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Abstract

In this paper, we obtain the analytical solution for a strongly coupled
reaction-diffusion system with initial condition by the Homotopy Analysis
Method (HAM). The HAM allows for the solution of the strongly coupled
reaction-diffusion system to be calculated in the form of an infinite series
with components which can be easily calculated. The obtained results are
presented and only a few terms are required to obtain an approximate solu-
tion that is accurate and efficient.

1 Introduction

In this article, the Homotopy Analysis Method (HAM) is used to obtain the
approximate solution of a strongly coupled reaction-diffusion system. The sys-
tem of equations is [7]























ut = auxx + f (u, v), 0 < x < 1, 0 < t ≤ T
vt = buxx + dvxx + g(u, v), 0 < x < 1, 0 < t ≤ T,
u(x, 0) = u0(x), v(x, 0) = v0(x), 0 ≤ x ≤ 1,
ux(0, t) = α1(t), ux(1, t) = β1(t), 0 < t ≤ T,
vx(0, t) = α2(t), vx(1, t) = β2(t), 0 < t ≤ T,

(1.1)
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where u = u(x, t) and v = v(x, t) are the concentrations of two interacting sub-
stances, the constants a, b, d are such that a > 0, d > 0 and b 6= 0. The following
consistency conditions hold

α1(0) = u
′

0(0), β1(0) = u
′

0(1), α2(0) = v
′

0(0), β2(0) = v
′

0(1).

Reaction-diffusion system arises in the study of biology, chemistry, popula-
tion dynamics [8, 10, 12, 17] and the above system arises in modeling chemical
reaction groundwater transport [7]. The global solution of system (1.1) has been
investigated by [4, 9, 11, 12, 15, 16]. In [9], Daddiouaissa have considered the con-
dition for existence, uniqueness and boundedness of the global solutions have
been found using various technique.

Many non-perturbative methods have been introduced in the literature and
these methods have been used to solve applied problems in physics and engi-
neering. Several authors focused on analytical solutions of nonlinear equations
by using approximate analytical methods. Example include Yldrm and Momani
[18] who applied the homotopy perturbation method (HPM) to fractional oscilla-
tor and Koak and Yldrm [19] who solved the 3D Green’s function by using HPM.
A fractional Zakharov-Kuznetsov equations was solved by Yldrm and Glkanat
[20] by using HPM whilst Yldrm et al. [21] used the Modified Variational Iteration
Method (MVIM) to solve the Klein-Gordon equation and Raftari and Yldrm [22]
found the analytical solution of magneto-hydro-dynamic boundary layer flow of
an upper convected Maxwell fluid over a porous stretching sheet by HPM. An-
alytical solution of generalized Burger and Burger Fisher equations have been
obtained by Rashidi and Ganji [23] using HPM and Rashidi and Mohimanian
[24] studied the unsteady boundary layer flow and heat transfer due to stretch-
ing sheet by HPM. Rashidi and Dinarvand [25] applied the HAM to solve the
system of ordinary differential equations.

In this study we aim to apply the HAM to solve the system (1.1). The HAM
was developed by Liao [13] who utilized the idea of homotopy in topology. Since
then numerous authors have used HAM to solve various differential equations
but so far as we are aware not the system (1.1). HAM, as an analytical method,
has an advantage over perturbation methods in that it does not depend on small
or large parameters. Compared with other analytical methods such as Adomian
Decomposition, Variational Iteration Methods, HAM allows for fine-tuning of
convergence region and rate of convergence by allowing an auxiliary parameter
h̄ to vary [1, 5]. Compared with numerical methods, it does not require discretiza-
tion and thus does not have problem of computer round off errors.

Our paper is organized as follows: In section 2, we present a description of
the HAM, as expounded by previous researchers in particular [2, 3, 6], applied
to the strongly coupled reaction-diffusion system (1.1). In section 3, we employ
the HAM for solving strongly coupled reaction-diffusion system and compare
the solution obtained with the exact solution. Finally, in section 4, we give the
conclusion of this study.
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2 A description of the HAM for strongly coupled reaction-diffusion

system

To apply the HAM, the strongly coupled reaction-diffusion system (1.1) is
considered. The following deformation equation was constructed following Liao
[13]

(1 − p)Lu[φ(x, t; p)− u0(x, t)] = ph̄N1[φ(x, t; p)], (2.1)

(1 − p)Lv[ϕ(x, t; p)− v0(x, t)] = ph̄N2[ϕ(x, t; p)], (2.2)

where N1 and N2 are two nonlinear operators, whilst x and t denote the inde-
pendent variables. p ∈ [0, 1] is the embedding parameter, h̄ 6= 0 is an auxiliary
parameter and u0(x, t) and v0(x, t) are, respectively, initial guesses of u(x, t) and
v(x, t). The functions φ(x, t; p) and ϕ(x, t; p) are known functions which can be
constructed and Lu and Lv are auxiliary operators that are defined as follows

Lu =
∂u

∂t
, Lv =

∂v

∂t
,

and they satisfy
Lu[c1(x)] = 0, Lv[c2(x)] = 0,

where c1(x) and c2(x) are integral constants (partial integration).
When p = 0 and p = 1

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t),

ϕ(x, t; 0) = v0(x, t), ϕ(x, t; 1) = v(x, t).

As p increases from 0 to 1, the solution of the strongly coupled reaction-diffusion
system (1.1) will vary from the initial guesses u0(x, t) and v0(x, t) to the exact
solution u(x, t) and v(x, t) of the reaction-diffusion system (1.1).
Expanding φ(x, t; p) and ϕ(x, t; p) as a Taylor series with respect to p yields

φ(x, t; p) = u0(x, t) +
∞

∑
m=1

um(x, t)pm ,

ϕ(x, t; p) = v0(x, t) +
∞

∑
m=1

vm(x, t)pm ,

where

um(x, t) =
1

m!

∂mφ(x, t; p)

∂pm
|p=0, (2.3)

vm(x, t) =
1

m!

∂mϕ(x, t; p)

∂pm
|p=0. (2.4)

Note that if p = 1

φ(x, t; 1) = u(x, t) = u0(x, t) +
∞

∑
m=1

um(x, t), (2.5)
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ϕ(x, t; 1) = v(x, t) = v0(x, t) +
∞

∑
m=1

vm(x, t), (2.6)

which must be one of the solutions of strongly coupled reaction-diffusion system
(1.1). According to the definitions (2.3) and (2.4), the governing equation for the
unknowns can be deduced from the (zero-order deformation) equations (2.1) and
(2.2). For further analysis, the vectors

~un(x, t) = {u0(x, t), u1(x, t), · · · , un(x, t)},

~vn(x, t) = {v0(x, t), v1(x, t), · · · , vn(x, t)},

are defined.
Differentiating equations (2.1) and (2.2) m-times with respect to the parameter p,
dividing by m! and setting p = 0, gives the linear equations

Lu[um(x, t)− χmum−1(x, t)] = h̄R1m(~um−1), (2.7)

Lv[vm(x, t)− χmvm−1(x, t)] = h̄R2m(~vm−1), (2.8)

with the initial condition

um(x, 0) = 0 vm(x, 0) = 0,

where

R1m(~um−1) = (um−1)t − a(um−1)xx − F(um−1, vm−1), (2.9)

R2m(~vm−1) = (vm−1)t − b(um−1)xx − d(vm−1)xx − G(um−1, vm−1), (2.10)

and so

χm =

{

0 m ≤ 1,

1 m > 1.

In (2.9) and (2.10), F and G are, in general, nonlinear functions of um−1 and vm−1.
However, if they are linear functions then

F(um−1, vm−1) = f (um−1, vm−1),

G(um−1, vm−1) = g(um−1, vm−1).

In which case, the solution of the m-order deformation equations (2.7) and (2.8)
for m ≥ 1 now becomes

um(x, t) = χmum−1(x, t) + h̄
∫ t

0
R1m(~um−1)dt, (2.11)

vm(x, t) = χmvm−1(x, t) + h̄
∫ t

0
R2m(~vm−1)dt. (2.12)

Detailed analysis of the convergence of the HAM is discussed by Liao in [14]. We
note that the HAM only utilities the initial condition and makes no use of the
boundary conditions.
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3 Illustrative example

In this section, the HAM will be demonstrated on an example of a strongly
coupled reaction-diffusion system (1.1). For our numerical computation, let the
expression

ψm(x, t) =
m−1

∑
k=0

uk(x, t), (3.1)

denote the m-term HAM approximation to u(x, t). We compare the approxi-
mate analytical solution obtained using HAM for our strongly coupled reaction-
diffusion system (1.1) with the known exact solution. We define Em(x, t) to be the
absolute error between the exact solution and m-term approximate HAM solution
ψm(x, t) as follows

Em(x, t) = |u(x, t)− ψm(x, t)|. (3.2)

Example:
In this section, we present a strongly coupled reaction-diffusion system (1.1)

with analytical solution to show the capability and efficiency of the HAM method
described in the section 2. We consider the system (1.1) with a = b = d = 1,
f (u, v) = (2π2 − 1)u − 2π2v and g(u, v) = −v and initial condition as follows [7]

u(x, 0) = sin2 πx, v(x, 0) = cos2 πx, (3.3)

and boundary conditions as follows

ux(0, t) = ux(1, t) = 0,

vx(0, t) = vx(1, t) = 0.

It can be verified that the following are the exact solutions

u(x, t) = e−t sin2 πx, v(x, t) = e−t cos2 πx.

According to section 2, we can define two operators as

N1[φ(x, t; p)] =
∂φ(x, t; p)

∂t
−

∂2φ(x, t; p)

∂x2
− (2π2 − 1)φ(x, t; p) + 2π2ϕ(x, t; p),

N2[ϕ(x, t; p)] =
∂ϕ(x, t; p)

∂t
−

∂2φ(x, t; p)

∂x2
−

∂2ϕ(x, t; p)

∂x2
+ ϕ(x, t; p).

Thus, we can easily obtain the zeroth-deformation equations (2.7) and (2.8) that
is

R1m(~um−1) = (um−1)t − (um−1)xx − (2π2 − 1)um−1 + 2π2vm−1, (3.4)

R2m(~vm−1) = (vm−1)t − (um−1)xx − (vm−1)xx + vm−1. (3.5)

We start with the initial conditions (3.3). By means of the (2.11) and (2.12), we
obtain directly the other components of the HAM in the series forms of (2.5) and
(2.6). Thus

u(x, t) = sin2 πx +
1

180
h̄2t

(

720(1 + h̄)4 + 360(1 + h̄)3(1 + 5h̄)t

+240(1 + h̄)2(2 + 5h̄)t2 + 60h̄2(1 + h̄)(3 + 5h̄)t3

+6h̄3(4 + 5h̄)t4 + h̄4t5
)

sin2 πx +
1

1680
h̄2t

(

5040(1 + h̄)5 + · · ·
)

,
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and

v(x, t) = cos2 πx +
1

180
h̄2t

(

720(1 + h̄)4 + 360(1 + h̄)3(1 + 5h̄)t

+ +240(1 + h̄)2(2 + 5h̄)t260h̄2(1 + h̄)(3 + 5h̄)t3+

6h̄3(4 + 5h̄)t4 + h̄4t5
)

cos2 πx +
1

1680
h̄2t

(

5040(1 + h̄)5 + · · ·
)

.

Table 1 and 2 show absolute error between solution obtained using HAM with ten
terms and the exact solution for u and v, respectively, for h̄ = −1. Cao and Sun
[7] solved this system using the finite difference approximation. This shows the
importance of the HAM. The solution of the strongly coupled reaction-diffusion
system using HAM is more effective than the finite difference scheme. While
using the HAM, the difficulty of calculating using the finite difference method
does not occur.

Table 1: Absolute error E10 for variables x, t ∈ (0, 1) for u(x, t) at h̄=-1 .
x/t 0.1 0.3 0.7 1

0.1 1.38778×10−17 3.05311×10−16 2.61739×10−12 1.85047×10−10

0.3 6.66134×10−16 7.77156×10−16 1.79366×10−11 1.26833×10−9

0.5 2.22045×10−16 3.21965×10−15 2.74093×10−11 1.93784×10−9

0.6 1.33227×10−16 7.99361×10−15 2.48030×10−11 1.75281×10−9

0.9 9.71445×10−17 8.32667×10−17 2.61675×10−12 1.85046×10−10

Table 2: Absolute error E10 for variables x, t ∈ (0, 1) for v(x, t) at h̄ = −1.
x/t 0.1 0.3 0.7 1

0.1 6.66134×10−16 2.99760×10−15 2.47903×10−11 1.75279×10−9

0.3 2.77556×10−16 1.11022×10−15 9.46906×10−12 6.69506×10−10

0.6 6.93889×10−17 3.19189×10−16 2.61718×10−12 1.85047×10−10

0.8 4.44089×10−16 2.10942×10−15 1.79385×10−11 1.26833×10−9

1 6.66134×10−16 3.21965×10−15 2.74075×10−11 1.93784×10−9

Figures 1 and 2 shows the absolute error between the solution obtained using
HAM with ten terms and the exact solution for u at t = 1 with h̄ = −1 and
h̄ = −0.92, respectively. Figures 3 and 4 show the absolute error between solution
obtained using HAM with ten terms and the exact solution for v at t = 1 with
h̄ = −1 and h̄ = −0.92, respectively.

Figures 5 and 6 show the h̄-curve for various derivatives of u and v,respectively,
which shows the rate of convergence of the HAM. This shows that the solution
obtained using HAM converges to the exact solution, whenever −1.35 ≤ h̄ ≤
−0.55.

In the figures 1-6, we have investigated a numerical solution of a strongly cou-
pled reaction-diffusion system. It is clear that the absolute error between solution
obtained using HAM and the exact solution is very small and this can be seen
in the figures 1-4. We can obtain better results with a change of h̄ in the inter-
val [−1.35,−0.55]. For example, it was shown that the results with h̄ = −0.92 is
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Figure 1: The left figure shows the absolute error of solution obtained using HAM
with ten terms at t = 1 and h̄ = −1, while the right figure shows the space-time
graph of the absolute error of the exact solution u(x, t).

0.2 0.4 0.6 0.8 1.0
x

1.´10-13

2.´10-13

3.´10-13

4.´10-13

5.´10-13

6.´10-13

7.´10-13

e
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Figure 2: The left figure shows the absolute error error of solution obtained using
HAM with ten terms at t = 1 and h̄ = −0.92, while the right figure shows the
space-time graph of the absolute error of the exact solution u(x, t).
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Figure 3: The left figure shows the absolute error of solution obtained using HAM
with ten terms at t = 1 and h̄ = −1, while the right figure shows the space-time
graph of the absolute error of the exact solution v(x, t).

better than the results with h̄ = −1. This shows the importance, effectively and
capability of HAM for solving our problem. Figure 5 shows that, if we use utt,
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Figure 4: The left figure shows the absolute error of solution obtained using HAM
with ten terms at t = 1 and h̄ = −0.92, while the right figure shows the space-
time graph of the absolute error of the exact solution v(x, t).
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Figure 5: The h̄-curve for various derivatives of u(x, t) at point of (0.5, 0) obtained
tenth-order HAM approximation of example.
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Figure 6: The h̄-curve for various derivatives of v(x, t) at point of (0, 0) obtained
tenth-order HAM approximation of example.

uttt and utttt the rate of convergence of h̄ is the same and these changes does not
effect in the rate of convergence.
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4 Conclusion

In this paper, we have illustrated how Homotopy Analysis Method (HAM) can be
used to solve in an approximate analytical manner the strongly coupled reaction-
diffusion system. The results of an example is presented and only ten terms
are required to obtain a very accurate solution. An important advantage of the
HAM is that it can solve linear or nonlinear partial differential equations with-
out any need for discretization, perturbation, transformation or linearization and
it only requires the initial condition. The method was tested on one example of
a strongly coupled reaction-diffusion system and it was demonstrated that the
HAM is highly accurate and rapidly convergent. A disadvantage of the HAM is
that this method cannot always guarantee the convergence of approximate series
[13, 26] and the method depend on choosing proper linear operator and initial
guesses.
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