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Abstract

We prove that continuous linear decomposition operators exist on the
space A(J) of real analytic germs and on the space A(I) of real analytic func-
tions where J is a compact interval (and I is an open interval). We then char-
acterize when A(J) and A(I) contain the space Aper(R) of 2π−periodic real
analytic functions as a complemented subspace. As a further application we
present new formulas for continuous linear right inverses for convolution
operators on real analytic functions.

1 Introduction

Continuous linear decomposition operators are a standard tool in analysis which
is important especially in the structure theory of classical spaces of (generalized)
functions (see [18]) and for explicit formulas for continuous linear right inverses
of convolution operators (see [13] and [12]). For spaces of non quasianalytic func-
tions these decomposition operators are usually defined by multiplication opera-
tors with suitable functions with compact support which ansatz is clearly not pos-
sible in the quasianalytic case, especially for real analytic germs or functions. We
will prove in the present paper that nevertheless there exist linear and continuous
decomposition operators also for spaces of real analytic functions if the support
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condition is relaxed to a one sided exponential decrease of the decomposition fac-
tors. To state the basic result more precisely, let P∗([a, ∞[) := indk P∗,k([a, ∞[) for
a ∈ R, where

P∗,k([a, ∞[) := { f ∈ H(U[a,∞[,k) | | f |k := sup
z∈U[a,∞[,k

| f (z)|e|z|/k
< ∞}

for U[a,∞[,k := {z ∈ C | | Im z| < 1/k, Re z > a − 1/k}.

The space P∗(]∞, a]) is defined similarly. Our main result is the following
Theorem. There is a linear continuous (decomposition) operator

D := (D−, D+) : A([a, b]) → P∗(]∞, b])× P∗([a, ∞[) such that

D−( f )
∣∣
[a,b]

− D+( f )
∣∣
[a,b]

= f for any f ∈ A([a, b]).

The proof is based on tame splitting theory for power series spaces of finite type
(see [6] and [16]). The corresponding notions and results are recalled in section 2.

Our first application concerns the space Aper(R) of 2π−periodic real analytic

functions. Using the splitting theory for the ∂−complex developed in [7, 8] we
have shown in [9] that Aper(R) is a complemented subspace of A(R). With a
new proof based on the theorem above we can extend this result considerably: by
restriction, Aper(R) is canonically embedded in A(J) (and in A(I)) for any non
void compact interval J (and any open interval I, respectively). We will show
that Aper(R) is complemented in A(J) (and in A(I), respectively) if and only if
the length of J (and I) is strictly larger than 2π.

We then show that a suitable variant of the above theorem also holds for real
analytic functions on open intervals (see Theorem 5.1 for the precise formula-
tion). This is applied to the right inverse problem for convolution operators on
real analytic functions. In the non quasianalytic case the classical formulas use
elementary solutions and cut off functions both supported in half rays (see [13]).
Our decomposition operators now can be used to obtain a similar explicit formula
also in the case of real analytic functions (see (6.4)).

Finally, we prove the existence of decomposition operators for entire functions
in section 7. Here the technical background is splitting theory for power series
spaces of infinite type (see [14]).

2 The basic tame theory

In this section we introduce the basic notions and tools from the structure theory
of Fréchet spaces which are needed in the sequel. We will have to use precise (so
called tame) estimates in large parts of this paper, so we will recall some basic
related notions first: a Fréchet space E with a fixed increasing system (| |j)j∈N of
seminorms defining the topology of E is called a graded Fréchet space.

A linear mapping
T : (E, | |j) → (F, | |j)

between two graded (F)−spaces (E, | |j) and (F, | |j) is called (linearly) tame if
there is A ∈ N such that for any j ∈ N there is C1 > 0 such that for any f ∈ E

|T( f )|j ≤ C1| f |Aj.
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T is called a tame isomorphism iff T is bijective and T and T−1 are tame.
The notion of graded spaces and tame linear mapping can easily be extended

to (DFS)−spaces F := indk Fk, i.e. to the inductive limit of a (fixed) compact
injective spectrum of Banach spaces Fk.

Notice that we will always fix the grading of the spaces under consideration
and that subspaces and quotients are always endowed with the canonically in-
duced gradings.

A sequence

0 → E
i→ F

q→ G → 0

of graded Fréchet spaces E, F, and G is called tamely exact if and only if i is a
tame isomorphism onto the subspace i(E) ⊂ F and G is tamely isomorphic to the
quotient F/i(E) of F.

A main tool of this paper is the tame splitting theory of power series spaces of
finite type (see [6] and [16]). Recall that power series spaces of finite type and their
canonical gradings are defined as follows: Let (ak)k∈N be an increasing sequence
of positive numbers. Then

Λ0(ak) := {(ck)k∈N | ∀j ∈ N : |(ck)|j := ∑
k∈N

|ck|e−ak/j
< ∞}.

The arguments used in the present paper rely on the tame variants (Ω)t and
(DN)t (see [6]) of the conditions (Ω) and (DN) of Vogt (see e.g. [14]). In fact, we
do not need the precise definitions here but it is enough for our purposes that

(Ω)t and (DN)t are inherited to complemented subspaces (2.1)

and moreover

Theorem 2.1. ([6, Theorem 1.5]) A nuclear graded Fréchet space E is tamely isomorphic
to a power series space of finite type (with its canonical grading) if E satisfies (Ω)t and
(DN)t.

The following result will a basic tool for our considerations (see also [16]):

Theorem 2.2. ([6, Theorem 1.6]) Let

0 → E
i→ F

q→ G → 0

be a tamely exact sequence of graded nuclear Fréchet spaces E, F, and G. Then q has a
tame right inverse (i.e. the sequence is tamely split) if E, G ∈ (Ω)t ∩ (DN)t.

3 Decomposition of real analytic germs

In this section we will prove the basic result of the present paper (see Theorem
3.1 below) stating that a linear continuous decomposition of real analytic germs
is possible.

We start with the space A([−1, 1]) of analytic germs near [−1, 1] and its canon-
ical grading: let W[−1,1],n denote the ellipse with focusses in ±1 and half axes
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√
1 + 1/n2e1 and 1

n e2 and let H∞(W[−1,1],n) be the space of bounded holomorphic

functions on W[−1,1],n. Then the canonical grading on A([−1, 1]) is defined by

A([−1, 1]) := indn H∞(W[−1,1],n).
It is well known that with this grading

A([−1, 1]) is tamely isomorphic to Λ0(n)
′
b. (3.1)

To see this, we can use the mapping g(z) := (z − 1/z)/(2i) which is a biholo-
morphic mapping from D1 := {z ∈ C|0 < |z| < 1} onto U := C \ [−1, 1] (see [1,
p. 245]) which maps the punctured discs D1−1/n := {z ∈ C|0 < |z| < 1 − 1/n}
onto Un := C \ W[−1,1],n. The sup-norms on D1−1/n define the canonical grading

on H0(D1) := { f ∈ H(D1) | f (0) = 0} which induces a tame isomorphism of
H0(D1) to Λ0(n)

′
b by power series expansion. g defines a tame isomorphism of

H0(D1) to H0(U) := { f ∈ H(U) | f (∞) = 0} where the grading of the latter
space is defined by sup-norms on Un. By the Köthe duality the latter space is
tamely isomorphic to A([−1, 1])′b with the grading defined above. This implies
(3.1) by dualization.

By shift and dilation we define the canonical grading on A([a, b]) := indn

H∞(W[a,b],n) for a < b.
The less canonical auxiliary space is the space P∗ := indk P∗,k of exponentially

decreasing real analytic functions, where

P∗,k := { f ∈ H(Uk) | | f |k := sup
z∈Uk

| f (z)|e|z|/k
< ∞}

for Uk := {z ∈ C | | Im z| < 1/k},

and the half sided variants P∗([a, ∞[) := indk P∗,k([a, ∞[) where

P∗,k([a, ∞[) := { f ∈ H(U[a,∞[,k) | | f |k := sup
z∈U[a,∞[,k

| f (z)|e|z|/k
< ∞},

U[a,∞[,k := {z ∈ C | | Im z| < 1

k
, Re z ≥ a + b

2
} ∪ {z ∈ W[a,b],k|Re z <

a + b

2
}

(and P∗(]− ∞, b]), respectively, which is defined similarly).
Notice that P∗ is the space of test functions for the Fourier hyperfunctions (see

[4]). For a < b let

T : P∗(]− ∞, b])× P∗([a, ∞[) → A([a, b]), T( f , g) := ( f
∣∣
[a,b]

− g
∣∣
[a,b]

) and

I : P∗ → P∗(]− ∞, b])× P∗([a, ∞[), I( f ) := ( f
∣∣
]−∞,b]

, f
∣∣
[a,∞[

).

Theorem 3.1. The sequence

0 → P∗
I→ P∗(]− ∞, b])× P∗([a, ∞[)

T→ A([a, b]) → 0 (3.2)

is exact and split for a < b, i.e. there exists a continuous linear right inverse

D := (D−, D+) : A([a, b]) → P∗(]− ∞, b])× P∗([a, ∞[)

of T.
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Proof. By shift and dilation we may assume that a = −1 and b = 1. By the
gradings induced above, the sequence (3.2) consists of nuclear spaces and is tame
exact at the first and second place. Moreover, T is tame. To show that T is tame
open let f ∈ H∞(W[−1,1],n). Choose ϕ ∈ C∞(R) such that ϕ = 0 on ]− ∞, 0] and

ϕ = 1 on [1/4, ∞[ and set

F(z) := ∂(ϕ(Re z) f (z)) if z ∈]− 1/2, 1/2[+]− i/(2n), i/(2n)[

and F(z) := 0 otherwise.

Let G(z) := e−z2
/(πz). Notice that G is a locally integrable elementary solution

for the ∂− operator. Hence φ := G ∗ F is defined. Set

h−(z) := ϕ(Re z) f (z) − φ(z) if z ∈ U]−∞,1],4n)

and h+(z) := −(1 − ϕ(Re z)) f (z) − φ(z) if z ∈ U[−1,∞[,4n).

An easy calculation shows that the mapping

R : H∞(W[−1,1],n) → P∗,4n(]− ∞, 1])× P∗,4n([−1, ∞[), R( f ) := (h−, h+)

is defined, linear and continuous and h− − h+ = f , hence T is tame open. By
dualization we have a tame exact sequence of nuclear Fréchet spaces

0 → A([−1, 1])′b
tT→ P∗(]− ∞, b])′b × P∗([a, ∞[)′b

t I→ P′
∗ → 0

where the first and the last space are isomorphic to a power series space of finite
type by (3.1) and [10], hence both have (Ω)t and (DN)t by (the easy part of)
Theorem 2.1. Thus the sequence is tamely split by Theorem 2.2 and also (3.2)
splits tamely.

Remark 3.2. The decay of the decomposition factors in Theorem 3.1 may be essentially

improved: let D be the operator from 3.1 and define D̃ for k ∈ N by D̃( f )(x) :=

(D−( f eξ2k
)(x)e−x2k

, D+( f eξ2k
)(x)e−x2k

), f ∈ A([a, b]). Then D̃ is a decomposition

operator with component functions decreasing faster than e−x2k
.

Corollary 3.3. For c < a < b < d the sequences

0 → A(R)
I→ A(]− ∞, b])× A([a, ∞[)

T→ A([a, b]) → 0

0 → A([c, d])
I→ A([c, b])× A([a, d])

T→ A([a, b]) → 0

0 → A([a, b])′b
I→ A([c, b])′b × A([a, d])′b

T→ A([c, d])′b → 0

are exact and split.

Proof. The first statement is evident since the mapping D from Theorem 3.1 is also
continuous as a mapping into A(]− ∞, b])× A([a, ∞[) and it is a right inverse for
T : A(] − ∞, b])× A([a, ∞[) → A([a, b]). The second follows by the composition
of D− and D+ with proper restrictions. The third sequence is the transposed of
the second (with proper interpretation of the mappings I and T).
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We have proved in [10] that P∗ is tamely isomorphic to Λ0(n
1/2)′b. By Theorem

3.1 this also holds for the half sided variants:

Corollary 3.4. For a ∈ R the spaces P∗(]−∞, a]) and P∗([a, ∞[) are tamely isomorphic
to Λ0(n

1/2)′b.

Proof. Since P∗(] − ∞, b]) and P∗([a, ∞[) clearly are tamely isomorphic for any
a, b ∈ R we have the tame isomorphisms

(
P∗(]− ∞, a])× P∗(]− ∞, a])

)
≃t

(
P∗ × A([0, 1])

)

≃t

(
Λ0(n

1/2)′b × Λ0(n)
′
b

)
≃t Λ0(n

1/2)′b. (3.3)

In fact, the first isomorphism follows from Theorem 3.1, the second holds since
P∗ ≃t Λ0(n

1/2)′b by [10] and A([0, 1]) ≃t Λ0(n)
′
b by (3.1), and the third follows

from an increasing rearrangement. Therefore P∗(] − ∞, a]) is tamely isomorphic
to some Λ0(αn)′b (use also Theorem 2.1 and (2.1)). Using a standard argument via

diametral dimensions and the stability of Λ0(n
1/2)′b we conclude by (3.3) that αn

is (equivalent to) n1/2.

4 Periodic real analytic functions

The space Aper(R) of 2π−periodic real analytic functions can be identified with
a linear subspace of A(I) where ∅ 6= I ⊂ R is a compact or open interval. In
fact, the identification is given by the restriction r : Aper(R) → A(I), r( f ) := f

∣∣
I
.

Notice that r is continuous and injective by analyticity if I is non void. Using The-
orem 3.1 we can precisely determine the intervals I such that Aper(R) is (topolog-
ically isomorphic to) a complemented complemented subspace of A(I) via the
identification mapping r. We start with the compact case:

Theorem 4.1. Aper(R) is a complemented subspace of A([a, b]) via r if b − a > 2π.

Proof. Since Aper(R) is invariant by shifts we may assume that a = 0 and b =
2π + ε > 2π. Let

Q : A([0, 2π + ε]) → A([0, ε]), Q( f )(x) := f (x + 2π)− f (x),

and consider the sequence

0 → Aper(R)
r→ A([0, 2π + ε])

Q→ A([0, ε]) → 0. (4.1)

Clearly, r(Aper(R)) = ker(Q). To show that the sequence is (exact and) split we
choose D from Theorem 3.1 (for a := 0 and b := ε) and set

R( f )(x) :=
∞

∑
j=1

D−( f )(x − 2πj) +
∞

∑
j=0

D+( f )(x + 2πj), f ∈ A([0, ε]). (4.2)

R( f ) defines a real analytic germ near [0, 2π + ε] by the definition of the spaces
P∗(]∞, ε]) and P∗([0, ∞[). R : A([0, ε]) → A([0, 2π + ε]) is continuous and a short
calculation (using Theorem 3.1) shows that R is a right inverse for Q. The corol-
lary is proved.
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Formula (4.2) is based on the classical elementary solutions

E1 := −
∞

∑
j=0

δ−2π j and E2 :=
∞

∑
j=1

δ2π j

for the (convolution) operator Q on C∞(R). Here δξ denotes the point evaluation
at ξ ∈ R.

The statement of Theorem 4.1 is optimal:

Proposition 4.2. Aper(R) is not a complemented subspace of A([a, b]) via r if 0 ≤
b − a ≤ 2π.

Proof. We can again assume that a = 0 and 0 ≤ b ≤ 2π. If there is a continuous
linear projection Π : A([0, b]) → r[0,b](Aper(R)) ⊂ A([0, b]) then a continuous

projection Π1 : A([0, 2π]) → r[0,2π](Aper(R)) ⊂ A([0, 2π]) is given by the unique

extension of Π( f
∣∣
[0,b]

) to a function in r[0,2π](Aper(R)). In fact, Π1 clearly is a

projection and Π1 : A([0, 2π]) → A([0, 2π]) is continuous by the closed graph
theorem and the continuity of Π (and analyticity). We can thus assume that b =
2π. Let

Q : A([0, 2π]) → A({0}), Q( f )(x) := f (x + 2π)− f (x)

and consider the sequence

0 → Aper(R)
r→ A([0, 2π])

Q→ A({0}) → 0.

Clearly, r(Aper(R)) = ker(Q) and the sequence is exact since (4.1) is exact for
any ε > 0. If Aper(R) were complemented in A([0, 2π]) the sequence were split,
hence A({0}) would be isomorphic to a complemented subspace of A([0, 2π]), a
contradiction, since the spaces are isomorphic to duals of power series spaces of
different type.

The complementation of Aper(R) in A(I) for open intervals I is an immediate
consequence of Theorem 4.1 and Proposition 4.2:

Corollary 4.3. Let −∞ ≤ a < b ≤ ∞. Aper(R) is a complemented subspace of
A(]a, b[) via r if and only if b − a > 2π.

Proof. Necessity. Let b − a ≤ 2π and let Π : A(]a, b[) → r]a,b[(Aper(R)) ⊂ A(]a, b[)
be a continuous projection. Then a slight variant of the proof of Proposition 4.2
shows that Π( f

∣∣
]a,b[

), f ∈ A([a, b]), may be used to define a continuous projection

in A([a, b]) onto r[a,b](Aper(R)). Hence b − a > 2π by Proposition 4.2, a contra-
diction.

Sufficiency. For a < c < d < b and d− c > 2π let Π : A([c, d]) → r[c,d](Aper(R))

⊂ A([c, d]) be the continuous projection from Theorem 4.1. Then the unique ex-
tension of

T : A(]a, b[) → Aper(R), T( f ) := r−1
[c,d]

◦ Π( f
∣∣
[c,d]

), f ∈ A(]a, b[),

is a welldefined linear mapping. T is continuous by the closed graph theorem for
webbed spaces (see [14, 24.31]) since A(]a, b[) is ultrabornological and Aper(R) is
a (DFS)−space hence webbed. Thus, Π1 := r]a,b[ ◦ T : A(]a, b[) → r]a,b[(Aper(R))

⊂ A(]a, b[) is continuous and a projection onto r]a,b[(Aper(R)).
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The fact that Aper(R) is complemented in A(R) has been shown already in [9]
with an entirely different proof.

5 Decomposition of real analytic functions

The decomposition of real analytic germs in Theorem 3.1 leads to a decompo-
sition of real analytic functions defined on open intervals into functions which
are exponentially decreasing in one direction. More precisely, for −∞ ≤ c <

d ≤ ∞ let Aexp,+(]c, ∞[) := projm→c P∗([m, ∞[) (and Aexp,−(]− ∞, d[) := projm→d
P∗(]− ∞, m]), respectively) and let

T1 : Aexp,−(]− ∞, d[)× Aexp,+(]c, ∞[) → A(]c, d[), T1( f , g) := f
∣∣
]c,d[

−g
∣∣
]c,d[

, and

I1 : P∗ → Aexp,−(]− ∞, d[)× Aexp,+(]c, ∞[), I1( f ) := ( f
∣∣
]−∞,d[

, f
∣∣
]c,∞[

).

The following result can also be viewed as a linear continuous separation of sin-
gularities.

Theorem 5.1. For −∞ ≤ c < d ≤ ∞ the sequence

0 → P∗
I1→ Aexp,−(]− ∞, d[)× Aexp,+(]c, ∞[)

T1→ A(]c, d[) → 0

is exact and split, i.e. there exists a continuous linear right inverse

D1 : A(]c, d[) → Aexp,−(]− ∞, d[)× Aexp,+(]c, ∞[)

of T1.

Proof. With D from Theorem 3.1 (for c < a < b < d) we set

D1( f ) := (D1,−( f ), D1,+( f )) :=
(

D−( f
∣∣
[a,b]

), D+( f
∣∣
[a,b]

)
)
, f ∈ A(]c, d[).

Then

D1,−( f )
∣∣
[a,b]

= D1,+( f )
∣∣
[a,b]

+ f
∣∣
[a,b]

and therefore D1,−( f ) may be extended by the right hand side of this equation to
a real analytic function on ]− ∞, d[ (denoted also by D1,−( f ) since the extension
is unique by analyticity). Similarly, D1,+( f ) ∈ A(]c, ∞[). In this way, D1,−( f ) ∈
Aexp,−(] − ∞, d[) and D1,+( f ) ∈ Aexp,+(]c, ∞[). The continuity of D and the
closed graph theorem for webbed spaces (see [14, 24.31]) imply that D1 is con-
tinuous (use analyticity again and notice that Aexp,−(]− ∞, d[) and Aexp,+(]c, ∞[)
are (PLS)−spaces hence webbed). Also, D1 is a right inverse for T1 since D is a
right inverse for T (analyticity is used here for the third time).

Also Theorem 5.1 and a suitable version of formula (4.2) imply that Aper(R)
is complemented in A(]a, b[) if b − a > 2π.



Continuous linear decomposition of analytic functions 551

6 Convolution operators on real analytic functions

We will show in this section that the continuous linear decomposition of real
analytic functions from Theorem 5.1 can be used to obtain new formulas for right
inverses of convolution operators on real analytic functions (see (6.4) below).

Convolution operators are defined as follows: For µ ∈ A(R)′ let G :=
conv(supp µ). Let I ⊂ R be an open interval. Then the convolution operator

Tµ : A(I − G) → A(I), Tµ( f )(x) := 〈yµ, f (x − y)〉,

is defined, linear and continuous. The existence of continuous linear right in-
verses for Tµ was characterized in [9] as follows:

Theorem 6.1. Let I ⊂ R be an open interval. Let µ ∈ A(R)′ and suppose that
supp(µ) = {0} if I 6= R. Then Tµ : A(I) → A(I) admits a continuous linear
right inverse if and only if there is a function r(x) = o(x) on R+ such that

| Im z| ≤ r(|z|) for any z ∈ C with µ̂(z) = 0 (6.1)

and for any x ∈ R there is t ∈ C such that

|x − t| ≤ r(x) and |µ̂(t)| ≥ e−r(t). (6.2)

The sufficiency of (6.1) and (6.2) was proved in [9] using the methods from

[7, 8] providing continuous linear right inverses for the ∂−operator. We will
present here a new proof which is more natural and is based on elementary solu-
tions supported in half lines i.e. on hyperbolic convolution operators.

To explain this we need some further notation: notice that µ also acts as a
linear operator on the space B(R) := H(C \ R)/H(C) of hyperfunctions on R in
the following way

Sµ : B(R) → B(R), Sµ([u]) := [〈yµ, u( · − y)〉].

E ∈ B(R) is called an elementary solution for Sµ if Sµ(E) = δ where δ is Dirac’s
δ−distribution considered as a hyperfunction. Our starting point is the following
result:

Theorem 6.2. ([5, sections 6.1 and 6.2]) Let µ ∈ A(R)′ . Then Sµ admits elementary
solutions E+, E− ∈ B(R) supported in [c+, ∞[ (and ]− ∞, c−], respectively) for some
c+, c− ∈ R if µ satisfies (6.1) and (6.2). If supp(µ) = {0} we have c− = c+ = 0.

By [11, Corollary 4.2] we can extend E+ and E− to an exponentially decreasing
Fourier hyperfunction, i.e. we may assume that E+ is defined by
h+ ∈ H(C \ [c+, ∞[) satisfying for any j ∈ N

|h+(z)| ≤ Cje
−j|z| if 1/j ≤ | Im z| ≤ j and dist(z, [c+, ∞[) ≥ 1/j (6.3)

(and similarly h− can be chosen for E−).
Let Sµ(h±) =: u±. Then u± is a representing function for Dirac’s distribution

and also satisfies (6.3) by the definition of Sµ.
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Using the decomposition operator D1 = (D1,−, D1,+) from Theorem 5.1 we
define a right inverse R for Tµ

R( f )(z) :=
∫

γ−
h+(z − ξ)D−( f )(ξ)dξ −

∫

γ+

h−(z − ξ)D+( f )(ξ)dξ, f ∈ A(I),

(6.4)
where γ− is a path around ]− ∞, c+ + z] with positive orientation which is con-
tained in the domain of D−( f ) and is starting and ending as a line segment par-
allel to R (and similarly for γ−). The integral is absolutely convergent for z near I
by the definition of Aexp,± and (6.3) (use also the fact that c+ = c+ = 0 if I 6= R).
It is independent of the choice of γ± by Cauchy’s theorem and by the definition
of Aexp,± and (6.3) again. It defines a locally holomorphic function by fixing γ±
and changing differentiation and integration. Summarizing, R : A(I) → A(I) is
defined, linear and continuous. Finally we have

Tµ(R( f ))(x)

= 〈yµ,
∫

γ−
h+(x − y − ξ)D−( f )(ξ)dξ −

∫

γ−
h+(x − y − ξ)D+( f )(ξ)dξ〉

=
∫

γ−
〈yµ, h+(x − y − ξ)〉D−( f )(ξ)dξ −

∫

γ+

〈yµ, h−(x − y − ξ)〉D+( f )(ξ)dξ

=
∫

γ−
Sµ(h+)(x − ξ)D−( f )(ξ)dξ −

∫

γ+

Sµ(h−)(x − ξ)D+( f )(ξ)dξ

=
∫

γ−
u+(x − ξ)D−( f )(ξ)dξ −

∫

γ+

u−(x − ξ)D+( f )(ξ)dξ

= D−( f )(x) − D+( f )(x) = f (x) for x ∈ R

by Cauchy’s formula and Theorem 5.1 since we may change the paths of integra-
tion to circles by Cauchy’s theorem, (6.3) for u± and the definition of Aexp,±. By
analyticity this shows that R is a right inverse for Tµ on A(I).

7 Decomposition of entire functions

In this section we will treat the decomposition problem in the frame of entire
functions. Since the space H(C) is a power series space of infinite type we will
use here the technically easier splitting theory for exact sequences of power series
spaces of infinite type developed by D. Vogt (see e.g. [14]). Especially, we will not
need graded spaces and tame mappings in this section. The main auxiliary space
is the Fréchet space P∗∗ of exponentially decreasing entire functions defined by

P∗∗ := { f ∈ H(C) | ∀k ∈ N : | f |k := sup
| Im z|<k

| f (z)|ek|z|
< ∞}.

and the half sided variants

P∗∗,+ := { f ∈ H(C) | ∀k ∈ N : ‖ f‖k := sup
| Im z|<k,Re z>−k

| f (z)|ek|z|
< ∞},

(and P∗∗,−, respectively, which is defined similarly).



Continuous linear decomposition of analytic functions 553

Notice that P∗∗ is the space of test functions for the Fourier ultra hyperfunc-
tions (see [15] and [10]). Let

T2 : P∗∗,− × P∗∗,+ → H(C), T2( f , g) := f − g and

I2 : P∗∗ → P∗∗,− × P∗∗,+, I2( f ) := ( f , f ).

Theorem 7.1. The sequence

0 → P∗∗
I2→ P∗∗,− × P∗∗,+

T2→ H(C) → 0

is exact and split.

Proof. P∗∗ (and H(C)) are isomorphic to power series spaces of infinite type by
[10] (and Taylor series expansion, respectively). Hence the sequence splits by the
splitting theory of Vogt (see [14]) if the sequence is exact.

Exactness is proved similarly as in Theorem 3.1: let f ∈ H(C). Choose ϕ ∈
C∞(R) such that ϕ = 0 on ]− ∞,−1] and ϕ = 1 on [0, ∞[ and extend ϕ to C by

ϕ(z) := ϕ(Re z). With F := ∂(ϕ f ) we set

Fk(z) := F(z) if z ∈ Uk+1 := {z ∈ C | | Im z| < k + 1}

and Fk(z) := 0 otherwise. With G(z) := e−z2
/(πz) as in the proof of 3.1 we set

φk := G ∗ Fk. Then ∂φk(z) = F(z) if z ∈ Uk+1 and

|φk|k := sup
z∈Uk

| f (z)|ek|z|
< ∞.

We have proved in [10, section 3] that for any k ∈ N there is j ∈ N such that P∗∗
is dense in { f ∈ H(Uj) | | f |j < ∞} w.r.t. | |k. Hence the Mittag-Leffler procedure
implies that there is φ ∈ L∞

loc(C) such that

∂φ = F on C and |φ|k < ∞ for any k.

Let

h− := ϕ f − φ and h+ := −(1 − ϕ) f − φ.

Clearly, h± ∈ P∗∗,± and h− − h+ = f . The theorem is proved.

Corollary 7.2. Hper(C) is a complemented subspace of H(C).

Proof. Formula (4.2) also applies in the present case if D is substituted by the right
inverse of T2.

Using Fourier transformation the solution of a convolution equation on H(C)
is translated into an interpolation problem for entire functions of exponential
type. In this way, a more complicated formula for a right inverse of T2 was given
in the introduction of [17].
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