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Abstract

The paper deals with infinite weakly coupled systems of quasilinear para-
bolic differential functional equations. Initial boundary conditions of the
Robin type are considered. We construct an explicit Euler type approxima-
tion method based on an infinite system of difference functional equations.
Next we apply the truncation method to obtain a finite difference scheme
corresponding to the original differential problem.

We present a complete convergence analysis for the methods. The results
are based on a comparison technique with nonlinear estimates of the Perron
type for given functions.

1 Introduction

For any metric spaces X and Y we denote by C(X, Y) the class of all continuous
functions from X into Y. Let N and Z be the sets of natural numbers and integers
respectively. Denote by l∞ the class of all real sequences p = {pµ}µ∈N such that
‖p‖∞ = sup{|pµ| : µ ∈ N} < ∞. For simplicity we will write p = {pµ} instead
of p = {pµ}µ∈N. If p, q ∈ l∞, p = {pµ}, q = {qµ}, then we set p ∗ q = {pµqµ}.
Denote by M∞

n×n the set of all P = [pij]i,j=1,...,n such that pij ∈ l∞, 1 ≤ i, j ≤ n.
Put R∞

n to denote the set of all q = (q1, . . . , qn), such that qj ∈ l∞, 1 ≤ j ≤ n.

Received by the editors June 2010.
Communicated by P. Godin.
2000 Mathematics Subject Classification : 35R10, 35K51, 65M10.
Key words and phrases : functional differential systems, Robin conditions, upwind schemes,

truncation methods.

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 517–536



518 D. Jaruszewska-Walczak

We will use vectorial inequalities with the understanding that the same inequali-
ties hold between their corresponding components. Analogously we understand
inequalities between infinite sequences. We use the symbol Mn×n to denote the
set of all real n × n matrices. Inequalities between symmetric n × n matrices are
interpreted by means of quadratic forms.

Let a > 0, b = (b1, . . . , bn) ∈ Rn, bj > 0 for j = 1, . . . , n, be given. Define the
sets

E = [0, a]× [−b, b], E0 = {0} × [−b, b], ∂0E = E \
(

[0, a]× (−b, b)
)

.

Set Ξ = E × C(E, l∞) and Σ = E × C(E, l∞)× Rn. Suppose that

̺ : Ξ → M∞
n×n, ̺ = [̺ij]i,j=1,...,n, ̺ij = {̺

(µ)
ij }, 1 ≤ i, j ≤ n,

f : Σ → l∞, f = { f (µ)}, ϕ : E0 → l∞, ϕ = {ϕµ},

β, ψ : ∂0E → R∞
n ,

β = (β1, . . . , βn), ψ = (ψ1, . . . , ψn), β j = {β j.µ}, ψj = {ψj.µ}, 1 ≤ j ≤ n,

are given functions. For the function z : E → l∞, z = {zµ}, of the variables (t, x),
x = (x1, . . . , xn), and for 1 ≤ j ≤ n we write

∂tz = {∂tzµ}, ∂xj
z = {∂xj

zµ}, F[z] = {F(µ)[z]},

F(µ)[z](t, x) =
n

∑
i,j=1

̺
(µ)
ij ( t, x, z )∂xixj

zµ(t, x) + f (µ)( t, x, z, ∂xzµ(t, x) )

where ∂xzµ = ( ∂x1
zµ, . . . , ∂xnzµ ), µ ∈ N. We consider the system

∂tz(t, x) = F[z](t, x) (1)

with the initial condition

z(t, x) = ϕ(t, x) on E0. (2)

Write

∂j.+E =
{

(t, x) ∈ ∂0E : xj = bj

}

, ∂j.−E =
{

(t, x) ∈ ∂0E : xj = −bj

}

, 1 ≤ j ≤ n.

The following boundary conditions are associated with (1) and (2)

β j(t, x) ∗ z(t, x) + ∂xj
z(t, x) = ψj(t, x) on ∂j.+E, (3)

β j(t, x) ∗ z(t, x)− ∂xj
z(t, x) = ψj(t, x) on ∂j.−E, (4)

where 1 ≤ j ≤ n. The system (1) is weakly coupled. Each µ-th equation in (1)
depends on the first and second order partial derivatives of zµ. The problem (1)-
(4) is said to be the third boundary problem on E. The conditions (3), (4) are a special
type of the Robin conditions. We will assume that the functional dependence in
(1) is of the Volterra type.
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Assumption H[ V ]. The functions ̺ : Ξ → M∞
n×n and f : Σ → l∞ satisfy

the Volterra condition, i.e. for each (t, x) ∈ E, q ∈ Rn and w, w̄ ∈ C(E, l∞) such
that w(τ, y) = w̄(τ, y), (τ, y) ∈ E, τ ≤ t, we have ̺(t, x, w) = ̺(t, x, w̄) and
f (t, x, w, q) = f (t, x, w̄, q).

Differential equations with deviated variables and differential integral equa-
tions can be derived from a general model of functional dependence in (1) by
specializing the given functions.

We consider classical solutions of (1)-(4) in the following sense. We say that
a function v : E → l∞, v = {vµ}, is a regular solution of the system (1) if the
derivatives ∂tv = {∂tvµ}, ∂xixj

v = {∂xixj
vµ}, 1 ≤ i, j ≤ n, exist on E, ∂tv, ∂xixj

v ∈

C(E, l∞), 1 ≤ i, j ≤ n, and v satisfies (1) on E.

A regular solution v of (1) is said to be parabolic if for any symmetric matrix

r ∈ Mn×n, r = [rij]i,j=1,...,n, such that r ≤ 0 the inequality
n

∑
i,j=1

̺
(µ)
ij (t, x, v)rij ≤ 0

is satisfied for (t, x) ∈ E, µ ∈ N. The parabolic solution v of (1) such that the
conditions (2)-(4) hold, is called P-solution of (1)-(4).

In recent years a number of papers concerned with problems for infinite sys-
tems of parabolic functional differential equations were published. The mono-
graph [1] contains the exposition of existence results for such problems. Vari-
ous applications of infinite systems of parabolic differential integral equations
are also listed in [1]. Uniqueness criteria for infinite parabolic problems can be
found in [12, 13] and [3].

Approximate methods for parabolic differential or functional differential equa-
tions were considered by many authors and under various assumptions. The
main problem in these investigations is to find suitable difference or functional
difference equations which are consistent with respect to the original problem
and stable. It is not our aim to show a full review of papers concerning difference
methods for parabolic functional differential problems. Bibliographical informa-
tions can be found in [5, 7, 9, 10, 11].

We are interested in establishing a numerical discretization method for solv-
ing the differential functional problem (1)-(4). We propose upwind difference
explicit Euler type schemes which consist of replacing partial derivatives in (1)
by suitable difference operators. The choice of the difference operators approxi-
mating mixed derivatives is locally determined by the sign of the coefficients in
the differential equations. The approximation of the Robin boundary conditions
(3), (4) requires an extension of the mesh outside the set E (see the definition of
the sets ∂+0 Eh and E+

h ). The same extended mesh was applied in [2] for the scalar
quasilinear parabolic differential functional equation with the Neumann initial
boundary conditions (see also [8]).

The first part of the present paper deals with an infinite system of difference
functional equations generated by (1)-(4). In a general case this scheme is a theo-
retical approximation. If the original differential problem is reduced to the finite
one then the difference method is also finite and it is practically solvable.

In the next part of the paper we consider truncated finite differential func-
tional problems corresponding to (1)-(4) and difference functional methods re-
lated to them. A convergence analysis for these methods is given.



520 D. Jaruszewska-Walczak

Results presented in the paper are new also in the case of infinite systems
without a functional dependence.

To illustrate the theory we show results of numerical experiments.

2 Infinite systems of difference equations

We formulate a difference problem corresponding to (1)-(4). Denote by F (A, B)
the class of all functions defined on A and taking values in B where A and B are
arbitrary sets. If x ∈ Rn then we put ‖x‖ = |x1| + . . . + |xn|. We define a mesh
on the set E in the following way. Suppose that (h0, h′) where h′ = (h1, . . . , hn),
hi > 0, 0 ≤ i ≤ n, stand for steps of the mesh. For h = (h0, h′) and (r, m) ∈ Z1+n

where m = (m1, . . . , mn), we define nodal points as follows:

t(r) = rh0, x(m) = (x
(m1)
1 , . . . , x

(mn)
n ) = (m1h1, . . . , mnhn).

Denote by ∆ the set of all h = (h0, h′) such that there are N0 ∈ N and N =
(N1, . . . , Nn) ∈ Nn with the properties: N0h0 = a and (N1h1, . . . , Nnhn) = b. Let

R1+n
h = { (t(r), x(m)) : (r, m) ∈ Z1+n },

Eh = E ∩ R1+n
h , E0.h = E0 ∩ R1+n

h , ∂0Eh = ∂0E ∩ R1+n
h

and
E′

h =
{

(t(r), x(m)) ∈ Eh : 0 ≤ r ≤ N0 − 1
}

.

For every (t(r), x(m)) ∈ ∂0Eh we define the set S(m) of s = (s1, . . . , sn) such that
‖s‖ = 1 or ‖s‖ = 2 and

if mj = Nj then sj ∈ {0, 1}, if mj = −Nj then sj ∈ {0,−1},

and if − Nj < mj < Nj then sj = 0,

where 1 ≤ j ≤ n. Let

∂+0 Eh = {(t(r), x(m+s)) : (t(r), x(m)) ∈ ∂0Eh, s ∈ S(m)} and E+
h = ∂+0 Eh ∪ Eh.

If Ah ⊂ R1+n
h and z : Ah → l∞, ω : Ah → R then we write z(r,m) = z(t(r), x(m)) and

ω(r,m) = ω(t(r) , x(m)) on Ah. Set ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 standing
on i-th place. We define the difference operators δ0, δ = ( δ1, . . . , δn ) and δ+i , δ−i ,

1 ≤ i ≤ n, in the following way. For ω : E+
h → R and (t(r), x(m)) ∈ E′

h set

δ0ω(r,m) =
1

h0
(ω(r+1,m) − ω(r,m) ), (5)

δiω
(r,m) =

1

2hi
(ω(r,m+ei) − ω(r,m−ei) ), (6)

δ+i ω(r,m) =
1

hi
(ω(r,m+ei) − ω(r,m) ), δ−i ω(r,m) =

1

hi
(ω(r,m) − ω(r,m−ei) ) (7)
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where 1 ≤ i ≤ n. Solutions of difference equations will be defined on the set
E+

h . Since system (1) contains the functional variable z which is an element of the

space C(E, l∞), we need an interpolating operator Th : F (E+
h , l∞) → C(E, l∞).

Additional assumptions on Th will be required in the next part of this paper. For
z : E+

h → l∞, z = {zµ}, we put on E′
h

δ0z = {δ0zµ}, Fh[z] = {Fh.µ[z]},

Fh.µ[z]
(r,m) =

n

∑
i,j=1

̺
(µ)
ij ( t(r), x(m), Thz ) δijz

(r,m)
µ + f (µ)( t(r), x(m), Thz, δz

(r,m)
µ ), µ ∈ N.

The difference operators δij, 1 ≤ i, j ≤ n, are defined as follows. Write

δiiz
(r,m)
µ = δ+i δ−i z

(r,m)
µ , 1 ≤ i ≤ n. (8)

Put
J =

{

(i, j) : 1 ≤ i, j ≤ n, i 6= j
}

.

The difference expressions δijz
(r,m)
µ for (i, j) ∈ J are defined in the following way:

if ̺
(µ)
ij ( t(r), x(m), Thz ) ≥ 0 then δijz

(r,m)
µ =

1

2

(

δ+i δ+j z
(r,m)
µ + δ−i δ−j z

(r,m)
µ

)

, (9)

if ̺
(µ)
ij ( t(r), x(m), Thz ) < 0 then δijz

(r,m)
µ =

1

2

(

δ+i δ−j z
(r,m)
k + δ−i δ+j z

(r,m)
µ

)

.(10)

If z : E+
h → l∞ and (t(r), x(m)) ∈ ∂0Eh, s ∈ S(m), then we write

gh[z]
(r,m,s) = 2

n

∑
j=1

s2
j hjψj(t

(r), x(m))− (z(r,m+s) + z(r,m−s)) ∗
n

∑
j=1

s2
j hjβ j(t

(r), x(m)).

We will approximate solutions of (1)-(4) by means of solutions of the difference
functional problem

δ0z(r,m) = Fh [z]
(r,m) on E′

h, (11)

z(r,m) = ϕ
(r,m)
h on E0.h, (12)

z(r,m+s) − z(r,m−s) = gh[z]
(r,m,s) on ∂0Eh, s ∈ S(m), (13)

where ϕh : E0.h → l∞, ϕh = {ϕh.µ}, is a given function.

For w ∈ C(E, R) and for z ∈ F (E+
h , R) we put

|w|t = max
{

|w(τ, x)| : (τ, x) ∈ E, τ ≤ t
}

, t ∈ [0, a],

|z|(r) = max
{

|z(ν,m)| : (t(ν), x(m)) ∈ Eh, ν ≤ r
}

, 0 ≤ r ≤ N0.

If w ∈ C(E, l∞), w = {wµ}, and z ∈ F (E+
h , l∞), z = {zµ}, then we set |w|t =

{|wµ|t}, t ∈ [0, a], and |z|(r) = {|zµ|(r)}, 0 ≤ r ≤ N0.

Assumption H[ Th ]. The operator Th : F (E+
h , l∞) → C(E, l∞) is linear, Thz =

{Thzµ} for z ∈ F (E+
h , l∞), z = {zµ}, and the mapping Th : F (E+

h , R) → C(E, R)
satisfies the conditions:
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1) if ω, ω̄ ∈ F (E+
h , R) and ω = ω̄ on Eh then Thω = Thω̄,

2) for ω : E+
h → R and 0 ≤ r ≤ N0 we have |Thω|t(r) = |ω|(r),

3) if w : E → R is of class C1 and wh is the restriction of w to the set Eh then
there exists γ̃ : ∆ → R+ such that | Thwh − w |a ≤ γ̃(h) and lim

h→0
γ̃(h) = 0.

Remark 1. To define an operator Th : F (E+
h , R) → C(E, R) satisfying the above condi-

tions we can use the interpolating operator proposed in [6] for the construction of differ-
ence scheme corresponding to first order partial differential functional equations.

If p ∈ l∞, p = {pµ}, then we write |p| = {|pµ|}. Let 0 ∈ l∞ and 1 ∈ l∞ be the
sequences with all the elements equal to 0 and 1 respectively. Put R+ = [0,+∞)
and

l∞
+ =

{

p ∈ l∞ : p = {pµ}, pµ ∈ R+, µ ∈ N
}

,

l∞
0 =

{

p ∈ l∞
+ : p = {pµ}, lim

µ→∞
pµ = 0

}

.

Assumption H[ σ0 ]. The functions f : Σ → l∞, β, ψ : ∂0E → R∞
n and ϕ : E0 →

l∞ satisfy the conditions:

1) there is A0 ∈ l∞
+ such that |ϕ(t, x)| ≤ A0 on E0,

2) there is b̃ ∈ l∞, b̃ = {b̃µ}, such that β j(t, x) ≥ b̃ > 0 on ∂0E, 1 ≤ j ≤ n,

3) there exist σ0 ∈ C([0, a] × l∞
+ , l∞

+ ) and L0 ∈ l∞
+ such that

(i) σ0 is nondecreasing with respect to both variables and σ0(t, p) ≤ L0 for
(t, p) ∈ [0, a]× l∞

+ ,

(ii) there exists on [0, a] a maximal solution ω0 = {ω0.µ} of the Cauchy
problem

ω′(t) = σ0( t, ω(t) ), ω(0) = A0, (14)

4) the estimates

| f (t, x, w, 0)| ≤ σ0(t, |w|t), (t, x, w) ∈ Ξ,

|ψj(t, x)| ≤ b̃ ∗ ω0(t), (t, x) ∈ ∂0E, 1 ≤ j ≤ n, (15)

are satisfied.

Remark 2. Suppose that Assumption H[ σ0 ] is satisfied. Then P-solution v : E → l∞

of problem (1)-(4) satisfies the estimate

|v(t, x)| ≤ ω0(t) on E

where ω0 is the maximal solution of (14). This assertion follows from the comparison
theorem for infinite systems of parabolic functional differential equations (see [3]).

Let E+ = [0, a]× (−b
+

, b
+
) where b

+
∈ Rn

+ and b
+
> b.

Assumption H0[ ∆ ]. The functions ̺ : Ξ → M∞
n×n, f : Σ → l∞, β : ∂0E → R∞

n ,
ϕh : E0.h → l∞ and h ∈ ∆ are such that
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1) Assumption H[ V ] is satisfied,

2) there exist the derivatives ∂q f (µ) = ( ∂q1
f (µ), . . . , ∂qn f (µ) ) on Σ and

∂q f (µ)(t, x, w, · ) ∈ C(Rn, Rn) where (t, x, w) ∈ Ξ, µ ∈ N,

3) there is A0 ∈ l∞
+ , A0 = {A0.µ}, such that |ϕ

(r,m)
h | ≤ A0 on E0.h,

4) h ∈ ∆ is such that E+
h ⊂ E+ and the inequalities

1 − 2
n

∑
i=1

h0

h2
i

̺ii(t, x, w) + ∑
(i,j)∈J

h0

hihj
|̺ij(t, x, w)| ≥ 0, (16)

1

hi
̺ii(t, x, w)−

n

∑
j=1,j 6=i

1

hj
|̺ij(t, x, w)| −

1

2
|∂qi

f (t, x, w, q)| ≥ 0, 1 ≤ i ≤ n,

(17)
hold with (t, x, w) ∈ Ξ, q ∈ Rn, where ∂qi

f = {∂qi
f (µ)}, 1 ≤ i ≤ n, and the

inequality

1 −
n

∑
j=1

hjβ j(t, x) ≥ 0 (18)

holds on ∂0E.

Lemma 1. If Assumptions H[ Th ], H[ σ0 ] and H0[ ∆ ] are satisfied then there exists
exactly one solution uh : E+

h → l∞ of problem (11)-(13) and

|u
(r,m)
h | ≤ ω0(t

(r)) on Eh (19)

where ω0 is the maximal solution of (14).

Proof. It follows from Assumptions H[ Th ] and H[ V ] that there exists exactly
one solution uh of problem (11)-(13) and uh is defined on E+

h . We prove the esti-

mate (19). Let ζ
(r)
h = {ζ

(r)
h.µ}, 0 ≤ r ≤ N0, be given by

ζ
(r)
h.µ = max

{

|u
(ν,m)
h.µ | : (t(ν), x(m)) ∈ E+

h , ν ≤ r
}

, µ ∈ N.

We prove by induction that for any 0 ≤ r ≤ N0 the inequality

ζ
(r)
h ≤ ω0(t

(r)) (20)

is true. First we prove that ζ
(0)
h ≤ A0. If on the contrary, ζ

(0)
h.µ > A0.µ for some

µ ∈ N then in view of the assumption 3) of H0[ ∆ ] there is (0, x(m̃+s̃)) ∈ ∂+0 Eh

with s̃ ∈ S(m̃) such that ζ
(0)
h.µ = |u

(0,m̃+s̃)
h.µ |. Assume that ζ

(0)
h.µ = u

(0,m̃+s̃)
h.µ . It follows

that

ζ
(0)
h.µ

(

1 +
n

∑
j=1

s̃2
j hjβ j.µ(0, x(m̃))

)

=
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= ϕ
(0,m̃−s̃)
h.µ

(

1 −
n

∑
j=1

s̃2
j hjβ j.µ(0, x(m̃))

)

+ 2
n

∑
j=1

s̃2
j hjψj.µ(0, x(m̃)) ≤

≤ A0.µ

(

1 −
n

∑
j=1

s̃2
j hjβ j.µ(0, x(m̃))

)

+ 2
n

∑
j=1

s̃2
j hj|ψj.µ(0, x(m̃))|.

Thus

n

∑
j=1

s̃2
j hj|ψj.µ(0, x(m̃))| > A0.µ

n

∑
j=1

s̃2
j hjβ j.µ(0, x(m̃)) ≥ A0.µb̃µ

n

∑
j=1

s̃2
j hj

and we obtain a contradiction to the condition (15). If we assume that ζ
(0)
h.µ =

−u
(0,m̃+s̃)
h.µ then we get the same contradiction.

Suppose that the estimate (20) is satisfied for fixed r, 0 ≤ r < N0. It follows
that

δ0u
(r,m)
h.µ =

n

∑
i,j=1

̺
(µ)
ij ( t(r), x(m), Thuh ) δiju

(r,m)
h.µ +

+
n

∑
i=1

∂qi
f (µ)( P

(r,m)
µ [uh] ) δiu

(r,m)
h.µ + f (µ)( t(r), x(m), Thuh, 0 ), µ ∈ N, (21)

where (t(r), x(m)) ∈ E′
h and P

(r,m)
µ [uh] = ( t(r), x(m), Thuh, ξδu

(r,m)
h.µ ) with some

ξ ∈ (0, 1) is an intermediate point. Set

J
(r,m)
µ.+ [uh] =

{

(i, j) ∈ J : ̺
(µ)
ij (t(r), x(m), Thuh) ≥ 0

}

, J
(r,m)
µ.− [uh] = J \ J

(r,m)
µ.+ [uh].

We conclude from (21) that

u
(r+1,m)
h.µ = u

(r,m)
h.µ A

(r,m)
µ +

n

∑
i=1

u
(r,m+ei)
h.µ B

(r,m)
µ.i +

n

∑
i=1

u
(r,m−ei)
h.µ C

(r,m)
µ.i +

+ ∑
(i,j)∈J

(r,m)
µ.+ [uh]

(

u
(r,m+ei+ej)

h.µ + u
(r,m−ei−ej)

h.µ

)

D
(r,m)
µ.ij + (22)

+ ∑
(i,j)∈J

(r,m)
µ.− [uh]

(

u
(r,m+ei−ej)

h.µ + u
(r,m−ei+ej)

h.µ

)

D
(r,m)
µ.ij + h0 f (µ)( t(r), x(m), Thuh, 0 )

where

A
(r,m)
µ = 1 − 2

n

∑
i=1

h0

h2
i

̺
(µ)
ii (Q) + ∑

(i,j)∈J

h0

hihj
|̺

(µ)
ij (Q)|,

B
(r,m)
µ.i =

h0

h2
i

̺
(µ)
ii (Q)−

n

∑
j=1,j 6=i

h0

hihj
|̺

(µ)
ij (Q)|+

h0

2hi
∂qi

f (µ)(P), 1 ≤ i ≤ n,

C
(r,m)
µ.i =

h0

h2
i

̺
(µ)
ii (Q)−

n

∑
j=1,j 6=i

h0

hihj
|̺

(µ)
ij (Q)| −

h0

2hi
∂qi

f (µ)(P), 1 ≤ i ≤ n,
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D
(r,m)
µ.ij =

h0

2hihj
|̺

(µ)
ij (Q)|, (i, j) ∈ J,

and Q = ( t(r), x(m), Thuh ), P = P
(r,m)
µ [uh]. Since A

(r,m)
µ , B

(r,m)
µ.i , C

(r,m)
µ.i , D

(r,m)
µ.ij are

nonnegative and

A
(r,m)
µ +

n

∑
i=1

(

B
(r,m)
µ.i + C

(r,m)
µ.i

)

+
n

∑
i,j=1

2D
(r,m)
µ.ij = 1, µ ∈ N,

we obtain
|u

(r+1,m)
h.µ | ≤ ζ

(r)
h + h0σ0( t(r), ζ

(r)
h ).

The components of ω0 are convex on [0, a] so we have the following inequality

ω0(t
(r+1)) ≥ ω0(t

(r)) + h0 σ0( t(r), ω0(t
(r)) ).

The above inequalities and the inductive assumption yield

|u
(r+1,m)
h.µ | ≤ ω0(t

(r+1)), (t(r+1), x(m)) ∈ Eh. (23)

If we assume that the inequality ζ
(r+1)
h ≤ ω0(t

(r+1)) does not hold and ζ
(r+1)
h.µ >

ω0.µ(t
(r+1)) for some µ ∈ N then there is (t(ν̄), x(m̄+s̄)) ∈ ∂+0 Eh with ν̄ ≤ r + 1,

s̄ ∈ S(m̄) such that ζ
(r+1)
h.µ = |u

(ν̄,m̄+s̄)
h.µ |. Consider the case ζ

(r+1)
h.µ = u

(ν̄,m̄+s̄)
h.µ . It

follows from (13) and (23) that

ζ
(r+1)
h.µ

(

1 +
n

∑
j=1

s̄2
j hjβ j.µ(t

(ν̄), x(m̄))
)

≤

≤ ω0.µ(t
(r+1))

(

1 −
n

∑
j=1

s̄2
j hjβ j.µ(t

(ν̄), x(m̄))
)

+ 2
n

∑
j=1

s̄2
j hj|ψj.µ(t

(ν̄), x(m̄))|

and thus
n

∑
j=1

s̄2
j hj|ψj.µ(t

(ν̄), x(m̄))| > b̃µω0.µ(t
(r+1))

n

∑
j=1

s̄2
j hj.

This is a contradiction to the assumption (15). Analogously we obtain in the case

ζ
(r+1)
h.µ = −u

(ν̄,m̄+s̄)
h.µ . Therefore

ζ
(r+1)
h ≤ ω0(t

(r+1))

and this completes the proof of Lemma 1.
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3 Convergence of difference methods

For p ∈ l∞
+ we define Cp(E, l∞) = {w ∈ C(E, l∞) : |w|a ≤ p}.

Assumption H[ σ ]. The functions ̺ : Ξ → M∞
n×n, f : Σ → l∞ are continuous,

Assumption H[ σ0 ] is satisfied and

1) the sequence A ∈ l∞
+ is such that A > 0 and A ≥ ω0(a),

2) there exist σ ∈ C([0, a] × l∞
+ , l∞

+ ), σ = {σµ}, and L ∈ l∞
+ such that

(i) σ is nondecreasing with respect to both variables, σ(t, 0) = 0, t ∈ [0, a],
and σ(t, p) ≤ L on [0, a]× l∞

+ ,

(ii) for each C ∈ l∞
+ , C ≥ 1, a function ω̃(t) = 0, t ∈ [0, a], is the unique

solution of the problem

ω′(t) = C ∗ σ( t, ω(t) ), ω(0) = 0,

3) the estimates

n

∑
i,j=1

| ̺ij(t, x, w)− ̺ij(t, x, w̄) | ≤ σ( t, |w − w̄|t ),

| f (t, x, w, q)− f (t, x, w̄, q) | ≤ σ( t, |w − w̄|t )

are satisfied for (t, x) ∈ E, q ∈ Rn and w, w̄ ∈ CA(E, l∞).

Assumption H1[ ∆ ]. The functions ̺ : Ξ → M∞
n×n, f : Σ → l∞, β : ∂0E → R∞

n ,
ϕh : E0.h → l∞ and h ∈ ∆ satisfy Assumption H0[ ∆ ] and

1) there is a sequence B ∈ l∞
+ such that β j(t, x) ≤ B on ∂0E, 1 ≤ j ≤ n,

2) there is a constant C̃ > 0 such that ‖h′‖2 ≤ C̃h0.

Theorem 1. Suppose that Assumptions H[ Th ], H1[ ∆ ] and H[ σ ] are satisfied and

1) the function v : E+ → l∞, v = {vµ}, is such that v(·, x) : [0, a] → l∞,

x ∈ (−b
+

, b
+
), is of class C1, v(t, ·) : (−b

+
, b

+
) → l∞, t ∈ [0, a], is of class

C3 and there are c0, c1 ∈ l∞
+ such that

|∂xixj
v(t, x)| ≤ c0, |∂xixjxk

v(t, x)| ≤ c1 on E+, 1 ≤ i, j, k ≤ n,

and v is P-solution of (1)-(4) on E,

2) the function uh : E+
h → l∞, uh = {uh.µ}, is the solution of problem (11)-(13),

3) there exists a function γϕ : ∆ → l∞
+ such that lim

h→0
γϕ(h) = 0 and

| ϕ
(r,m)
h − ϕ(t(r), x(m)) | ≤ γϕ(h) on E0.h.
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Then there is γ : ∆ → l∞
+ such that lim

h→0
γ(h) = 0 and

| u
(r,m)
h − v(t(r), x(m)) | ≤ γ(h) on E+

h . (24)

Proof. Denote by ṽh = {ṽh.µ} the restriction of v to the set E+
h . Let Γ

(r,m)
h =

{Γ
(r,m)
h.µ } be defined on E′

h by the relation

Γ
(r,m)
h = δ0ṽ

(r,m)
h − Fh[ṽh]

(r,m).

It follows from the regularity of v and from Assumption H[ σ ] that there is γΓ :
∆ → l∞

+ such that

| Γ
(r,m)
h | ≤ γΓ(h) on E′

h

and lim
h→0

γΓ(h) = 0. For (t(r), x(m)) ∈ ∂0Eh and s ∈ S(m) we define

τ
(r,m,s)
h = ṽ

(r,m+s)
h − ṽ

(r,m−s)
h − gh[ṽh]

(r,m,s).

Using the Taylor formula for v with the third order derivatives with respect to x
and by the relation

sj∂xj
v(t(r), x(m)) = s2

j

(

ψj(t
(r), x(m))− β j(t

(r), x(m)) ∗ v(t(r), x(m))
)

, 1 ≤ j ≤ n,

we obtain

|τ
(r,m,s)
h | ≤ ĉ ‖h′‖3 where ĉ =

1

3
c1 + B ∗ c0. (25)

Let the function εh : E+
h → l∞, εh = {εh.µ}, be given by εh = uh − ṽh. Then εh

satisfies the difference functional system

δ0ε
(r,m)
h.µ =

n

∑
i,j=1

̺
(µ)
ij ( t(r), x(m), Thuh ) δijε

(r,m)
h.µ +

+
n

∑
i=1

∂qi
f (µ)( P

(r,m)
µ [uh, ṽh] ) δiε

(r,m)
h.µ + Λ

(r,m)
h.µ (26)

where (t(r), x(m)) ∈ E′
h, µ ∈ N,

Λ
(r,m)
h.µ =

n

∑
i,j=1

(

̺
(µ)
ij ( t(r), x(m), Thuh )− ̺

(µ)
ij ( t(r), x(m), Thṽh )

)

δijṽ
(r,m)
h.µ +

+ f (µ)( t(r), x(m), Thuh, δṽ
(r,m)
h.µ )− f (µ)( t(r), x(m), Thṽh, δṽ

(r,m)
h.µ )− Γ

(r,m)
h.µ

and

P
(r,m)
µ [uh, ṽh] = ( t(r), x(m), Thuh, δṽ

(r,m)
h.µ + ξ(δu

(r,m)
h.µ − δṽ

(r,m)
h.µ ) )
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with some ξ ∈ (0, 1). Define η
(r)
h = {η

(r)
h.µ}, 0 ≤ r ≤ N0, by

η
(r)
h.µ = max

{

|ε
(ν,m)
h.µ | : (t(ν), x(m)) ∈ E+

h , ν ≤ r
}

, µ ∈ N.

Observe that for Λ
(r,m)
h = {Λ

(r,m)
h.µ } we obtain the estimate

|Λ
(r,m)
h | ≤ (1 + c0) ∗ σ( t(r), η

(r)
h ) + γΓ(h).

We can rewrite (26) into the form which is analogous to (22) and we conclude that

|ε
(r+1,m)
h | ≤ η

(r)
h + h0(1 + c0) ∗ σ( t(r), η

(r)
h ) + h0γΓ(h) (27)

where (t(r+1), x(m)) ∈ Eh.

Now we take (t(r+1), x(m)) ∈ ∂0Eh, s ∈ S(m). Then (t(r+1), x(m+s)) ∈ ∂+0 Eh and

ε
(r+1,m+s)
h ∗

(

1 +
n

∑
j=1

s2
j hjβ j(t

(r+1), x(m))
)

=

= ε
(r+1,m−s)
h ∗

(

1 −
n

∑
j=1

s2
j hjβ j(t

(r+1), x(m))
)

− τ
(r+1,m,s)
h .

Thus
|ε
(r+1,m+s)
h | ≤ |ε

(r+1,m−s)
h |+ |τ

(r+1,m,s)
h |.

It follows from (25), (27) and from the assumption 2) of H1[ ∆ ] that

|ε
(r+1,m+s)
h | ≤ η

(r)
h + h0(1 + c0) ∗ σ( t(r), η

(r)
h ) + h0γ

+

Γ (h)

where γ
+

Γ (h) = γΓ(h) + ĉ C̃
√

C̃h0. Thus the following recursive inequality

η
(r+1)
h ≤ η

(r)
h + h0(1 + c0) ∗ σ( t(r), η

(r)
h ) + h0γ

+

Γ (h) (28)

holds with 0 ≤ r < N0. Let ωh be the maximal solution of the problem

ω′(t) = (1 + c0) ∗ σ( t, ω(t) ) + γ
+

Γ (h), ω(0) = γ
+

ϕ(h),

where γ
+

ϕ(h) = γϕ(h) + ĉ ‖h′‖3. The solution ωh is defined on [0, a] and

lim
h→0

ωh(t) = 0 uniformly on [0, a]. Since

ωh(t
(r+1)) ≥ ωh(t

(r)) + h0 (1 + c0) ∗ σ( t(r), ωh(t
(r)) ) + h0γ

+

Γ (h), 0 ≤ r < N0,

and η
(0)
h ≤ γ

+

ϕ(h), we have

η
(r)
h ≤ ωh(t

(r)), 0 ≤ r ≤ N0.

We obtain the assertion (24) with γ(h) = ωh(a).
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4 Finite systems of difference equations

The main task in investigations presented in this part of the paper is to find a finite
difference scheme corresponding to the original infinite problem (1)-(4). We will
apply the truncation method.

Fix k ∈ N. Let ϕ̃ ∈ C(E, l∞), ϕ̃ = {ϕ̃µ}, be such that ϕ̃ = ϕ on E0. For
w : E → l∞, w = {wµ}, we put

[w]k.ϕ̃ = {w̄µ} where w̄µ = wµ for 1 ≤ µ ≤ k and w̄µ = ϕ̃µ for µ > k.

If D ⊂ E and w : D → l∞, w = {wµ}, then the symbol w[k] denotes the function

w[k] : D → Rk given by w[k] = (w1, . . . , wk). We will treat an element p ∈ Rk,
p = (p1, . . . , pk), also as the sequence p = {pµ} with pµ = 0 for µ > k. Write

F[k][z] = ( F
[k]
1 [z], . . . , F

[k]
k [z] ),

F
[k]
µ [z](t, x) =

n

∑
i,j=1

̺
(µ)
ij ( t, x, [z]k.ϕ̃ ) ∂xixj

zµ(t, x) + f (µ)( t, x, [z]k.ϕ̃, ∂xzµ(t, x) ),

where z : E → Rk, z = (z1, . . . , zk), 1 ≤ µ ≤ k.
Consider the finite differential functional system

∂tz(t, x) = F[k][z](t, x) (29)

with the initial boundary conditions

z(t, x) = ϕ[k](t, x), (t, x) ∈ E0, (30)

β[k](t, x) ∗ z(t, x) + ∂xj
z(t, x) = ψ[k](t, x), (t, x) ∈ ∂j.+E, (31)

β[k](t, x) ∗ z(t, x)− ∂xj
z(t, x) = ψ[k](t, x), (t, x) ∈ ∂j.−E, (32)

where 1 ≤ j ≤ n.
To estimate the difference between the solution of infinite problem (1)-(4) and

the solution of truncated problem (29)-(32) we formulate additional assumptions.
Assumption H[ σ, ϕ ]. The functions ̺ : Ξ → M∞

n×n, f : Σ → l∞, β : ∂0E →
R∞

n satisfy Assumption H[ σ ] and the function ϕ ∈ C(E0, l∞) is such that there
exists ϕ̃ ∈ C(E, l∞), ϕ̃ = {ϕ̃µ}, with the properties:

1) ϕ̃(t, x) = ϕ(t, x) for (t, x) ∈ E0 and |ϕ̃|a ≤ Ã with Ã = 1
2 A,

2) the function ϕ̃(·, x) : [0, a] → l∞, x ∈ [−b, b], is of class C1, the function
ϕ̃(t, ·) : [−b, b] → l∞, t ∈ [0, a], is of class C2 and there is d ∈ l∞

+ , d = {dµ},
such that

|∂xixj
ϕ̃(t, x)| ≤ d, (t, x) ∈ E, 1 ≤ i, j ≤ n,

3) there is c ∈ l∞
0 , c = {cµ}, such that

| ∂t ϕ̃(t, x)− F[ϕ̃](t, x) | ≤ c for (t, x) ∈ E, (33)

and the maximal solution ω̃ = {ω̃µ} of the problem

ω′(t) = (1 + d) ∗ σ( t, ω(t) ) + c, ω(0) = 0, (34)

exists on [0, a] and lim
µ→∞

ω̃µ(t) = 0 uniformly on [0, a],
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4) the estimates

| β j(t, x) ∗ ϕ̃(t, x) + ∂xj
ϕ̃(t, x)− ψj(t, x) | ≤ b̃ ∗ ω̃(t), (t, x) ∈ ∂j.+E,

| β j(t, x) ∗ ϕ̃(t, x)− ∂xj
ϕ̃(t, x)− ψj(t, x) | ≤ b̃ ∗ ω̃(t), (t, x) ∈ ∂j.−E,

are satisfied for 1 ≤ j ≤ n.

Remark 3. Let aµj ∈ R+, µ, j ∈ N, be such that the series Sµ =
∞

∑
j=1

aµj, µ ∈ N,

are convergent and the sequence S = {Sµ} tends to zero. Fix the sequence p̃ ∈ l∞
+ ,

p̃ = {p̃µ}, such that p̃µ > 0 for µ ∈ N. Put I[p̃] =
{

p ∈ l∞
+ : p ≤ p̃

}

. Then the

function σ : [0, a]× l∞
+ → l∞

+ , σ = {σµ}, given by

σµ(t, p) =
∞

∑
j=1

aµj pj, p ∈ I[p̃], and σµ(t, p) =
∞

∑
j=1

aµj p̃j, p ∈ l∞
+ \ I[p̃],

where t ∈ [0, a], µ ∈ N, satisfies the required conditions.

Lemma 2. If Assumption H[ σ, ϕ ] is satisfied and the function v : E → l∞ is P-solution
of (1)-(4) then

|v(t, x)− ϕ̃(t, x)| ≤ ω̃(t), (t, x) ∈ E,

where ω̃ is the maximal solution of the problem (34).

Proof. Define ṽ : E → l∞, ṽ = {ṽµ}, by ṽ = v − ϕ̃. Let the function G = {Gµ}
be defined on E × CÃ(E, l∞)× Rn × Mn×n in the following way

Gµ(t, x, w, q, r) =
n

∑
i,j=1

̺
(µ)
ij (t, x, w + ϕ̃)

(

rij + ∂xixj
ϕ̃µ(t, x)

)

+

+ f (µ)( t, x, w + ϕ̃, q + ∂x ϕ̃µ(t, x) )− ∂t ϕ̃µ(t, x)

where µ ∈ N and r = [rij]i,j=1,...,n. Consider the infinite differential functional
system

∂tzµ(t, x) = Gµ(t, x, z, ∂xzµ(t, x), ∂xxzµ(t, x)), µ ∈ N, (35)

where z = {zµ}, ∂xxzµ = [∂xixj
zµ]i,j=1,...,n. It follows that the function ṽ is a

parabolic solution of (35) such that ṽ(t, x) = 0 on E0 and

| β j(t, x) ∗ ṽ(t, x) + ∂xj
ṽ(t, x) | ≤ b̃ ∗ ω̃(t) on ∂j.+E,

| β j(t, x) ∗ ṽ(t, x)− ∂xj
ṽ(t, x) | ≤ b̃ ∗ ω̃(t) on ∂j.−E

where 1 ≤ j ≤ n. The following estimates

|Gµ(t, x, w, 0, 0)| ≤
n

∑
i,j=1

|̺
(µ)
ij ( t, x, w + ϕ̃ )− ̺

(µ)
ij ( t, x, ϕ̃ )| · |∂xixj

ϕ̃µ(t, x)|+

+ | f (µ)( t, x, w + ϕ̃, ∂x ϕ̃µ(t, x) )− f (µ)( t, x, ϕ̃, ∂x ϕ̃µ(t, x) )|+

+ |F(µ)[ϕ̃]− ∂t ϕ̃µ(t, x)| ≤ (1 + dµ)σµ(t, |w|t) + cµ
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are satisfied for (t, x) ∈ E, w ∈ CÃ(E, l∞) and µ ∈ N. It follows from the compar-
ison theorem (see [3]) that

|ṽ(t, x)| ≤ ω̃(t) on E.

The proof is complete.

For a function w ∈ C(E, Rk), w = (w1, . . . , wk), we write |w|t = ( |w1|t, . . . ,
|wk|t ), t ∈ [0, a]. Put CÃ(E, Rk) = {w ∈ C(E, Rk) : |w|a ≤ Ã} where Ã ∈ l∞ is
given in Assumption H[ σ, ϕ ].

If v : E → l∞ is P-solution of (1)-(4) and there is c0 ∈ l∞, c0 = {c0.µ}, such that
|∂xixj

v(t, x)| ≤ c0 on E, 1 ≤ i, j ≤ n, then v is said to be P [c0]-solution.

Lemma 3. Suppose that Assumption H[ σ, ϕ ] is satisfied and

1) the function v : E → l∞, v = {vµ}, is P [c0]-solution of (1)-(4),

2) for each k ∈ N the function u[k] : E → Rk, u[k] = (u
[k]
1 , . . . , u

[k]
k ), is the parabolic

solution of (29)-(32).

Then there exists ω[k] ∈ C([0, a], Rk
+) such that

|v[k](t, x)− u[k](t, x)| ≤ ω[k](t), (t, x) ∈ E,

and lim
k→∞

‖ω[k](t)‖∞ = 0 uniformly on [0, a].

Proof. Let k ∈ N be fixed and let the function ṽ[k] : E → Rk be given by

ṽ[k] = u[k] − v[k]. We define the function H : E × CÃ(E, Rk)× Rn × Mn×n → Rk,
H = (H1, . . . , Hk), as follows:

Hµ(t, x, w, q, r) =
n

∑
i,j=1

̺
(µ)
ij ( t, x, [w + v]k.ϕ̃ )rij+

+
n

∑
i,j=1

(

̺
(µ)
ij ( t, x, [w + v]k.ϕ̃ )− ̺

(µ)
ij (t, x, v)

)

∂xixj
vµ(t, x)+

+ f (µ)( t, x, [w + v]k.ϕ̃, q + ∂xvµ(t, x) )− f (µ)( t, x, v, ∂xvµ(t, x) ).

Consider the differential functional system

∂tzµ(t, x) = Hµ( t, x, z, ∂xzµ(t, x), ∂xxzµ(t, x) ), 1 ≤ µ ≤ k, (36)

where z = (z1, . . . , zk), with the homogeneous initial boundary conditions

z(t, x) = 0 on E0, (37)

β
[k]
j (t, x) ∗ z(t, x) + ∂xj

z(t, x) = 0 on ∂j.+E, (38)

β
[k]
j (t, x) ∗ z(t, x)− ∂xj

z(t, x) = 0 on ∂j.−E (39)
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where 1 ≤ j ≤ n. The function ṽ[k] is the parabolic solution of the problem
(36)-(39). We use the comparison theorem for systems of differential functional

equations to estimate the values of ṽ[k].
We need the following additional notation. For p ∈ l∞, p = {pµ}, we denote

by 0k.p the sequence {p̄µ} such that p̄µ = 0 for 1 ≤ µ ≤ k and p̄µ = pµ for µ > k.

Let σ[k] : [0, a]× Rk
+ → Rk

+, σ[k] = (σ
[k]
1 , . . . , σ

[k]
k ), be given by

σ
[k]
µ (t, p) = σµ( t, p ), 1 ≤ µ ≤ k. (40)

We observe that the terms

n

∑
i,j=1

|̺
(µ)
ij ( t, x, [w + v]k.ϕ̃ )− ̺

(µ)
ij ( t, x, v )|,

| f (µ)( t, x, [w + v]k.ϕ̃, ∂xvµ(t, x) )− f (µ)( t, x, v, ∂xvµ(t, x) )|,

with (t, x) ∈ E, w ∈ CÃ(E, Rk), 1 ≤ µ ≤ k, are bounded from above by

σ
[k]
µ ( t, |w|t ) + σµ( t, 0k.ω̃(t) )

where ω̃ is the maximal solution of (34). Then

|Hµ(t, x, w, 0, 0)| ≤ (1 + c0.µ)σ
[k]
µ ( t, |w|t ) + α

[k]
µ

with α
[k]
µ = (1 + c0.µ)σµ( a, 0k.ω̃(a) ), 1 ≤ µ ≤ k. Write α[k] = (α

[k]
1 , . . . , α

[k]
k ). It

follows that
|ṽ[k](t, x)| ≤ ω[k](t) on E,

where ω[k] is the maximal solution of the problem

ω′(t) = (1 + c0) ∗ σ[k]( t, ω(t) ) + α[k], ω(0) = 0. (41)

Since lim
k→∞

‖α[k]‖∞ = 0, we have that lim
k→∞

‖ω[k](t)‖∞ = 0 uniformly on [0, a]. This

finishes the proof of Lemma 3.
Now we construct the difference problem related to (29)-(32). For z : E+

h → Rk,
z = (z1, . . . , zk), we write

F
[k]
h [z] = ( F

[k]
h.1[z], . . . , F

[k]
h.k[z] ),

F
[k]
h.µ[z]

(r,m) =
n

∑
i,j=1

̺
(µ)
ij ( t(r), x(m), [Thz]k.ϕ̃ ) δijz

(r,m)
µ + f (µ)( t(r), x(m), [Thz]k.ϕ̃, δz

(r,m)
µ )

on E′
h, 1 ≤ µ ≤ k. Difference operators δ0, δ = (δ1, . . . , δn) and δii, 1 ≤ i ≤ n, are

given by (5), (6) and (8). The difference expressions δijzµ for (i, j) ∈ J are defined

by (9) and (10) with ( t(r), x(m), [Thz]k.ϕ̃ ) instead of ( t(r), x(m), Thz ).

For (t(r), x(m)) ∈ ∂0Eh, s ∈ S(m) we put

g
[k]
h [z](r,m,s) = 2

n

∑
j=1

s2
j hjψ

[k]
j (t(r), x(m))− (z(r,m+s) + z(r,m−s)) ∗

n

∑
j=1

s2
j hjβ

[k]
j (t(r), x(m)).
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Consider the difference functional problem

δ0z(r,m) = F
[k]
h [z](r,m) on E′

h, (42)

z(r,m) = (ϕ
[k]
h )(r,m) on E0.h, (43)

z(r,m+s) − z(r,m−s) = g
[k]
h [z](r,m,s) on ∂0Eh, s ∈ S(m). (44)

We formulate the main theorem in this part of the paper.

Theorem 2. Suppose that Assumptions H[ σ, ϕ ], H[ Th ], H1[ ∆ ] are satisfied, the func-
tion v : E → l∞ is P [c0]-solution of (1)-(4) and for each k ∈ N

1) the function u[k] : E+ → Rk is such that u[k](·, x) : [0, a] → Rk, x ∈ (−b
+

, b
+
),

is of class C1, u[k](t, ·) : (−b
+

, b
+
) → Rk, t ∈ [0, a], is of class C3 and there are

c
[k]
0 , c

[k]
1 ∈ Rk

+ such that

|∂xixj
u[k](t, x)| ≤ c

[k]
0 , |∂xixjxk

u[k](t, x)| ≤ c
[k]
1 , (t, x) ∈ E+, 1 ≤ i, j, k ≤ n,

and u[k] is the parabolic solution of (29)-(32) on E,

2) the function u
[k]
h : E+

h → Rk is the solution of (42)-(44),

3) there is γ
[k]
ϕ : ∆ → Rk

+ such that lim
h→0

γ
[k]
ϕ (h) = 0 and

|(ϕ
[k]
h )(r,m) − ϕ[k](t(r), x(m))| ≤ γ

[k]
ϕ (h) on E0.h.

Then there exist γ[k] : ∆ → Rk
+ and ε[k] ∈ Rk

+ such that

|(u
[k]
h )(r,m) − v[k](t(r), x(m))| ≤ γ[k](h) + ε[k] on Eh (45)

and lim
h→0

γ[k](h) = 0, lim
k→∞

‖ε[k]‖∞ = 0.

Proof. Let us fix k ∈ N. Using the methods from the proof of Theorem 1 we
can prove that

|(u
[k]
h )(r,m) − u[k](t(r), x(m))| ≤ ω̂

[k]
h (t(r)) on E+

h

where ω̂
[k]
h is the maximal solution of the problem

ω′(t) = (1 + c
[k]
0 ) ∗ σ[k]( t, ω(t) ) + γ̃[k](h), ω(0) = γ

[k]
0 (h),

with γ̃[k], γ
[k]
0 : ∆ → Rk

+ satisfying condition lim
h→0

γ̃[k](h) = lim
h→0

γ
[k]
0 (h) = 0 and

with σ[k] given by (40). It follows from Lemma 3 that

|u[k](t(r), x(m))− v[k](t(r), x(m))| ≤ ω[k](t(r)) on Eh

where ω[k] is the maximal solution of (41). Thus we obtain the assertion (45) with

γ[k](h) = ω
[k]
h (a) and ε[k] = ω[k](a).
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5 Numerical examples

We take n = 2 and E = [0, a]× [−1, 1]2 with a = 0.25.
Example 1. Suppose that f̃ : E × C(E, R) → R is defined by

f̃ (t, x, y, z) = x2y2(x2 − 22t)− 4tx4(1 +
4

3
tx4y)− 5x2

∫ 1

−1
z(t, τ, y)dτ.

Consider the differential integral equation

∂tz(t, x, y) =

= 2∂xxz(t, x, y) + x∂xyz(t, x, y)
∫ 1

−1
z(t, x, τ)dτ + 2∂yyz(t, x, y) + f̃ (t, x, y, z) on E,

with the initial boundary conditions

z(0, x, y) = 0, (x, y) ∈ [−1, 1]2,

z(t, s, y) + s∂xz(t, s, y) = 5ty2, (t, y) ∈ [0, a]× [−1, 1], s = 1 or s = −1,

z(t, x, s) + s∂yz(t, x, s) = 3tx4, (t, x) ∈ [0, a]× [−1, 1], s = 1 or s = −1.

The exact solution of the above problem is known. It is v(t, x, y) = tx4y2, (t, x, y) ∈
E. To approximate v we use the solution uh of problem (11)-(13) reduced to the
scalar case with ϕh = ϕ. We apply the interpolating operator Th : F (E+

h , R) →

C(E, R) given in [6]. Then for z : E+
h → R the function Thz is obtained by interpo-

lation by splines of z and the integrals in (11) are calculated as follows:

∫ 1

−1
(Thz)(t(r) , τ, y(m2))dτ =

h1

2
(z(r,−N1,m2) + z(r,N1,m2)) + h1

N1−1

∑
j=−N1+1

z(r,j,m2),

∫ 1

−1
(Thz)(t(r) , x(m1), τ)dτ =

h2

2
(z(r,m1 ,−N2) + z(r,m1,N2)) + h2

N2−1

∑
j=−N2+1

z(r,m1,j)

where 0 ≤ r < N0, −N1 ≤ m1 ≤ N1, −N2 ≤ m2 ≤ N2. Maximal error values
eh = | uh − v |(N0) for several steps h = (h0, h1, h2) are listed in the following table.

h0 h1 = h2 eh − log2 eh

2−11 2−4 1.474708 · 10−3 9.405354
2−13 2−5 3.636181 · 10−4 11.425288
2−15 2−6 9.010732 · 10−5 13.437997
2−17 2−7 2.245604 · 10−5 15.442536

All the assumptions of Theorem 1 are satisfied and calculated error estimates
eh are consistent with Theorem 1.

Example 2. Let gµ : E × C(E, l∞) → R, µ ∈ N, be given by

gµ(t, x, y, z) = µ−1g(t, x, y)zµ(β(t, x, y))+
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+µ−1g(t, y, x)zµ+1(t, x, y)− µ−1(x2 − 1)2(y2 − 1)2 exp[ t(x2 − 1)2(y2 − 1)2 ]

where z = {zµ}, β(t, x, y) = (t, y, x) and

g(t, x, y) = 4t(3x2 − 1)(y2 − 1)2 + 16t2x2(x2 − 1)2(y2 − 1)4.

Consider the infinite functional differential problem

∂tzµ(t, x, y) = µ−1∂xxzµ(t, x, y) + (µ + 1)−1∂yyzµ(t, x, y)− gµ(t, x, y, z) on E,

zµ(0, x, y) = µ−1, (x, y) ∈ [−1, 1]2,

zµ(t, s, y) + s∂xzµ(t, s, y) = µ−1, (t, y) ∈ [0, a]× [−1, 1], s = 1 or s = −1,

zµ(t, x, s) + s∂yzµ(t, x, s) = µ−1, (t, x) ∈ [0, a]× [−1, 1], s = 1 or s = −1,

where µ ∈ N. The exact solution is vµ(t, x, y) = µ−1 exp[ t(x2 − 1)2(y2 − 1)2 ],

(t, x, y) ∈ E, µ ∈ N. We take ϕ̃µ(t, x, y) = µ−1 on E, µ ∈ N. We use the difference

method (42)-(44) with ϕh = ϕ. Let u
[k]
h be its solution. The following table shows

maximal error values ‖ e
[k]
h ‖∞ where e

[k]
h = | u

[k]
h − v[k] |(N0) for several steps h =

(h0, h1, h2) and system sizes k.

k h0 h1 = h2 ‖ e
[k]
h ‖∞ − log2 ‖ e

[k]
h ‖∞

2 2−4 2−1 7.250851 · 10−2 3.785706
2 2−6 2−2 2.536511 · 10−2 5.301011
2 2−8 2−3 6.994665 · 10−3 7.159529
2 2−10 2−4 2.619863 · 10−3 8.576293
4 2−10 2−4 1.793981 · 10−3 9.122621
4 2−12 2−5 9.194016 · 10−4 10.087017
8 2−12 2−5 4.511476 · 10−4 11.114113
8 2−14 2−6 2.721995 · 10−4 11.843047

16 2−14 2−6 1.133084 · 10−4 13.107457
16 2−16 2−7 6.374717 · 10−5 13.937279

The results shown in the table are consistent with Theorem 2.
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