \mathfrak{X}^*$ we have

$$f(T_a(\eta)) = \lim_{\delta} (f \circ T_a)(E_{\delta}(\xi))$$

=
$$\lim_{\delta} [(f \circ (T_a - I))(E_{\delta}(\xi)) + f(E_{\delta}(\xi))]$$

=
$$f(\eta),$$

and so $T_a(\eta) = \eta$ whence

$$\eta \in K(T,\phi) \cap C_{\mathcal{E}}(T,\phi).$$

It follows that $\xi = \eta + (\xi - \eta) \in K(T, \phi) + R(T, \phi) = \Sigma(T, \phi).$

As a consequence of the above Proposition, we have the following result.

Corollary 2.3. Let T, \mathfrak{X} , and (E_{γ}) be as in the above proposition. Then $\Sigma(T, \phi) = \mathfrak{X}$ if $C_{\xi}(T, \phi)$ is weakly compact for all $\xi \in \mathfrak{X}$.

3 Ergodic characterization of *φ*-amenability

Let \mathfrak{A} be a Banach algebra and let $\phi \in \sigma(\mathfrak{A})$. The Banach algebra \mathfrak{A} is called ϕ -amenable if there exists a bounded linear functional *F* on \mathfrak{A}^* satisfying

$$F(\phi) = 1$$
 and $F(f \cdot a) = \phi(a)F(f)$

for all $a \in \mathfrak{A}$ and $f \in \mathfrak{A}^*$; here $f \cdot a \in \mathfrak{A}^*$ is defined by $(f \cdot a)(b) = f(ab)$ for all $b \in \mathfrak{A}$. Any such *F* is called a ϕ -mean; see also [12].

Recall that a ϕ -approximate diagonal for \mathfrak{A} is a net (\mathbf{m}_{γ}) in $\mathfrak{A} \widehat{\otimes} \mathfrak{A}$ such that

$$\phi(\pi(\mathbf{m}_{\gamma})) = 1$$
 and $\|a \cdot \mathbf{m}_{\gamma} - \phi(a)\mathbf{m}_{\gamma}\| \to 0$

for all $a \in \mathfrak{A}$, where π denotes the product morphism from $\mathfrak{A} \widehat{\otimes} \mathfrak{A}$ into \mathfrak{A} given by

$$\pi(a\otimes b)=ab$$

for all $a, b \in \mathfrak{A}$. The notion of ϕ -approximate diagonal was introduced and studied by Hu, Monfared and Traynor [3]. They show that \mathfrak{A} has a ϕ -mean if and only if it has a bounded ϕ -approximate diagonal.

For a Banach algebra \mathfrak{A} , let Λ denote the antirepresentation of \mathfrak{A} on \mathfrak{A}^* defined by

$$\Lambda_a(f) = f \cdot a$$

for all $a \in \mathfrak{A}$ and $f \in \mathfrak{A}^*$. We now are ready to give a characterization of ϕ -amenability of \mathfrak{A} .

Theorem 3.1. Let \mathfrak{A} be a Banach algebra and let $\phi \in \sigma(\mathfrak{A})$. Then the following assertions are equivalent.

- (a) \mathfrak{A} is ϕ -amenable.
- (b) Each antirepresentation of \mathfrak{A} is ϕ -ergodic.
- (c) The antirepresentation Λ is ϕ -ergodic.

Proof. (a) \Rightarrow (b). Let *T* be an antirepresentation of \mathfrak{A} on a Banach space \mathfrak{X} . Since \mathfrak{A} is ϕ -amenable, it has a bounded ϕ -approximate diagonal $(\mathbf{m}_{\gamma})_{\gamma \in \Gamma}$. Thus

$$\pi(\mathbf{m}_{\gamma}) \in S_1(\mathfrak{A}, \phi)$$
 and $\|a\pi(\mathbf{m}_{\gamma}) - \pi(\mathbf{m}_{\gamma})\| \to 0$

for all $a \in S_1(\mathfrak{A}, \phi)$. So, if we put

$$E_{\gamma} = T_{\pi(\mathbf{m}_{\gamma})}$$

for all $\gamma \in \Gamma$, then (E_{γ}) is bounded in $B(\mathfrak{X})$ and

$$\| E_{\gamma}(T_a - I) \| = \| T_{a\pi(\mathbf{m}_{\gamma}) - \pi(\mathbf{m}_{\gamma})} \|$$

$$\leq \| T \| \| a\pi(\mathbf{m}_{\gamma}) - \pi(\mathbf{m}_{\gamma}) \| \to 0$$

for all $a \in S_1(\mathfrak{A}, \phi)$; that is, $(E_{\gamma})_{\gamma \in \Gamma}$ satisfies (\mathcal{E}_{ℓ}) . The condition (\mathcal{E}_c) is also satisfied because $E_{\gamma}(\xi) = T_{\pi(\mathbf{m}_{\gamma})}(\xi) \in C_{\xi}(T, \phi)$ for all $\xi \in \mathfrak{X}$ and $\gamma \in \Gamma$.

(b) \Rightarrow (c). Clear.

(c) \Rightarrow (a). Let Λ be as in (c). Then

$$\Lambda_a \phi = \phi \cdot a = \phi$$

for all $a \in S_1(\mathfrak{A}, \phi)$. That is $\phi \in K(\Lambda, \phi)$, and hence $\phi \notin R(\Lambda, \phi)$ by Theorem 2.1(b). Using the Hahn-Banach Theorem, we may find a nonzero element *F* of \mathfrak{A}^{**} such that $F(\phi) = 1$ and $F|_{R(\Lambda, \phi)} = 0$. Thus

$$F(f \cdot a) = F(f)$$

for all $a \in S_1(\mathfrak{A}, \phi)$ and $f \in \mathfrak{A}^*$ and hence \mathfrak{A} is ϕ -amenable.

Recall that the Banach algebra \mathfrak{A} is called two-sided ϕ -amenable if it has a two-sided ϕ -mean; i.e., an element $F \in \mathfrak{A}^{**}$ with $F(\phi) = 1$ and

$$F(f \cdot a) = F(a \cdot f) = F(f)$$

for all $a \in S_1(\mathfrak{A}, \phi)$ and $f \in \mathfrak{A}^*$. Suppose that \mathfrak{A} is two-sided ϕ -amenable. Then there is a bounded net $(a_{\gamma})_{\gamma \in \Gamma}$ in $S_1(\mathfrak{A}, \phi)$ such that

$$||aa_{\gamma}-a_{\gamma}||+||a_{\gamma}a-a_{\gamma}||\to 0$$

for all $a \in S_1(\mathfrak{A}, \phi)$; see [5], Proposition 3.3. Thus

$$\mathbf{m}_{\mathbf{fl}} := a_{\gamma} \otimes a_{\gamma}$$

is a two-sided ϕ -approximate diagonal in $\mathfrak{A} \widehat{\otimes} \mathfrak{A}$; i.e., $\phi(\pi(\mathbf{m}_{\mathbf{fl}})) = 1$ and

$$\|a \cdot \mathbf{m}_{\gamma} - \mathbf{m}_{\gamma}\| + \|\mathbf{m}_{\gamma} \cdot a - \mathbf{m}_{\gamma}\| \to 0$$

for all $a \in S_1(\mathfrak{A}, \phi)$. So, if we put $E_{\gamma} = T_{\pi(\mathbf{m}_{\gamma})}$ for all $\gamma \in \Gamma$, then as in the above proof $(E_{\gamma})_{\gamma \in \Gamma}$ satisfies the conditions $(\mathcal{E}_{\ell}), (\mathcal{E}_c)$, and (\mathcal{E}_r) .

Notice that if \mathfrak{A} is commutative and ϕ -amenable, then \mathfrak{A} is automatically twosided ϕ -amenable. Therefore, two-sided ϕ -amenable Banach algebras form a large class of Banach algebras such that for any antirepresentation *T* of such algebras on a Banach space \mathfrak{X} , there is a net $(E_{\gamma})_{\gamma \in \Gamma}$ satisfying (\mathcal{E}_{ℓ}) , (\mathcal{E}_{c}) , and (\mathcal{E}_{r}) .

Let \mathfrak{A} be a Banach algebra and let $\phi \in \sigma(\mathfrak{A})$. For an antirepresentation *T* of \mathfrak{A} on a Banach space \mathfrak{X} , let $N(T, \phi)$ denote the set of all $\xi \in \mathfrak{X}$ for which there exists a net $(a_{\gamma})_{\gamma \in \Gamma}$ in $S_1(\mathfrak{A}, \phi)$ such that

$$||T_{a_{\gamma}}(\xi)|| \to 0.$$

Theorem 3.2. Let \mathfrak{A} be a Banach algebra and let $\phi \in \sigma(\mathfrak{A})$. Then the following assertions are equivalent.

(a) A is φ-amenable.
(b) N(T, φ) = R(T, φ) for all antirepresentations T of A.
(c) N(Λ, φ) = R(Λ, φ).

Proof. (a) \Rightarrow (b). Since \mathfrak{A} is ϕ -amenable, it follows that \mathfrak{A} has a bounded ϕ -approximate diagonal $(\mathbf{m}_{\gamma})_{\gamma \in \Gamma}$. Thus $\pi(\mathbf{m}_{\gamma}) \in S_1(\mathfrak{A}, \phi)$ and $||a\pi(\mathbf{m}_{\gamma}) - \pi(\mathbf{m}_{\gamma})|| \to 0$ for all $a \in S_1(\mathfrak{A}, \phi)$. Therefore

$$\begin{aligned} \|T_{\pi(\mathbf{m}_{\gamma})}(T_{a}-I)\| &= \|T_{a\pi(\mathbf{m}_{\gamma})-\pi(\mathbf{m}_{\gamma})}\| \\ &\leq \|T\| \|a\pi(\mathbf{m}_{\gamma})-\pi(\mathbf{m}_{\gamma})\|. \end{aligned}$$

Thus $(T_a - I)(\xi) \in N(T, \phi)$ for all $\xi \in \mathfrak{X}$ and $a \in S_1(\mathfrak{A}, \phi)$, and consequently

 $R(T,\phi) \subseteq N(T,\phi).$

Now, let $\xi \in N(T, \phi)$. Then there exists a net $(a_{\gamma})_{\gamma \in \Gamma}$ in $S_1(\mathfrak{A}, \phi)$ such that

 $||T_{a_{\gamma}}(\xi)|| \to 0.$

But $(T_{a_{\gamma}} - I)(\xi) \in R(T, \phi)$ for all $\gamma \in \Gamma$ and

$$\lim_{\gamma} (T_{a_{\gamma}} - I)(\xi) = -\xi.$$

Since $R(T, \phi)$ is a closed subspace of \mathfrak{X} , it follows that $\xi \in R(T, \phi)$

(b) \Rightarrow (c). Clear.

(c)⇒(a). It is clear that $\phi \notin N(\Lambda, \phi)$. Thus the result follows by the same argument of proof of Theorem 3.1(c) with the fact that $R(\Lambda, \phi)$ is a closed subspace of \mathfrak{X} .

4 Ergodic characterization of *φ*-contractibility

A Banach algebra \mathfrak{A} is called ϕ -contractible if there exists a ϕ -diagonal; i.e., an element **m** in the projective tensor product $\mathfrak{A} \widehat{\otimes} \mathfrak{A}$ such that $\phi(\pi(\mathbf{m})) = 1$ and $a \cdot \mathbf{m} = \phi(a)\mathbf{m}$ for all $a \in \mathfrak{A}$. Before, we give a characterization of ϕ -contractibility, we need the following Lemma.

Lemma 4.1. Let \mathfrak{A} be a Banach algebra with $\phi \in \sigma(\mathfrak{A})$ and let $a \in S_1(\mathfrak{A}, \phi)$. Consider the following conditions.

(a) *a* is a ϕ -mean in \mathfrak{A} . (b) $R(T, \phi) = \{\xi \in \mathfrak{X} : T_a(\xi) = 0\}$ for all antirepresentations T of \mathfrak{A} . (c) $R(\Lambda, \phi) = \{f \in \mathfrak{A}^* : f \cdot a = 0\}$. Then (a) \Rightarrow (b) \Rightarrow (c) and if \mathfrak{A} has a right approximate identity, then (c) \Rightarrow (a).

Proof. Suppose that (a) holds. Then $\phi(a) = 1$ and ba = a for all $b \in S_1(\mathfrak{A}, \phi)$ and hence

 $T_a(T_b - I)(\xi) = (T_{ba-a})(\xi) = 0$

for all $\xi \in \mathfrak{X}$. Thus $T_a(\eta) = 0$ for all $\eta \in R(T, \phi)$; that is,

$$R(T,\phi)\subseteq \{\xi\in\mathfrak{X}: T_a(\xi)=0\}.$$

The reverse inclusion is clear.

That (b) implies (c) is trivial. Now, suppose that (c) holds and that there is a right approximate identity $(e_{\gamma})_{\gamma \in \Gamma}$ for \mathfrak{A} , and let $b \in S_1(\mathfrak{A}, \phi)$. Then

$$f \cdot b - f \in R(T, \phi)$$

and so

$$f \cdot (ba - a) = (f \cdot b - f) \cdot a = 0$$

for all $f \in \mathfrak{A}^*$. Thus

$$f(ba - a) = \lim_{\gamma} f((ba - a)e_{\gamma})$$

=
$$\lim_{\gamma} [f \cdot (ba - a)](e_{\gamma}) = 0.$$

Since \mathfrak{A}^* separates the elements of \mathfrak{A} , it follows that ba - a = 0 for all $b \in S_1(\mathfrak{A}, \phi)$; hence $ba = \phi(b)a$ for all $b \in \mathfrak{A}$. Thus *a* is a ϕ -mean. \Box

Proposition 4.2. Let \mathfrak{A} be a Banach algebra with a right approximate identity and let $\phi \in \sigma(\mathfrak{A})$. Then the following assertions are equivalent.

(a) \mathfrak{A} *is* ϕ *-contractible.*

(b) There exists $a \in S_1(\mathfrak{A}, \phi)$ such that $R(T, \phi) = \{\xi \in \mathfrak{X} : T_a(\xi) = 0\}$ for all antirepresentations T of \mathfrak{A} .

(c) There exists $a \in S_1(\mathfrak{A}, \phi)$ such that $R(\Lambda, \phi) = \{f \in \mathfrak{A}^* : f \cdot a = 0\}$.

Proof. Suppose that \mathfrak{A} is ϕ -contractible. Then there is a ϕ -diagonal $\mathbf{m} \in \mathfrak{A} \otimes \mathfrak{A}$ for \mathfrak{A} . It easy to check that $\pi(\mathbf{m})$ is a ϕ -mean in \mathfrak{A} . Conversely, if *a* is a ϕ -mean in \mathfrak{A} , then it is clear that $\mathbf{m} = a \otimes a$ is a ϕ -diagonal for \mathfrak{A} . Thus the result follows immediately from Lemma 4.1.

Before we give our last result, note that if *a* is a ϕ -mean in \mathfrak{A} , then $\langle a \rangle$, the Banach space generated by $\{a\}$ is a Banach algebra.

Corollary 4.3. Let \mathfrak{A} be a Banach algebra and let $\phi \in \sigma(\mathfrak{A})$. If a is a two-sided ϕ -mean in \mathfrak{A} , then the following assertions hold.

- (a) $R(\Lambda, \phi) = \{f \in \mathfrak{A}^* : f(a) = 0\}.$
- (b) $\mathfrak{A}^* = \Sigma(\Lambda, \phi)$ if and only if $K(\Lambda, \phi) = \langle a \rangle^*$.

Proof. (a). By Lemma 4.1, it suffices to show that $f \cdot a = 0$ if and only if f(a) = 0. Since *a* is a two-sided ϕ -mean, it follows that for each $b \in S_1(\mathfrak{A}, \phi)$,

$$f(a) = f(ba) = f(ab) = f \cdot a(b)$$

and this completes the proof.

(b). Suppose that $\mathfrak{A}^* = \Sigma(\Lambda, \phi) = K(\Lambda, \phi) \oplus R(\Lambda, \phi)$. It is clear that

$$R(\Lambda,\phi) = \langle a \rangle^{\perp},$$

where

$$\langle a \rangle^{\perp} = \{ f \in \mathfrak{A}^* : f(b) = 0 \text{ for all } b \in \langle a \rangle \}.$$

Thus $\mathfrak{A}^*/\langle a \rangle^{\perp} \cong K(\Lambda, \phi)$. On the other hand we have

$$\mathfrak{A}^*/\langle a\rangle^{\perp}\cong\langle a\rangle^*$$

and so $K(\Lambda, \phi) \cong \langle a \rangle^*$. Conversely, if $K(\Lambda, \phi) = \langle a \rangle^*$, then since

$$\mathfrak{A}^*/\langle a\rangle^{\perp}\cong\langle a\rangle^*,$$

it follows that $\mathfrak{A}^* = K(\Lambda, \phi) \oplus R(\Lambda, \phi) = \Sigma(\Lambda, \phi).$

Example 4.4. Let *G* be a compact group with normalized Haar measure dx and consider the convolution algebra $L^p(G)$ as in [2], where $1 \leq p < \infty$. Let \widehat{G} denote the set of all continuous homomorphisms from *G* into the circle group \mathbb{T} , equipped with the topology of uniform convergence. For $\rho \in \widehat{G}$, define $\phi_{\rho} \in \sigma(L^p(G))$ to be the character induced by ρ on $L^p(G)$; that is,

$$\phi_{\rho}(g) = \int_{G} \overline{\rho(x)} g(x) dx \quad (g \in L^{p}(G)).$$

Fix $\rho \in \widehat{G}$, it is clear that $\rho \in L^p(G)$ and for each $g \in L^p(G)$, we have

$$g * \rho = \rho * g = \phi_{\rho}(g)\rho.$$

Thus ρ is a two-sided ϕ_{ρ} -mean in $L^{p}(G)$. Consider the antirepresentation Λ of $L^{p}(G)$ on $L^{p}(G)^{*} = L^{q}(G)$ defined by

$$\Lambda_g(f) = f \cdot g$$

for all $g \in L^p(G)$ and $f \in L^q(G)$, and note that Λ is ϕ_{ρ} -ergodic by Theorem 3.1, where q = p/(p-1). Now, we show that

$$K(\Lambda,\phi_{\rho}) = \{f \in L^{q}(G) : \widehat{f}(\overline{\eta}) = 0 \text{ for all } \eta \neq \rho\},\$$

where

$$\widehat{f}(\eta) = \int_{G} \overline{\eta(x)} f(x) dx$$

for all $\eta \in \widehat{G}$. Suppose that $f \in K(\Lambda, \phi_{\rho})$. Then $f \cdot g - f = 0$ for all $g \in S_1(L^p(G), \phi_{\rho})$. In particular $f \cdot \rho - f = 0$; thus

$$\widehat{f \cdot \rho} = \widehat{f}.$$

Now, let $\eta \in \widehat{G}$. Then we have

$$\begin{aligned} \widehat{(f \cdot \rho)}(\overline{\eta}) &= (\widehat{f \ast \overline{\rho}})(\overline{\eta}) \\ &= \int_{G} \eta(x) \Big(\int_{G} f(xy)\rho(y)dy \Big) dx \\ &= \int_{G} \int_{G} \int_{G} f(x)\eta(x)\rho(y)\overline{\eta(y)}dxdy \\ &= \widehat{f}(\overline{\eta}) \int_{G} \rho(y)\overline{\eta(y)}dy. \end{aligned}$$

The orthogonality relations now imply that

$$(\widehat{f \cdot \rho})(\overline{\eta}) = 0$$

whenever $\eta \neq \rho$. Thus $\widehat{f}(\overline{\eta}) = 0$ for all $\eta \neq \rho$, and this shows that

$$K(\Lambda, \phi_{
ho}) \subseteq \{f \in L^q(G) : \ \widehat{f}(\overline{\eta}) = 0 \ \text{ for all } \eta \neq
ho\}.$$

For the reverse inclusion, let $f \in L^q(G)$ with $\widehat{f}(\overline{\eta}) = 0$ for all $\eta \neq \rho$. Then for each $\eta \in \widehat{G}$ and $g \in S_1(L^p(G), \phi_\rho)$, we have

$$\begin{split} (\widehat{f \cdot g} - \widehat{f})(\overline{\eta}) &= (\widehat{f \cdot g})(\overline{\eta}) - \widehat{f}(\overline{\eta}) \\ &= (\widehat{f \ast \check{g}})(\overline{\eta}) - \widehat{f}(\overline{\eta}) \\ &= \int_G \int_G f(x)g(y)\overline{\eta(y)}\eta(x)dydx - \widehat{f}(\overline{\eta}) \\ &= \widehat{f}(\overline{\eta})\phi_\eta(g) - \widehat{f}(\overline{\eta}), \end{split}$$

where $\check{g}(x) = g(x^{-1})$ for all $x \in G$. Thus

 $\widehat{(f \cdot g - f)(\overline{\eta})} = 0$

whenever $\hat{f}(\overline{\eta}) = 0$ or $\phi_{\eta}(g) = 1$. It follows that

$$\widehat{f \cdot g - f} = 0$$

for all $g \in S_1(L^p(G), \phi_{\rho})$. Thus $f \cdot g - f = 0$ and hence

$$\{f \in L^q(G): \widehat{f}(\overline{\eta}) = 0 \text{ for all } \eta \neq \rho\} \subseteq K(\Lambda, \phi_\rho)$$

as required. By Corollary 4.3(a), it is clear that

$$R(\Lambda,\phi_{\rho}) = \{f \in L^{q}(G) : \widehat{f}(\overline{\rho}) = 0\}.$$

Consequently $\Sigma(\Lambda, \phi_{\rho}) = L^{q}(G)$.

Acknowledgments. The authors thank the Center of Excellence for Mathematics at the Isfahan University of Technology.

References

- M. ALAGHMANDAN, R. NASR-ISFAHANI AND M. NEMATI, Character amenability and contractibility of abstract Segal algebras, *Bull. Austral. Math. Soc.* 82 (2010), 274-281.
- [2] E. HEWITT AND K. A. ROSS , Abstract harmonic analysis I, Springer-Verlag, Berlin, 1970.
- [3] Z. HU, M. S. MONFARED AND T. TRAYNOR, On character amenable Banach algebras, *Studia Math.* **193** (2009) 53-78.
- [4] E. KANIUTH, A.T. LAU AND J. PYM, On φ-amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.* 144 (2008), 85-96.

- [5] E. KANIUTH, A.T. LAU AND J. PYM, On character amenability of Banach algebras, *J. Math. Anal. Appl.* **344** (2008), 942-955.
- [6] E. KANIUTH, A.T. LAU AND A. ÜLGER, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, *J. London Math. Soc.* **81** (2010), 255-275.
- [7] E. KANIUTH, A.T. LAU AND A. ÜLGER, Power boundedness in Fourier and Fourier-Stieltjes algebras and other commutative Banach algebras, *J. Funct. Anal.,* to appear.
- [8] A. T. LAU, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, *Fund. Math.* 118 (1983), 161-175.
- [9] A. T. LAU, Uniformly continuous functionals on Banach algebras, *Colloq. Math.* **51** (1987), 195-205.
- [10] A. T. LAU AND J. C. S. WONG, Invariant subspaces for algebras of linear operators and amenable locally compact groups, *Proc. Amer. Math. Soc.* 102 (1988), 581-586.
- [11] B. MOHAMMADZADEH AND R. NASR-ISFAHANI, Positive elements of left amenable Lau algebras, *Bull. Belg. Math. Soc.* **13** (2006), 319-324.
- [12] M. S. MONFARED, Character amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.* **144** (2008), 697-706.
- [13] R. NASR-ISFAHANI, Factorization in some ideals of Lau algebras with applications to semigroup algebras, *Bull. Belg. Math. Soc.* 7 (2000), 429-433.
- [14] R. NASR-ISFAHANI, Ergodic theoretic characterization of left amenable Lau algebras, *Bull. Iranian Math. Soc.* **28** (2002), 29-35.
- [15] R. NASR-ISFAHANI AND S. SOLTANI, Character contractibility of Banach algebras and homological properties of Banach modules, *Studia Math.*, to appear.
- [16] J. P. PIER, Amenable Banach algebras, *Pitman research notes in mathematics series*, Vol. 172, Longman scientific and technical, Harlow, 1988.

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran e-mails: isfahani@cc.iut.ac.ir, m.nemati@math.iut.ac.ir