On the Gauss map of complete spacelike hypersurfaces with bounded mean curvature in the Minkowski space

Henrique Fernandes de Lima*

Dedicated to my daughter Larissa

Abstract

In this paper, under an appropriated restriction on the Gauss map, we obtain an extension of the Xin-Aiyama theorem concerning to complete spacelike hypersurfaces immersed with bounded mean curvature in the Minkowski space.

1 Introduction

In the last years, the study of spacelike hypersurfaces in the Minkowski space \mathbb{L}^{n+1} has been of substantial interest from both the physical and mathematical aspects. From a physical point of view, that interest is motivated by their role in the study of different problems in general relativity. From a mathematical point of view, that interest is also motivated by the fact that these hypersurfaces exhibit nice Bernstein-type properties. For example, Y.L. Xin in [6] and R. Aiyama in [1] simultaneous and independently characterized the spacelike hyperplanes as the only complete constant mean curvature spacelike hypersurfaces in \mathbb{L}^{n+1} having the image of its Gauss map contained in a geodesic ball of the hyperbolic space (see also [5] for a weaker first version of this result given by B. Palmer).

^{*}The author is partially supported by FAPESQ/CNPq/PPP, Brazil.

Received by the editors September 2010.

Communicated by L. Vanhecke.

²⁰⁰⁰ Mathematics Subject Classification : Primary 53C42; Secondary 53B30 and 53C50.

Key words and phrases : Minkowski space; Complete spacelike hypersurface; Mean curvature; Gauss map.

In this paper we are concerning to complete spacelike hypersurfaces immersed with bounded mean curvature in \mathbb{L}^{n+1} and whose Gauss map N is future-directed on \mathbb{L}^{n+1} (cf. Section 2). In this setting, under an appropriate restriction on the hyperbolic image $N(\Sigma)$ and as a suitable application of the well know generalized Maximum Principle of Omori-Yau, we obtain the following extension of the Xin-Aiyama theorem:

Theorem 1.1. Let $\psi : \Sigma^n \to \mathbb{L}^{n+1}$ be a complete spacelike hypersurface bounded away from the past infinite of \mathbb{L}^{n+1} and with bounded mean curvature $H \ge 0$. If the hyperbolic image of Σ^n is contained in the closure of a geodesic ball of center $e_{n+1} \in \mathbb{H}^n$ and whose radius ϱ satisfies $\cosh \varrho \le 1 + \inf_{\Sigma} H$, then Σ^n is a spacelike hyperplane.

Finally, we want to point out that our restriction on the Gauss map of the spacelike hypersurface is motivated by the fact that the hyperbolic caps of \mathbb{L}^{n+1} satisfy such condition (see Remark 3.1).

2 Complete Spacelike Hypersurfaces in \mathbb{L}^{n+1}

Let \mathbb{L}^{n+1} denote the (n+1)-dimensional Minkowski space, that is, the real vector space \mathbb{R}^{n+1} , endowed with the Lorentz metric

$$\langle v, w \rangle = \sum_{i=1}^{n} v_i w_i - v_{n+1} w_{n+1},$$

for all $v, w \in \mathbb{R}^{n+1}$.

A smooth immersion $\psi : \Sigma^n \to \mathbb{L}^{n+1}$ of an n-dimensional connected manifold Σ^n is said to be a *spacelike hypersurface* if the induced metric via ψ is a Riemannian metric on Σ^n , which, as usual, is also denoted by \langle , \rangle .

Observe that $e_{n+1} = (0, ..., 0, 1)$ is a unit timelike vector field globally defined on \mathbb{L}^{n+1} , which determines a time-orientation on \mathbb{L}^{n+1} . Thus we can choose a unique timelike unit normal vector field N on Σ^n which is *future-directed* on \mathbb{L}^{n+1} (i.e., $\langle N, e_{n+1} \rangle \leq -1$), and hence we may assume that Σ^n is oriented by N. We also note that such timelike unit normal vector field $N \in \mathfrak{X}(\Sigma)$ can be regarded as the Gauss map $N : \Sigma^n \to \mathbb{H}^n$ of Σ^n , where \mathbb{H}^n denotes the *n*-dimensional hyperbolic space, that is,

$$\mathbb{H}^n = \{ x \in \mathbb{L}^{n+1}; \langle x, x \rangle = -1, x_{n+1} \ge 1 \}.$$

In this setting, the image $N(\Sigma)$ is called the *hyperbolic image* of Σ^n . Furthermore, given a geodesic ball $B(a, \varrho)$ in \mathbb{H}^n of radius $\varrho > 0$ and centered at a point $a \in \mathbb{H}^n$, we recall that $B(a, \varrho)$ is characterized as the following

$$B(a,\varrho) = \{ p \in \mathbb{H}^n; -\cosh \varrho \le \langle p, a \rangle \le -1 \}.$$

So, if the hyperbolic image of Σ^n is contained into some B(a, q), then

$$1 \leq |\langle N, a \rangle| \leq \cosh \varrho.$$

Now, let *A* be the shape operator of Σ^n in \mathbb{L}^{n+1} associated to the Gauss map *N* of Σ^n future-directed on \mathbb{L}^{n+1} . In order to set up the notation to be used later, let us denote by $\overline{\nabla}$ and ∇ the Levi-Civita connections of \mathbb{L}^{n+1} and Σ^n , respectively. Then, the Gauss and Weingarten formulas for Σ^n in \mathbb{L}^{n+1} are written, respectively, as

$$\overline{\nabla}_X Y = \nabla_X Y - \langle AX, Y \rangle N,$$

and

$$A(X) = -\overline{\nabla}_X N,$$

for all tangent vector fields $X, Y \in \mathfrak{X}(\Sigma)$.

On the other hand, as in [4], the curvature tensor *R* of the spacelike hypersurface Σ^n is given by

$$R(X,Y)Z = \nabla_{[X,Y]}Z - [\nabla_X,\nabla_Y]Z,$$

where [] denotes the Lie bracket and $X, Y, Z \in \mathfrak{X}(\Sigma)$.

A fact well known is that the curvature tensor *R* of the spacelike hypersurface Σ^n can be described in terms of the shape operator *A* by the so-called Gauss equation given by

$$R(X,Y)Z = -\langle AX,Z\rangle AY + \langle AY,Z\rangle AX,$$

for every tangent vector fields $X, Y, Z \in \mathfrak{X}(\Sigma)$. Consequently, the *Ricci curvature tensor* Ric_{Σ} of Σ ^{*n*} is given by

$$\operatorname{Ric}_{\Sigma}(X,X) = nH\langle AX,X \rangle + \langle AX,AX \rangle$$
$$= \left| AX + \frac{nH}{2}X \right|^{2} - \frac{n^{2}H^{2}}{4}|X|^{2},$$

where $H = -\frac{1}{n} \operatorname{tr}(A)$ is the mean curvature of Σ^n .

In what follows, $\psi : \Sigma^n \to \mathbb{L}^{n+1}$ denotes a complete spacelike hypersurface, with Gauss map *N* future-directed on \mathbb{L}^{n+1} . In this context, according to the terminology established in [2], we say that Σ^n is *bounded away from the past infinity* of \mathbb{L}^{n+1} if the height function $h : \Sigma^n \to \mathbb{R}$, defined by $h(p) = \langle \psi(p), e_{n+1} \rangle$, is bounded from below on Σ^n .

In order to prove our result, we will need the generalized *Maximum Principle* due to H. Omori and S.T. Yau [3, 7].

Lemma 2.1. Let Σ^n be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below and $u : \Sigma^n \to \mathbb{R}$ be a smooth function which is bounded from below on Σ^n . Then there is a sequence of points $\{p_k\}$ in Σ^n such that

$$\lim_{k\to\infty} u(p_k) = \inf_{\Sigma} u, \quad \lim_{k\to\infty} |\nabla u(p_k)| = 0 \text{ and } \lim_{k\to\infty} \Delta u(p_k) \ge 0.$$

3 Proof of Theorem 1.1

Let us consider the height function $h = \langle \psi, e_{n+1} \rangle$ defined on Σ^n . We have that

$$\nabla h = e_{n+1}^{\top} = e_{n+1} + \langle N, e_{n+1} \rangle N,$$

where $e_{n+1}^{\top} \in \mathfrak{X}(\Sigma)$ denotes the tangential component of e_{n+1} in Σ^n . Consequently, from the Gauss and Weingarten formulas, the Hessian of *h* is given by

$$\nabla^2 h(X,Y) = \langle \nabla_X e_{n+1}^\top, Y \rangle = -\langle N, e_{n+1} \rangle \langle AX, Y \rangle,$$

for all $X, Y \in \mathfrak{X}(\Sigma)$. Thus, the Laplacian of *h* is

$$\Delta h = -\langle N, e_{n+1} \rangle \operatorname{tr}(A) = nH \langle N, e_{n+1} \rangle.$$

On the other hand, from the previous section, the Ricci curvature of Σ^n is such that

$$\operatorname{Ric}_{\Sigma} \geq -\frac{n^2 H^2}{4}$$

Consequently, since we are supposing that $0 \le H \le \alpha$ for some constant α , we get

$$\operatorname{Ric}_{\Sigma} \geq -\frac{n^2 \alpha^2}{4}$$

that is, $\operatorname{Ric}_{\Sigma}$ is bounded from below on Σ^n . Thus, since Σ^n is supposed to be bounded away from the past infinite of \mathbb{L}^{n+1} , we are in position to apply Lemma 2.1 to the height function *h*, obtaining a sequence $\{p_k\}$ in Σ^n such that

$$\lim_{k\to\infty}\Delta h(p_k)\geq 0.$$

Consequently, from the boundedness on Σ^n of the functions H and $\langle N, e_{n+1} \rangle$, we get a subsequence $\{p_{k_i}\}$ of $\{p_k\}$ such that

$$0 \leq \lim_{j \to \infty} \Delta h(p_{k_j}) \leq -n \lim_{j \to \infty} H(p_{k_j}) \leq 0.$$

Then, $\lim_{j\to\infty} H(p_{k_j}) = 0$, and $\inf_{\Sigma} H = 0$. Thus, since we are supposing that $N(\Sigma) \subset B(e_{n+1}, \varrho)$ with $\cosh \varrho \leq 1 + \inf_{\Sigma} H$, we conclude that

$$1 \leq |\langle N, e_{n+1} \rangle| \leq \cosh \varrho \leq 1,$$

that is, $\langle N, e_{n+1} \rangle = -1$ on Σ^n . Therefore, Σ^n is a spacelike hyperplane. *Remark* 3.1. Fixed a positive constant λ , we easily verify that the hyperbolic cap

$$\Sigma_{\lambda}^{n} = \left\{ x \in \mathbb{L}^{n+1}; \langle x, x \rangle = -\lambda^{2}, \, \lambda \leq x_{n+1} \leq \sqrt{1+\lambda^{2}} \right\}$$

is an example of spacelike hypersurface of the Lorentz-Minkowski space \mathbb{L}^{n+1} which has constant mean curvature

$$H_{\lambda} = \frac{1}{\lambda} > 0,$$

if we choose the Gauss map N future-direct on \mathbb{L}^{n+1} . Moreover, we also easily verify that the hyperbolic image $N(\Sigma_{\lambda})$ is contained in the closure of the geodesic ball of center $e_{n+1} \in \mathbb{H}^n$ and with radius ϱ satisfying

$$\cosh \varrho = \sqrt{1 + \frac{1}{\lambda^2}} \le 1 + H_{\lambda}.$$

References

- [1] Aiyama, R., On the Gauss map of complete space-like hypersurfaces of constant mean curvature in Minkowski space, Tsukuba J. Math. 16 (1992), 353-361.
- [2] Albujer, A.L. Alías, L.J., *Spacelike hypersurfaces with constant mean curvature in the steady state space*, Proc. Amer. Math. Soc. 137 (2009), 711-721.
- [3] Omori, H., *Isometric immersions of Riemannian manifolds*, J. Math. Soc. Japan 19 (1967), 205–214.
- [4] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London (1983).
- [5] Palmer, B. *The Gauss map of a spacelike constant mean curvature hypersurface in Minkowski space*, Comment. Math. Helv. 65 (1990), 52-57.
- [6] Xin, Y.L., On the Gauss image of a spacelike hypersurface with constant mean curvature in Minkowski space, Comment.Math. Helv. 66 (1991), 590-598.
- [7] Yau, S.T., *Harmonic functions on complete Riemannian manifolds*, Comm. Pure Appl. Math. 28 (1975), 201–228.

Departamento de Matemática e Estatística, Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brazil. 58109-970. Postal Code: 10.044 Tel.: +55 083 33101460. Fax: +55 083 33101112. email:henrique@dme.ufcg.edu.br