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Abstract

The standard Clifford torus is characterized as the only connected com-
pact orientable affine Lagrangian surface in C2 whose second fundamental
tensor is parallel.

1 Introduction

The Clifford torus, similarly as round spheres, is one of the standard subman-
ifolds. We shall deal with the 2-dimensional case. The 2-dimensional Clifford
torus can be located, for instance, in the 3-dimensional sphere or in C2. As a sub-
manifold of the sphere it is minimal. As a submanifold of C

2 it is not minimal but
its second fundamental tensor field is parallel relative to the induced connection.
Moreover it is Lagrangian (in other words totally real) in the Kaehler space C2.
The aim of this paper is to prove that the parallelism of the second fundamental
tensor is a characteristic property of the Clifford torus within the class of affine
Lagrangian surfaces of C2. The class of affine Lagrangian submanifolds is much
larger than the class of Lagrangian ones in the metric sense. More precisely, we
shall prove

Theorem 1.1. Let M be a 2-dimensional connected compact orientable manifold. If a
surface f : M −→ C

2 is affine Lagrangian and its second fundamental tensor is parallel
relative to the induced connection, then the surface is up to a complex affine transfor-
mation of C2 the Clifford torus. In particular, the surface is metric Lagrangian and the
immersion is an embedding.

∗The research supported by the grant NN 201 545738 and a grant of the Technische Universität
Berlin

Received by the editors October 2010.
Communicated by L. Vanhecke.
2000 Mathematics Subject Classification : 53B40, 53C42, 53B05.
Key words and phrases : Clifford torus, Lagrangian submanifold.

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 509–516



510 B. Opozda

The main tools of the proof are results proved by the author in her previous
papers. The necessary information is provided in the next section. In particular,
we use a bilinear symmetric form g introduced in [3]. For the Clifford torus g is
non-degenerate indefinite at each point. This property corresponds to the local
strong convexity of hypersurfaces of affine spaces. We observe that there exist
affine Lagrangian surfaces in C

2 whose second fundamental tensor is parallel
but g is not non-degenerate indefinite. Such examples can be found even if we
additionally assume that the induced connection is flat (as it is on the Clifford
torus). In general, the parallelism of the second fundamental tensor does not
imply that the induced connection is flat. We provide suitable examples.

2 Preliminaries

Let C2 be equipped with the standard complex structure. By a Hermitian struc-
ture on C

2 we mean any Hermitian product (definite or indefinite) G on the com-
plex vector space C2. That is, a Hermitian scalar product G is characterized by the
condition: G(iX, iY) = G(X, Y) for every vectors X, Y. If G is indefinite, then it is
of type (+,+,−,−). If D denotes the standard connection on C2, then G gives a
Kahler structure on C2. Throughout the paper the complex structure on C2 and
the connection D are fixed, but a Hermitian product G is not.

Let M be a 2-dimensional connected real manifold and f : M −→ C2 be an im-
mersion. We say that f is affine Lagrangian (or purely real) if the bundle i f∗(TM)
is transversal to the tangent bundle f∗(TM). If C2 is equipped with a Hermitian
structure, then f is called Lagrangian (or totally real) if i f∗(TM) is orthogonal
to f∗(TM). If for an affine Lagrangian submanifold there is a Hermitian metric
relative to which it is Lagrangian, we shall say that it is metric Lagrangian.

An immersion f is affine Lagrangian if and only if ωx 6= 0 at every point of
M, where ω is a complex valued real 2-form on M defined by

ω(X, Y) = det C( f∗X, f∗Y). (1)

If M is oriented and f is affine Lagrangian, then we define a volume form ν on M
by the condition

ν(X, Y) = |ω(X, Y)| (2)

for a positively oriented basis X, Y of Tx M, for x ∈ M. If we change a basis X, Y

to another positively oriented basis then in the expression ω(X, Y) = µeiθ, where
µ ∈ R+, θ ∈ R, the value of θ remains unchanged (up to 2kπ, k ∈ Z). It is called
the phase of the tangent space f∗(Tx M). As a smooth function θ depending on
x ∈ M it is, in general, only locally well defined. If f is affine Lagrangian, then it
is naturally equipped with a normal bundle. Namely, by the normal bundle we
mean the bundle i f∗(TM). We can write the Gauss formula

DX f∗Y = f∗(∇XY) + i f∗Q(X, Y) (3)

for vector fields X, Y on M. It turns out that ∇ is a torsion-free connection on M
and Q is a symmetric (1, 2)-tensor field on M. ∇ is called the induced connection
and Q the second fundamental tensor for f . The Weingarten formula reduces
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to the Gauss formula. In particular, the normal connection corresponds to the in-
duced connection and the parallelism of the second fundamental form iQ relative
to the normal connection is equivalent to the parallelism of Q relative to ∇. The
fundamental equations are the following

R(X, Y) = QXQY − QYQX, (4)

(∇XQ)(Y, Z) = (∇YQ)(X, Z) (5)

for X, Y, Z ∈ Tx M, x ∈ M, where R is the curvature tensor of ∇ and QXY stands
for Q(X, Y). It follows, in particular, that if for some nonzero X the endomor-
phism QX is proportional to the identity, then the curvature tensor vanishes.

For an affine Lagrangian surface we define a 1- form τ and a symmetric bilin-
ear 2-form g by the following formulas

τ(X) = tr QX, (6)

g(X, X) = det QX (7)

for every X ∈ Tx M, x ∈ M. An important fact is that

τ = dθ, (8)

where θ is the phase function. The bilinear form g was introduced and studied in
[3]. In particular, if X, Y is a basis of Tx M and the matrices of QX and QY relative
to the basis are

QX =

[

a c
b d

]

, QY =

[

c e
d k

]

,

then g(X, X) = det QX, g(X, Y) = 1
2det

[

a e
b k

]

, g(Y, Y) = det QY.

If f is metric Lagrangian then the 1-form τ is dual to the mean curvature vector
field multiplied by i. In the affine case we do not have a mean curvature vector
field. We say that an affine Lagrangian immersion f is minimal if τ = 0 on M.
We shall say that an affine Lagrangian immersion is nowhere minimal if τ 6= 0 at
every point of M. Minimal affine Lagrangian submanifolds are studied in [2], [4].

We shall use the following facts proved in [1], [3], [4]:

Fact 2.1. ([3], Theorem 5.6) If M is compact and orientable, f : M −→ C2 is affine
Lagrangian and rk g is constant on M, then M is a topological torus and g is non-
degenerate indefinite on M.

Fact 2.2. ([4], Proposition 8) If f : M −→ C
2 is affine Lagrangian, g is nowhere

zero on M and the induced connection is flat, then f is nowhere minimal and M
admits an almost product structure (ker τ,D), where D is a distribution on which
Q is proportional to the identity, that is, for Y ∈ D, Y 6= 0, the endomorphism QY

is not zero and is proportional to the identity.
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Fact 2.3. ([4], Lemma 9, Remark 10, formula (11)) Let f : M −→ C
2 be an affine

Lagrangian surface. If there is a 1-dimensional distribution D on which Q is
proportional to the identity, then around each point of M there is a coordinate
system (u, v) relative to which Q is given by the matrices

QU =

[

0 1
b 0

]

, QV =

[

1 0
0 1

]

, (9)

where U = ∂u, V = ∂v and b is a function of u. Moreover, for the induced
connection we have

∇UU = AU + BV, ∇UV = CU + bEV, ∇VV = EU + CV, (10)

where B, C, E are functions. The vector field V is given uniquely and therefore

globally on M. If Av = 0, then by replacing U by e
∫

u AU we get a new coordinate
system which satisfies all the above conditions and additionally A = 0. If ∇UU =
0 the local vector field U is unique up to a constant on neighborhoods of points.

In particular, if the distribution ker τ is ∇-parallel and so is the vector field V,
then B = E = C = 0. Since ∇ is flat (because QV = id ), by formula (11) from [4]
we have Av = 0. Hence, in the coordinate system chosen as above, we have

∇UU = ∇UV = ∇VV = 0 (11)

Fact 2.4. ([1], fundamental theorem - Theorem 2.2) Let f1, f2 : M −→ C2 be affine
Lagrangian immersions. If the induced connections and the second fundamental
tensors for the two immersions are respectively equal, then the immersions are
congruent modulo a complex affine transformation of C

2.

3 Examples

The following example plays an essential role in our considerations.

Example 3.1. Let γ(u) be a centroaffine curve in R2, that is, det (γ(u), γ′(u)) 6= 0
for every u ∈ I , where I is some open interval of R. Then

γ′′ = αγ + βγ′.

The curve can be reparametrized in such a way that after reparametrization γ′′

is proportional to γ. Hence we can assume that β = 0 on I . Let θ(v) be a real
valued function on some open interval of R and θ′(v) 6= 0 for every v. Define the
following surface in C

2:

f (u, v) = eiθ(v)γ(u). (12)

We have
fu = eiθγ′, fv = iθ′eiθγ (13)

and
det C( fu, fv) = ei(π

2 +2θ)θ′det (γ, γ′). (14)

It follows that f is an immersion, it is affine Lagrangian and its phase function
equals to π

2 + 2θ. Since θ′ 6= 0, the surface is nowhere minimal.
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Within the family described by (12) there are only two subclasses which are
metric Lagrangian – one for a definite metric tensor field, another one for an in-
definite metric. Namely, assume that G is a Hermitian metric tensor field (def-
inite or indefinite) on C2 relative to which f is metric Lagrangian. We have

G(eiθX, eiθY) = G(X, Y) for every X, Y ∈ C2 and every real number θ. f is metric
Lagrangian if and only if G(i fv, fu) = 0. This condition is equivalent to the con-
dition G(γ, γ′) = 0. Since (G(γ, γ))′ = 2G(γ, γ′), we have that G(γ, γ′) = 0 if
and only G(γ, γ) is constant, that is, if and only if the curve γ is a piece of a circle
or a hyperbola.

We now go back to general considerations. For the surface f we have

fuu = eiθγ′′ = −i
α

θ′
(iθ′eiθγ) = −i

α

θ′
fv, (15)

fuv = iθ′ fu, (16)

fvv = iθ′′eiθγ + iθ′iθ′eiθγ =
θ′′

θ′
fv + iθ′ fv. (17)

Therefore, if ∇ is the induced connection and Q the second fundamental tensor
for f , then

∇UU = 0, ∇UV = 0, ∇VV =
θ′′

θ′
V, (18)

Q(U, U) = −
α

θ′
V, Q(U, V) = θ′U, Q(V, V) = θ′V, (19)

where U = ∂u, V = ∂v. We have two ∇-parallel distributions spanned by U and
V respectively. Since tr QU = 0, the vector field U spans ker τ. On the distribution
spanned by V Q is proportional to the identity, namely QV = θ′id . In particular,
by (4), the connection ∇ is flat.

Compute now the tensor field ∇Q. We have

(∇V Q)(V, V) = (∇V Q)(U, V) = (∇V Q)(U, U) = 0,

(∇UQ)(U, U) = − α′

θ′ V.
(20)

It follows that ∇Q = 0 if and only if α′ = 0, i.e. γ′′ = αγ, where α is constant. In
such a case

γ(u) = b(cos au, sin au) (21)

if α < 0 or
γ(u) = b(cosh au, sinh au) (22)

if α > 0, where a2 =| α | and b is a constant. When α is constant, we define a
Hermitian scalar product G along γ by the following formulas

G(γ, γ) = 1, G(γ, γ′) = 0, G(γ′, γ′) = −α. (23)

One easily checks that DG = 0 along γ. Thus G can be extended to the whole C
2.

For this G the space R2, in which the curve γ is located, is a metric Lagrangian
subspace of C2.

Observe that in the example under consideration

τ(U) = 0, τ(V) = 2θ′,
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g(U, U) = α, g(U, V) = 0, g(V, V) = θ′2.

By a straightforward computation one checks that ∇τ = 0. Moreover, ∇g = 0 if
and only if α is constant.

If γ(u) = (cos u, sin u) and θ(v) = v the surface is the Clifford torus. For the
Clifford torus we have

∇UU = ∇UV = ∇VV = 0,

QUU = V, QUV = U, QVV = V.

In particular g is non-degenerate indefinite.

We shall now give examples showing that the there exist non-compact affine
Lagrangian submanifolds satisfying the condition ∇Q = 0 having local invari-
ants different than the Clifford torus.

Example 3.2. 1. The surface given by the parametrization

f (u, v) = (e2iv, ue(1+i)v) (24)

is affine Lagrangian and has the following induced objects:

QU =

[

0 1
0 0

]

, QV =

[

1 0
0 2

]

, (25)

∇UU = 0, ∇UV = U, ∇VV = 2uU. (26)

One easily sees that ∇Q = 0, Ric (U, U) = Ric (U, V) = 0, Ric (V, V) = 1. It
follows that the induced connection is non-flat and non-metrizable and therefore
the surface is not metric Lagrangian relative to any Kaehler structure on C2. The
rank of the tensor field g is one.

2. Consider the following family of flat examples. Let us define ∇ and Q on
R2 as follows

∇UU = ∇UV = ∇VV = 0, (27)

QU =

[

a c
b d

]

, QV =

[

c e
d k

]

, (28)

where U = ∂u, V = ∂v, (u, v) is a coordinate system on R2 and a, b, c, d, e, k are
constants such that QUQV = QV QU. The last condition is equivalent to the fol-
lowing system of equations

cd = eb, d(d − a) + b(c − k) = 0, c(c − k) + e(d − a) = 0. (29)

The objects satisfy the Gauss and the Codazzi equations and hence, by the ex-
istence part of the fundamental theorem from [1], they can be realized as the
induced objects on some affine Lagrangian surface in C2. It is easy to find solu-
tions of the above system of equations for which g = 0 or rk g = 1 or g is positive
definite. For instance, if we take d = e = 0, b = −c, k = c and a < 2c, then g is
positive definite.
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4 Proof of Theorem 1.1

We first prove the following lemma.

Lemma 4.1. If f : M −→ C2 is affine Lagrangian, g is non-degenerate indefinite on M
and ∇Q = 0, then ∇ is flat.

Proof. Since ∇Q = 0, we have ∇τ = 0 and ∇g = 0. Let X = ∂x, Y = ∂y, where
(x, y) is a local coordinate system on M, be vector fields spanning the asymptotic
distributions of g. The distributions are parallel relative to ∇. Since [X, Y] = 0,
we have

∇XX = AX, ∇XY = 0, ∇YY = FY. (30)

The curvature tensor R of ∇ is given by the formulas

R(X, Y)X = −(YA)X, R(X, Y)Y = (XF)Y.

Hence, it suffices to show that YA = 0 and XF = 0. Since

(∇Xg)(X, Y) = X(g(X, Y))− Ag(X, Y), (∇Yg)(X, Y) = Y(g(X, Y))− Fg(X, Y)

and ∇g = 0, we have A = X ln |g(X, Y)|, F = Y ln |g(X, Y)|. Consequently

YA = XF. (31)

Let

QX =

[

a c
b d

]

, QY =

[

c e
d k

]

,

where a, b, c, d, e, k are functions on the domain of X, Y. Since 0 6= g(X, Y) =

1
2det

[

a e
b k

]

, the vectors (a, b), (e, k) are linearly independent. In particular,

they are non-zero. Since 0 = g(X, X) = det QX, we have (c, d) = λ(a, b). We now

have 0 = g(Y, Y) = det

[

λa e
λb k

]

. Hence λ = 0 and

QX =

[

a 0
b 0

]

, QY =

[

0 e
0 k

]

. (32)

One has
0 = (∇Xτ)(X) = Xa − aA, 0 = (∇Yτ)(X) = Ya. (33)

It follows that if ax0 6= 0, then around x0 we have A = Xa
a , and consequently, since

Ya = 0, we obtain YA = 0. Combining this with (31) we get the desired result. If
ax0 = 0, then e 6= 0 in a neighborhood of x0. Formulas (30) and (32) yield

(∇XQ)(Y, Y) = (Xe + eA)X + (Xk)Y

(∇YQ)(Y, Y) = (Ye − 2eF)X + (Yk − kF)Y.

Since ∇Q = 0 and e 6= 0, we obtain

A = −Xe
e = −X ln |e|

F = Ye
2e = 1

2Y ln |e|.
(34)
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Using now (31) one sees that XY ln |e| = 0. Thus YA = XF = 0. The proof of the
lemma is completed.

We can now complete the proof of the theorem. Since ∇g = 0, the rank of
g is constant. By using Fact 2.1 we know that M is a topological torus and g
is nondegenerate indefinite on M. The universal covering space for the torus is
M̃ = R2. We lift the immersion f to the immersion f̃ : M̃ −→ C2. The immersion
f̃ has the same local properties as f , i.e. it is affine Lagrangian and its second
fundamental tensor Q̃ is parallel relative to the induced connection ∇̃. Therefore,
if g̃ and τ̃ are determined by f̃ , then ∇̃τ̃ = 0 and ∇̃g̃ = 0. Moreover g̃ is non-
degenerate indefinite on M̃. By the above lemma, ∇̃ is flat. Using now Facts 2.2
and 2.3 we know that around each point there exist vector fields U = ∂u, V = ∂v,
where (u, v) is a coordinate system, such that Q̃V = id , tr Q̃U = 0. Moreover
Q̃(U, U) = bV. Since ∇̃Q̃ = 0, the vector field V, for which Q̃V = id , is parallel
relative to ∇̃. Using again Fact 2.3, we know that around each point there is
a coordinate system (u, v) in which all Christoffel symbols of ∇̃ vanish. Since
(∇̃UQ̃)(U, U) = (Ub)V, we have that b is constant.

The vector field V is uniquely and globally given on M̃. Let us fix an orien-
tation on R2. We have the volume form ν̃ on M̃ defined by (2) for f̃ . The vector
field U is given locally and on its connected domains it is unique up to a constant.
We can now define U uniquely and hence globally by imposing the conditions
ν̃(U, V) > 0 and Q̃(U, U) = V. We now have two uniquely given global vector
fields U, V such that [U, V] = 0. Since M̃ is simple connected, there is a global co-
ordinate system (u, v) on M̃ such that U = ∂u, V = ∂v. The Clifford torus defined
as in Example 3.1 gives the same induced connection and second fundamental
tensor as f̃ . Hence, by the fundamental theorem (Fact 2.4) f̃ is complex affine
congruent to the Clifford torus.
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