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Abstract

In this paper, we introduce the notion of manifolds with isotropic cubic
tensor. We give a complete classification of the Lagrangian submanifolds in
3-dimensional complex space forms with isotropic cubic tensor.

1 Introduction

Let φ : Mn → M̄n be an isometric immersion from an n-dimensional Riemannian
manifold into a complex n-dimensional Kähler manifold M̄n. Mn is called a La-
grangian submanifold if the almost complex structure J of M̄n carries each tangent
space of Mn into its corresponding normal space.

In this paper, we study Lagrangian submanifolds of complex space forms
M̄n(4c) with constant holomorphic sectional curvature 4c. In particular we are
interested in Lagrangian submanifolds of

(i) M̄n(4c) = Cn, when c = 0,

(ii) M̄n(4c) = CP
n(4c), when c > 0,

(iii) M̄n(4c) = CH
n(4c), when c < 0.
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From the basic existence and uniqueness theorem it follows that such Lagrangian
submanifolds are completely determined by the metric and the (totally symmet-
ric) cubic form 〈h(X, Y), JZ〉. Here h denotes the second fundamental form of
the immersion. In that respect, it is natural to look for Lagrangian submanifolds
for which this cubic form (or the underlying second fundamental form) satisfies
some geometric properties. One of the most natural properties in this viewpoint
is the notion of isotropic submanifold introduced by O’Neill ([15]). A Lagrangian
submanifold is called isotropic if and only if there exists a constant Λ(p) such that
for every unit vector v ∈ TpMn, ‖h(v, v)‖ = Λ(p). If moreover Λ is indepen-
dent of the point p, then Mn is called constant isotropic. Note that a 2-dimensional
minimal Lagrangian surface is always isotropic. In higher dimensions, isotropic
Lagrangian submanifolds were studied and completely classified in [10], [13],
[14] and [18]. Studying these classifications it follows immediately that such sub-
manifolds necessarily need to have parallel second fundamental form or are H-
umbilical in the sense of [7] and [8].

Here in this paper, we study Lagrangian submanifolds Mn in complex space
forms with isotropic cubic tensor, i.e. there exists a real function Υ on Mn such that
for any unit tangent vector v at a point p we have that

‖(∇h)(v, v, v)‖ = Υ(p).

Here the cubic tensor means the derivative of the second fundamental form, i.e.,
(∇h)(X, Y, Z), which is different from the cubic form 〈h(X, Y), JZ〉. Note that all
parallel Lagrangian submanifolds provide trivial examples of such submanifolds.

In [17], L. Su showed that Lagrangian surfaces in 2-dimensional complex space
forms with isotropic cubic tensor either have parallel mean curvature vector or
are congruent to one of the Whitney spheres (or their analogs in complex hyper-
bolic space).

In this paper, we deal with the higher dimensional case and give a com-
plete classification of the Lagrangian submanifolds in 3-dimensional complex
space forms with isotropic cubic tensor. We will give the explicit constructions
of all such examples in section 3. Our classification theorem implies in partic-
ular that some of the Lagrangian submanifolds in 3-dimensional complex space
forms with isotropic cubic tensor are also isotropic submanifolds (in the sense of
O’Neill). We also prove the converse, namely that any n-dimensional isotropic
Lagrangian submanifold in complex space forms with n ≥ 3 has isotropic cubic
tensor. More precisely, we show the following results:

Theorem 1.1. Let M3 be a Lagrangian submanifold with isotropic cubic tensor of a
complex space form. Assume that M3 is nowhere parallel, then either

(i) M3 is congruent with a Whitney sphere in C3 (see (3.4)) and CP3 (see (3.5)), or
their analogs in CH3 (see (3.6), (3.7) and (3.8)), or

(ii) M3 is congruent with one of the Examples 6-10 with n = 3 defined in section 3
(see (3.10)-(3.14)).

Theorem 1.2. The Whitney sphere in C
n (see (3.4)) and CPn (see (3.5)), and their

analogs in CHn (see (3.6), (3.7) and (3.8)) are Lagrangian immersions with isotropic
cubic tensor.
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Theorem 1.3. Any n-dimensional (n ≥ 3) H-umbilical isotropic Lagrangian submani-
fold of a complex space form has isotropic cubic tensor.

The paper is organized as follows. In Section 2 we will recall the basic for-
mulas for Lagrangian submanifolds of complex space forms. In Section 3 we will
recall the construction of some examples, which are fundamental for our paper.
We will show in arbitrary dimensions that all these examples have isotropic cu-
bic tensor. In the final two sections we will deal with the converse problem. In
Section 4 we will determine all possible isotropic cubic tensors in dimension 3.
Finally, in Section 5, in dimension 3, we complete the proof of Theorem 1.1.

2 Preliminaries

In this section, Mn will always denote an n-dimensional Lagrangian submanifold
of M̄n(4c) which is an n-dimensional complex space form with constant holo-
morphic sectional curvature 4c. We denote the Levi-Civita connections on Mn,
M̄n(4c) and the normal bundle by ∇, D and ∇⊥

X respectively. The formulas of
Gauss and Weingarten are given by (see [2], [3], [4], [5], [6])

DXY = ∇XY + h(X, Y), DXξ = −Aξ X +∇⊥
X ξ, (2.1)

where X and Y are tangent vector fields and ξ is a normal vector field on Mn.
The Lagrangian condition implies that (see [6], [7], [8], [18])

∇⊥
X JY = J∇XY, AJXY = −Jh(X, Y) = AJYX, (2.2)

where h is the second fundamental form and A denotes the shape operator.
We denote the curvature tensors of ∇ and ∇⊥

X by R and R⊥ respectively. The
first and second covariant derivatives of h are defined by

(∇h)(X, Y, Z) = ∇⊥
X h(Y, Z) − h(∇XY, Z)− h(∇XZ, Y),

(∇2h)(X, Y, Z, W) = ∇⊥
X((∇h)(Y, Z, W)) − (∇h)(∇XY, Z, W)

− (∇h)(∇X Z, Y, W)− (∇h)(∇XW, Y, Z),

(2.3)

where X, Y, Z and W are tangent vector fields.
The equations of Gauss, Codazzi and Ricci for a Lagrangian submanifold of

M̄n(4c) are given by (see [3], [4], [6], [9])

〈R(X, Y)Z,W〉 = 〈h(Y, Z), h(X, W)〉 − 〈h(X, Z), h(Y, W)〉
+ c (〈X, W〉〈Y, Z〉 − 〈X, Z〉〈Y, W〉), (2.4)

(∇h)(X, Y, Z) = (∇h)(Y, X, Z), (2.5)

〈R⊥(X, Y)JZ, JW〉 = 〈[AJZ , AJW ]X, Y〉
+ c (〈X, W〉〈Y, Z〉 − 〈X, Z〉〈Y, W〉), (2.6)

where X, Y Z and W are tangent vector fields. Note that for a Lagrangian sub-
manifold the equations of Gauss and Ricci are mutually equivalent.
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We have the following Ricci identity (see [14]):

(∇2h)(X, Y, Z, W) = (∇2h)(Y, X, Z, W) + JR(X, Y)AJZW

− h(R(X, Y)Z, W) − h(R(X, Y)W, Z),
(2.7)

where X, Y, Z and W are tangent vector fields.
The Lagrangian condition implies that

〈R⊥(X, Y)JZ, JW〉 = 〈R(X, Y)Z, W〉, (2.8)

〈h(X, Y), JZ〉 = 〈h(X, Z), JY〉, (2.9)

for tangent vector fields X, Y, Z and W. From (2.3) and (2.9), we also have

〈(∇h)(W, X, Y), JZ〉 = 〈(∇h)(W, X, Z), JY〉, (2.10)

for tangent vector fields X, Y, Z and W.
From now on, we will also assume that Mn has an isotropic cubic tensor, i.e. in

each point p of Mn, ‖∇h(v, v, v)‖ is independent of the unit vector v ∈ TpMn.
Hence, we obtain a function Υ on Mn by

Υ(p) = ‖∇h(v, v, v)‖, (2.11)

where v ∈ TpMn with ‖v‖ = 1.
We note that Mn is called an isotropic submanifold if at each point p of Mn,

‖h(v, v)‖ is independent of the unit vector v ∈ TpMn (see [10], [13], [15] and [18]).

3 Basic examples and the proof of Theorem 1.2, 1.3

In this section we will recall some basic examples of Lagrangian submanifolds
in complex space forms. All of these examples are H-umbilical. Following [7]
and [8] a Lagrangian submanifold is called H-umbilical if and only if there exists
a local orthonormal frame {E1, . . . , En} and differentiable functions λ and µ such
that

h(E1, E1) = λJE1, h(E1, Ei) = µEi, h(Ei, Ej) = δijµE1, (3.1)

where i, j > 1. In case that the mean curvature vector does not vanish, we see
that the Lagrangian submanifold is H-umbilical if and only if we can write:

h(X, Y) = α〈JX, H〉〈JY, H〉H

+ β〈H, H〉{〈X, Y〉H + 〈JX, H〉JY + 〈JY, H〉JX},
(3.2)

for tangent vectors X, Y, Z with

α =
λ − 3µ

γ3
, β =

µ

γ3
, γ =

λ + (n − 1)µ

n
.

Moreover, from [7] and [8], when n ≥ 3, we have that

∇E1
E1 = 0, ∇Ej

E1 =
E1(µ)

λ − 2µ
Ej, Ej(λ) = Ej(µ) = 0, j ≥ 2. (3.3)

It is known, see [4] and [12], that λ = 3µ, characterizes the Whitney spheres
(or their analogs in complex hyperbolic space). They are given by:
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Example 1. Whitney sphere in C
n (see [1], [2], [5], [16]). It is defined as the La-

grangian immersion of the unit sphere Sn, centered at the origin of Rn+1, in Cn,
given by

φ : S
n → C

n : φ(x1, x2, . . . , xn, xn+1) =
1 + ixn+1

1 + x2
n+1

(x1, . . . , xn). (3.4)

Example 2. Whitney spheres in CP
n (see [4], [12]). They are a one-parameter family

of Lagrangian spheres in CP
n, given by

φ̄θ : S
n → CP

n(4) :

φ̄θ(x1, x2, . . . , xn, xn+1) = π ◦
( (x1, . . . , xn)

cθ + isθxn+1
;

sθcθ(1 + x2
n+1) + ixn+1

c2
θ + s2

θx2
n+1

)

, (3.5)

where θ > 0, cθ = cosh θ, sθ = sinh θ, π : S2n+1(1) → CP
n(4) is the Hopf

fibration.

Example 3. Whitney spheres in CH
n (see [4], [12]). They are a one-parameter family

of Lagrangian spheres in CH
n, given by

φ̄θ : S
n → CH

n(−4) :

φ̄θ(x1, x2, . . . , xn, xn+1) = π ◦
( (x1, . . . , xn)

sθ + icθxn+1
;

sθcθ(1 + x2
n+1)− ixn+1

s2
θ + c2

θx2
n+1

)

, (3.6)

where θ > 0, cθ = cosh θ, sθ = sinh θ, π : H
2n+1
1 (−1) → CH

n(4) is the Hopf
fibration.

Example 4. If RH
n−1 = {y = (y1, . . . , yn) ∈ Rn : y2

1 + · · · + y2
n−1 − y2

n = −1}
denotes the (n-1)-dimensional real hyperbolic space, following [4] (cf. [12]), we
define a one-parameter family of Lagrangian embeddings

ψ̄β : S
1 × RH

n−1 → CH
n(−4), β ∈ (0,

π

4
],

given by

ψ̄β(e
it, y) = π ◦

( 1

sin β cos t + i cos β sin t
(cos β cos t − i sin β sin t; y)

)

, (3.7)

where π : H
2n+1
1 (−1) → CH

n(4) is the Hopf fibration.

Example 5. Following [4] (cf. [12]), we define a one-parameter family of La-
grangian embeddings

ψ̄ν : R
n = R

1 × R
n−1 → CH

n(−4), ν > 0,

given by

ψ̄ν(t, x) = π ◦
( 1

ν + it

(2

ν
x,

2

ν
e1 − (

ν(ν2 + t2)

2
+

2‖x‖2

ν
+ iν2t)e2

)

)

, (3.8)

where e1 = 1
2(0, . . . , 1,−1), e2 = 1

2(0, . . . , 1, 1), π : H
2n+1
1 (−1) → CH

n(4) is the
Hopf fibration.
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In literature, several characterizations of the Whitney spheres exist. We recall
the following, which follows by combining the Main Theorem and Lemma 3.4 of
[12].

Theorem 3.1. Let Mn be as described in (3.4)-(3.8). Then there exists a local function κ
on Mn such that the covariant derivative of the second fundamental form satisfies

(∇h)(X, Y, Z) = κ(〈Y, Z〉JX + 〈X, Z〉JY + 〈X, Y〉JZ). (3.9)

Conversely any non-parallel Lagrangian submanifold satisfying the above property is
congruent with a Whitney sphere.

We will now show that they always have isotropic cubic tensor.
From (3.9), for any unit vector v ∈ TpMn we obtain that

〈(∇h)(v, v, v), (∇h)(v, v, v)〉 = 9κ2,

which is independent of the choice of the unit vector v. Hence Mn has isotropic
cubic tensor. This completes the proof of Theorem 1.2.

Another important class of H-umbilical Lagrangian immersions are the ones
with isotropic second fundamental form. They correspond with λ = −µ. Also in
that case a complete classification has been obtained. Those which are not totally
geodesic are locally described by the following examples with n ≥ 3.

Example 6. Following [2], [13] (cf. [8]), we define a Lagrangian immersion in Cn,
given by

Φ : S
n \ {(0, . . . ,±1)} → C

n : φ(x1, x2, . . . , xn, xn+1) =
1 + ixn+1

1 − x2
n+1

(x1, . . . , xn).

(3.10)

Example 7. Following [13] (cf. [7], [18]), we define a one-parameter family of
Lagrangian embeddings in CP

n, given by Φ̄ = π ◦ Φ, where π : S2n+1(1) →
CP

n(4) is the Hopf fibration and Φ is given by the following immersion:

Φ : I × S
n−1 → S

2n+1(1) :

Φ(t, y1, . . . , yn) = (z1(t), z2(t)y1, . . . , z2(t)yn), (3.11)

where

z1 =
sinh[y(t)] exp{i

∫ t
0 coth[y(s)]

√

1 − y′(s)2ds}
cosh[y(t)] exp{i

∫ t
0 tanh[y(s)]

√

1 − y′(s)2ds}
,

z2 =
1

cosh[y(t)] exp{i
∫ t

0 tanh[y(s)]
√

1 − y′(s)2ds}
,

with y(t) determined by

−2(2 cosh2 y(t)− 3)(y′(t)2 − 1) + y′′(t) sinh 2y(t) = 0.
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Example 8. Following [13] (cf. [7]), we define a one-parameter family of La-

grangian embeddings in CH
n, given by Φ̄ = π ◦ Φ, where π : H

2n+1
1 (−1) →

CH
n(−4) is the Hopf fibration and Φ is given by the following immersion:

Φ : I × S
n−1 → H

2n+1
1 (−1) :

Φ(t, y1, . . . , yn) = (z1(t), z2(t)y1, . . . , z2(t)yn), (3.12)

where

z1 =
cosh[y(t)] exp{i

∫ t
0 tanh[y(s)]

√

1 − y′(s)2ds}
sinh[y(t)] exp{i

∫ t
0 coth[y(s)]

√

1 − y′(s)2ds}
,

z2 =
1

sinh[y(t)] exp{i
∫ t

0 coth[y(s)]
√

1 − y′(s)2ds}
,

with y(t) determined by

−2(1 + 2 cosh2 y(t))(y′(t)2 − 1) + y′′(t) sinh 2y(t) = 0.

Example 9. Following [13] (cf. [7]), we define a one-parameter family of La-

grangian embeddings in CH
n, given by Φ̄ = π ◦ Φ, where π : H

2n+1
1 (−1) →

CH
n(−4) is the Hopf fibration and Φ is given by the following immersion:

Φ : I × H
n−1 → H

2n+1
1 (−1) :

Φ(t, y1, . . . , yn) = (z1(t)y1, . . . , z1(t)yn, z2(t)), (3.13)

where

z1 =
1

cos[y(t)] exp{−i
∫ t

0 tan[y(s)]
√

1 − y′(s)2ds}
,

z2 =
sin[y(t)] exp{i

∫ t
0 cot[y(s)]

√

1 − y′(s)2ds}
cos[y(t)] exp{−i

∫ t
0 tan[y(s)]

√

1 − y′(s)2ds}
,

with y(t) determined by

2(2 − cos 2y(t))(y′(t)2 − 1) + y′′(t) sin 2y(t) = 0.

Example 10. Following [13] (cf. [7]), we define a one-parameter family of La-

grangian embeddings in CH
n, given by Φ̄ = π ◦ Φ, where π : H

2n+1
1 (−1) →

CH
n(−4) is the Hopf fibration and Φ is given by the following immersion:

Φ : I × R
n−1 → H

2n+1
1 (−1) :

φ(t, y2, . . . , yn)

= exp[
∫ t

0
(iµ + k)dx]

(

1 +
1

2

n

∑
j=2

y2
j −

∫ t

0
(iµ + k) exp (−2

∫ x

0
kds)dx,

[iµ(0)− k(0)][
1

2

n

∑
j=2

y2
j −

∫ t

0
(iµ + k) exp (−2

∫ x

0
kds)dx], y2, . . . , yn

)

,

(3.14)

where µ(t) = 1
cosh (c±3t)

and k(t) = ∓ tanh (c ± 3t) for some constant c.
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If Mn is one of the examples 6-10, then following [7], [8], [13] and [18], we get
that the second fundamental form of Mn takes the form in (3.1) with µ = −λ,
hence by (3.2) we find for arbitrary local vector fields that

h(U, V) = 4λ〈U, E1〉〈V, E1〉JE1 − λ〈U, V〉JE1−
λ〈U, E1〉JV − λ〈V, E1〉JU,

(3.15)

where λ is a locally defined function on Mn.
Now let p ∈ Mn. We call E1(p) = e1 and let w, u, v ∈ TpMn where w is

orthogonal to e1. Then, using normal coordinates, we can extend u and v to local
vector fields U and V defined in the neighborhood of the point p and satisfying
∇wU = ∇wV = 0 at point p. By (2.3) and (3.3) we calculate that

(∇h)(w, u, v) = (−4

3
e1(λ)〈u, w〉〈v, e1〉 −

4

3
e1(λ)〈v, w〉〈u, e1〉)Je1

+
1

3
e1(λ)〈u, w〉Jv +

1

3
e1(λ)〈v, w〉Ju

+ (
1

3
e1(λ)〈u, v〉 − 4

3
e1(λ)〈u, e1〉〈v, e1〉)Jw,

(3.16)

which gives
{

(∇h)(u, u, u) = e1(λ)Ju, (∇h)(u, u, e1) = −e1(λ)Je1,

(∇h)(u, e1, e1) = −e1(λ)Ju, u⊥e1, ‖u‖ = 1, u ∈ TpM.
(3.17)

By (3.15) we have h(E1, E1) = λJE1, hence by (3.3) we can calculate that

(∇h)(e1, e1, e1) = e1(λ)Je1. (3.18)

Let v be an arbitrary unit vector in TpMn, if v is neither parallel nor orthogo-
nal with e1, then there exists a unit vector u which is orthogonal to e1 such that
v = cos θe1 + sin θu, hence by (3.17) and (3.18) we can calculate that

(∇h)(v, v, v) = e1(λ)(cos 3θ Je1 − sin 3θ Ju). (3.19)

(3.17), (3.18) and (3.19) imply that Mn has isotropic cubic tensor. Hence we
have shown that an H-umbilical isotropic Lagrangian submanifold of a complex
space form also has isotropic cubic tensor. This completes the proof of Theo-
rem 1.3.

Remark 3.2. In [18], L. Vrancken gave a complete classification of the isotropic
Lagrangian submanifolds in complex projective space CP

n (see also [10]), n ≥ 3.
Similarly the isotropic Lagrangian submanifolds in Cn and CH

n with n ≥ 3, were
classified by H. Li and X. Wang in [13] (see also [10]). Combining these results, we
get that if Mn is an isotropic Lagrangian submanifold of M̄n(4c) with n ≥ 3 then
Mn is totally geodesic or has parallel second fundamental form or is H-umbilical
and therefore congruent to one of the examples 6-10. In all cases it follows that
Mn also must have isotropic cubic tensor. This shows the following theorem.

Theorem 3.3. Let Mn be an n-dimensional (n ≥ 3) Lagrangian submanifold of a com-
plex space form. If Mn has isotropic second fundamental form, then Mn also has isotropic
cubic tensor.
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4 Some lemmas

From now on we will always assume that Mn is a Lagrangian submanifold of
M̄n(4c) with isotropic cubic tensor, where M̄n(4c) is an n-dimensional complex
space form with constant holomorphic sectional curvature 4c. We will also as-
sume that Mn is not a parallel Lagrangian submanifold, i.e. we will assume that
Υ 6= 0. We have the following lemma.

Lemma 4.1. Let Mn be a Lagrangian submanifold of M̄n(4c) with isotropic cubic tensor.
Let f (v) = 〈∇h(v, v, v), Jv〉 be a function on the unit tangent bundle,i.e. on UMn

p =

{v ∈ TpMn|‖v‖ = 1}. Let e1 denote a vector where f attains its maximum with
f (e1) = a1. Then |a1| = Υ(p) and for any u, a unit vector which is orthogonal to e1, we
have

(i) 〈(∇h)(e1 , e1, e1), Ju〉 = 0.

(ii) −a1 + 3〈(∇h)(e1 , e1, u), Ju〉 ≤ 0. Moreover, if the equality holds we must have
〈(∇h)(u, u, u), Je1〉 = 0.

Proof. Let

g(t) = 〈(∇h)(e1 cos t+u sin t, e1 cos t+u sin t, e1 cos t+u sin t), J(e1 cos t+u sin t)〉.
As f attains its maximum at the vector e1, with f (e1) = a1, we see that g(t) attains
its maximum value at t = 0, which implies that

g′(0) = 4〈(∇h)(e1, e1, e1), Ju〉 = 0, (4.1)

g′′(0) = 4(−〈(∇h)(e1 , e1, e1), Je1〉+ 3〈(∇h)(e1 , e1, u), Ju〉) ≤ 0. (4.2)

(4.1) implies (i). Moreover, if the equality holds in (4.2), we must have g′′′(0) = 0.
Using (4.1), we obtain g′′′(0) = 24〈(∇h)(u, u, u), Je1〉, from which (ii) follows.

From (4.1) we have that (∇h)(e1, e1, e1) and Je1 are parallel. Since f (e1) = a1,
which implies that (∇h)(e1 , e1, e1) = a1 Je1, we obtain that Υ(p) = |a1|.

We now define a linear operator A on TpMn by defining

A(v) , −J(∇h)(e1 , e1, v).

Note that from (2.10) it follows that A is a symmetric operator. Also, we know
that e1 is an eigenvector of A with eigenvalue a1. Therefore, we can choose an
orthonormal basis {e1, . . . , en} of TpMn which diagonalizes A, i.e. A(ei) = aiei,
which means (∇h)(e1, e1, ei) = ai Jei.

Let G(t) = ‖(∇h)(e1 cos t + ei sin t, e1 cos t + ei sin t, e1 cos t + ei sin t)‖2, i > 1,
we get

G(t) =‖(∇h)(e1 , e1, e1) cos3 t + 3(∇h)(e1, e1, ei) cos2 t sin t

+ 3(∇h)(e1, ei, ei) sin2 t cos t + (∇h)(ei , ei, ei) sin3 t‖2

=a2
1 cos6 t + a2

1 sin6 t + (9a2
i + 6a1ai) cos4 t sin2 t

+ (2a1 + 18ai)〈(∇h)(ei , ei, ei), Je1〉 cos3 t sin3 t

+ (9‖(∇h)(e1 , ei, ei)‖2 + 6ai f (ei)) cos2 t sin4 t

+ 6〈(∇h)(e1 , ei, ei), (∇h)(ei , ei, ei)〉 cos t sin5 t.

(4.3)
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On the other hand, since Mn has isotropic cubic tensor we have

G(t) ≡a2
1 ≡ a2

1(cos2 t + sin2 t)3

≡a2
1(cos6 t + 3 cos4 t sin2 t + 3 cos2 t sin4 t + sin6 t)

(4.4)

By comparing the coefficients in (4.3) and (4.4), we get

a2
1 = 3a2

i + 2a1ai, (4.5)

(a1 + 9ai)〈(∇h)(ei , ei, ei), Je1〉 = 0, (4.6)

a2
1 = 3‖(∇h)(e1, ei, ei)‖2 + 2ai f (ei), (4.7)

〈(∇h)(e1 , ei, ei), (∇h)(ei , ei, ei)〉 = 0. (4.8)

From (4.5) we have ai is either 1
3 a1 or −a1, hence by use of (4.6) we obtain that

a1 = 0 or
〈(∇h)(ei , ei, ei), Je1〉 = 0, i > 1. (4.9)

From now on, we will assume that n = 3.

Proposition 4.2. Let M3 be a 3-dimensional Lagrangian submanifold of M̄3(4c) with
isotropic cubic tensor. Let p ∈ M3, then either

(i) ∇h vanishes identically at the point p, or

(ii) ∇h takes the following form

(∇h)(u, v, w) = 1
3 a1(〈v, w〉Ju + 〈u, w〉Jv + 〈u, v〉Jw),

∀ u, v, w ∈ TpM3,
(4.10)

or

(iii) there exists an orthonormal basis {e1, e2, e3} of TpM3 such that ∇h takes the
following form



















(∇h)(ei , ei, ei) = a1 Jei, (∇h)(e1, e1, ej) = −a1 Jej,

(∇h)(e1, ej, ej) = −a1 Je1, (∇h)(e1, e2, e3) = 0,

(∇h)(ej, ej, ek) =
1

3
a1 Jek, i = 1, 2, 3, 2 ≤ j 6= k ≤ 3, a1 6= 0.

(4.11)

Proof. When a1 = 0, by the choice of e1 and the fact that 〈(∇h)(X, Y, Z), JW〉 is
totally symmetric, we immediately get that M3 has parallel second fundamental
form.

When a1 6= 0, we have ai is either 1
3 a1 or −a1, so we need to consider three

cases.

Case (i): a2 = a3 = 1
3 a1.

Let L = span{e2 , e3}, by (4.9) we have

〈(∇h)(ei , ei, ei), Je1〉 = 0, i = 2, 3,
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so by linearization using the symmetry of ∇h we have

〈(∇h)(u, v, w), Je1〉 = 0, ∀ u, v, w ∈ L,

which implies
〈(∇h)(e1 , ei, ei), Jej〉 = 0, i, j = 2, 3.

We also have 〈(∇h)(e1 , ei, ei), Je1〉 = ai, hence we get

(∇h)(e1, ei, ei) =
1

3
a1 Je1, i = 2, 3. (4.12)

By (4.7) and (4.12) we have

(∇h)(ei , ei, ei) = a1 Jei, i = 2, 3. (4.13)

Since L is the eigenspace of A with eigenvalue 1
3 a1, we have that the previous

formulas are not only valid for e2, e3 but for any unit vector v in L. So we get

(∇h)(e1, v, v) =
1

3
a1‖v‖2 Je1, ∀ v ∈ L, (4.14)

and
(∇h)(v, v, v) = a1‖v‖2 Jv, ∀ v ∈ L. (4.15)

Let v = 1√
2
(e2 ± e3), we get

(∇h)(v, v, v) =
1

2
√

2
((∇h)(e2 , e2, e2)± (∇h)(e3, e3, e3)

± 3(∇h)(e2, e2, e3) + 3(∇h)(e2, e3, e3)).

(4.16)

(4.15) and (4.16) imply that

(∇h)(ej, ej, ek) =
1

3
a1 Jek, 2 ≤ j 6= k ≤ 3. (4.17)

Combining all the formulas above, we get














(∇h)(ei , ei, ei) = a1 Jei,

(∇h)(ei , ei, ej) =
1

3
a1 Jej,

(∇h)(e1 , e2, e3) = 0, 1 ≤ i 6= j ≤ 3.

(4.18)

Using (4.18), we see that for u, v, w ∈ {e1, e2, e3} we get

(∇h)(u, v, w) = 1
3 a1(〈u, v〉Jw + 〈v, w〉Ju + 〈u, w〉Jv〉).

As two tensors which coincide on a basis, coincide for any tangent vectors, we
complete the proof in this case.

Case (ii): a2 = 1
3 a1, a3 = −a1. Since a1 is the maximum value of f , by (4.2) we

have −a1 ≤ −3a3 = 3a1 , which implies that a1 ≥ 0. As we assume that a1 6= 0,
we get a1 > 0. In this case, we have







(∇h)(e1, e1, e2) =
1

3
a1 Je2,

(∇h)(e1, e1, e3) = −a1 Je3,
(4.19)
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(4.9), (4.19) and lemma 4.1 imply















〈(∇h)(e1 , e2, e2), Je1〉 =
1

3
a1,

〈(∇h)(e1 , ej, ej), Jej〉 = 0, j = 2, 3,

〈(∇h)(e1 , e3, e3), Je1〉 = −a1.

(4.20)

We assume that
{

〈(∇h)(e1 , e2, e2), Je3〉 = α,

〈(∇h)(e1 , e3, e3), Je2〉 = β,
(4.21)

by (4.7) we have


















f (e2) = (1 − 9α2

2a2
1

)a1,

f (e3) = (1 +
3β2

2a2
1

)a1 ≤ a1,

(4.22)

so we get β = 0 and f (e3) = a1, which means that the function also attains a
maximum at e3. Consequently we also obtain that

{

〈(∇h)(e3 , e3, e3), Jei〉 = 0,

〈(∇h)(ei , ei, ei), Je3〉 = 0, i = 1, 2.
(4.23)

From (4.21) and (4.23) we get e2 is an eigenvector of the operator −J(∇h)(e3, e3,−),
so we can assume

(∇h)(e3, e3, e2) = bJe2, (4.24)

with b = 1
3 a1 or b = −a1 since e3 is also a maximum vector.

(4.20) and (4.23) imply that (∇h)(e2 , e2, e2) is parallel with Je2, so we get

(∇h)(e2, e2, e2) = ±a1 Je2. (4.25)

(4.22) and (4.25) imply that α = 0 or α = ± 2
3 a1, noting that we can always

change the direction of e3 to make α ≥ 0 without changing the other components
of ∇h, so we have to consider four subcases.

Case (ii-1): α = 0, b = 1
3 a1.

In this case, e1, e2 and e3 are all maximum directions of f and ∇h takes the
following form







































(∇h)(ei , ei, ei) = a1 Jei, (∇h)(e1 , e2, e3) = 0,

(∇h)(e1, e1, e2) =
1

3
a1 Je2, (∇h)(e1, e1, e3) = −a1 Je3,

(∇h)(e1, e2, e2) =
1

3
a1 Je1, (∇h)(e1, e3, e3) = −a1 Je1,

(∇h)(ej, ej, ek) =
1

3
a1 Jek, i = 1, 2, 3, 2 ≤ j 6= k ≤ 3.

(4.26)

Let y = y1e1 + y2e2 + y3e3, y2
1 + y2

2 + y2
3 = 1, by using (4.26) we have

‖(∇h)(y, y, y)‖2 = a2
1(y

6
1 + 3y4

1(y
2
2 + y2

3) + (y2
2 + y2

3)
3 + 3y2

1( y4
2 + 18y2

2y2
3 + y4

3)),
(4.27)
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we also have

‖(∇h)(y, y, y)‖2 ≡ a2
1(y

2
1 + y2

2 + y2
3)

3. (4.28)

By comparing the coefficients of y2
1y2

2y2
3 in (4.27) and (4.28), we get a contradiction,

so this case can’t happen.

Case (ii-2): α = 0, b = −a1.

In this case, e1, e2 and e3 are all maximum directions of f and ∇h takes the
following form















(∇h)(ei , ei, ei) = a1 Jei, (∇h)(e1 , e2, e3) = 0,

(∇h)(e3, e3, ej) = −a1 Jej, (∇h)(e3, ej, ej) = −a1 Je3,

(∇h)(ej, ej, ek) =
1

3
a1 Jek, i = 1, 2, 3, 1 ≤ j 6= k ≤ 2.

(4.29)

If we take ẽ1 = e3, ẽ2 = e2, ẽ3 = e1, ã1 = a1, then we get ∇h in case (ii-2) takes
the same form with (4.11).

Case (ii-3): α = 2
3 a1, b = 1

3 a1.

In this case, e1 and e3 are both maximum directions of f , e2 is a minimal direc-
tion of f and ∇h takes the following form











































(∇h)(ei , ei, ei) = (−1)i+1a1 Je1, i = 1, 2, 3; (∇h)(e1, e2, e3) =
2

3
a1 Je2,

(∇h)(e1, e1, e2) =
1

3
a1 Je2, (∇h)(e1, e1, e3) = −a1 Je3,

(∇h)(e1, e2, e2) =
1

3
a1 Je1 +

2

3
a1 Je3, (∇h)(e1, e3, e3) = −a1 Je1,

(∇h)(e2, e2, e3) =
1

3
a1 Je3 +

2

3
a1 Je1, (∇h)(e2, e3, e3) =

1

3
a1 Je2.

(4.30)

If we take ẽ1 = (e1 + e3)/
√

2, ẽ2 = e2, ẽ3 = (e1 − e3)/
√

2, ã1 = −a1, we obtain
that ∇h in case (ii-3) takes the same form with (4.11).

Case (ii-4): α = 2
3 a1, b = −a1.

In this case, we get e2 is a minimal direction, by an analogous argument as for
e1 we can obtain that the eigenvalue for the operator −J(∇h)(e2 , e2,−) is either
a1 or − 1

3 a1.

However, using (4.19), (4.21) and (4.24), we have the following equations











(∇h)(e2, e2, e1) =
1

3
a1 Je1 +

2

3
a1 Je3,

(∇h)(e2, e2, e3) = −a1 Je3 +
2

3
a1 Je1,

(4.31)

which implies the eigenvalue of the operator −J(∇h)(e2 , e2,−) is neither a1 nor
− 1

3 a1. So this case can’t happen.

Case (iii): a2 = a3 = −a1.

In this case, by a analogous argument with case (ii) we get e1, e2 and e3 are all
maximum directions of f and
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(∇h)(ei , ei, ei) = a1 Jei, (∇h)(e1, e2, e3) = 0,

(∇h)(e1, e1, ej) = −a1 Jej, (∇h)(e1, ej, ej) = −a1 Je1,

(∇h)(ej, ej, ek) = cJek, i = 1, 2, 3, 2 ≤ j 6= k ≤ 3,

(4.32)

with c = −a1 or c = 1
3 a1.

If c = −a1, we can easily get contradiction after a similar argument with case
(ii-1).

If c = 1
3 a1, we deduce that ∇h takes the form in (4.11). This completes the

proof of Proposition 4.2.

5 Proof of Theorem 1.1

By Proposition 4.2 and the assumption that there are no points for which (∇h)
vanishes identically, a continuity argument using ‖(∇h)‖ implies that we de-
duce that either (4.10) holds everywhere on M3 or ∇h takes the form as (4.11)
everywhere on M3. In the first case, by the results of [12], see also Theorem 3.1
we obtain that M3 is locally isometric with a Whitney sphere (or their analogs in
complex hyperbolic space).

Hence we may assume that (4.11) holds everywhere on M3. Let {F1, F2, F3} be
an arbitrary orthonormal frame defined in a neighborhood of the point p and let
{ f1, f2, f3} denote the corresponding orthonormal basis at the point p. Then, if

we denote by ~H the mean curvature vector, it follows that at the point p we have

∇⊥
v
~H = 1

3

3

∑
i=1

∇⊥
v h(Fi , Fi)

= 1
3

3

∑
i=1

(∇h)(v, Fi , Fi) +
2
3

3

∑
i,j=1

〈∇vFi, Fj〉h(Fj , Fi)

= 1
3

3

∑
i=1

(∇h)(v, fi , fi).

From this and (4.11) we see that e1 is characterized as belonging to a 1-dimensional

eigenspace of −J∇⊥~H with eigenvalue − 1
3 a1. We also see that the eigenspaces of

this operator have constant dimensions. Hence using the classical theorem of
Kobayashi and Nomizu (see page 38 of [11]), we see that e1 can be extended to a
differentiable vector field E1 on a neighborhood of p such that at each point the
function f attains a maximum at e1. Note that in order to have the form (4.11)
on a neighborhood it is now sufficient to take local orthonormal vector fields E2

and E3 orthogonal to E1. Note that we still have some rotational freedom. Indeed
rotating the vector fields E2 and E3 over an angle θ (where θ is a local function)
preserves the expression (4.11). So we have



















(∇h)(Ei , Ei, Ei) = a1 JEi, (∇h)(E1 , E1, Ej) = −a1 JEj,

(∇h)(E1 , Ej, Ej) = −a1 JE1, (∇h)(E1, E2, E3) = 0,

(∇h)(Ej , Ej, Ek) =
1

3
a1 JEk, i = 1, 2, 3, 2 ≤ j 6= k ≤ 3, a1 6= 0.

(5.1)
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We now write






































h(E1, E1) = x1 JE1 + x2 JE2 + x3 JE3,

h(E1, E2) = x2 JE1 + y1 JE2 + y3 JE3,

h(E1, E3) = x3 JE1 + y3 JE2 + y2 JE3,

h(E2, E2) = y1 JE1 + z1 JE2 + z2 JE3,

h(E2, E3) = y3 JE1 + z2 JE2 + z3 JE3,

h(E3, E3) = y2 JE1 + z3 JE2 + z4 JE3.

(5.2)































∇E1
E1 = z112E2 + z113E3, ∇E1

E2 = −z112E1 + z123E3,

∇E1
E3 = −z113E1 − z123E2, ∇E2

E1 = z212E2 + z213E3,

∇E2
E2 = −z212E1 + z223E3, ∇E2

E3 = −z213E1 − z223E2,

∇E3
E1 = z312E2 + z313E3, ∇E3

E2 = −z312E1 + z323E3,

∇E3
E3 = −z313E1 − z323E2.

(5.3)











〈R(E1, E2)E1, E2〉 = b1, 〈R(E1, E2)E1, E3〉 = b2,

〈R(E1, E3)E1, E3〉 = b3, 〈R(E1, E2)E2, E3〉 = b4,

〈R(E1, E3)E3, E2〉 = b5, 〈R(E2, E3)E2, E3〉 = b6.

(5.4)

As mentioned before, from (5.1), if we choose another basis {Ẽ2, Ẽ3} by ro-
tating {E2, E3}, we preserve the form of ∇h. By making such a rotation we may
always assume that y3 = 0. Note that if moreover, y1 = y2 on an open set, we
recover again the same rotation freedom. So in that case we may assume that
x2 = 0. From now on we will always assume that we have made the appropriate
rotations. We define

Sijkl ,(∇2h)(Ei , Ej, Ek, El)− (∇2h)(Ej, Ei, Ek, El)− JR(Ei , Ej)AJEk
El

+ h(R(Ei , Ej)Ek, El) + h(R(Ei , Ej)El , Ek).
(5.5)

By (2.7) we have Sijkl ≡ 0. Let i = k = 1, j = l = 2 in (5.5), from (5.1)-(5.4) we
get

z113 =
−3(b4(y1 − y2) + b1(x3 − z2) + b2(x2 − z3))

4a1
. (5.6)

Let i = 1, j = k = l = 2 in (5.5), we get

z212 =
3b1y1 − 3b4z2 − E1(a1)

4a1
. (5.7)

Let i = 1, j = 2, k = l = 3 in (5.5), we get

z213 =
3(b2y2 + b4z3)

4a1
. (5.8)

Let i = k = 1, j = l = 3 in (5.5), we get

z112 =
3(b5(y1 − y2) + b2(−x3 + z2) + b3(−x2 + z3))

4a1
. (5.9)
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Let i = 1, j = 3, k = l = 2 in (5.5), we get

z312 =
3(b2y1 + b5z2)

4a1
. (5.10)

Let i = 1, j = k = l = 3 in (5.5), we get

z313 =
3b3y2 − 3b5z3 − E1(a1)

4a1
. (5.11)

Let i = 2, j = 3, k = l = 1 in (5.5), we get

E2(a1) = −b6x2 + b5(x1 − 2y2) + 2b4y3, E3(a1) = −b6x3 + b4(x1 − 2y1) + 2b5y3.
(5.12)

By using (5.6)-(5.12), we obtain Sijkl ≡ 0 is equivalent to the following 22 equa-
tions:























































































































































































































eq1 := (3b1 − 3b3 + b6)x2 − b5(x1 − 3y1 + y2) + 3b2z2 + 3b3z3 = 0,

eq2 := −b1(x1 + y1) + b4(x3 + 3z2) = 0,

eq3 := b2(x1 + y2) + b4(x2 + 3z3) = 0,

eq4 := 3b3x2 − b6x2 + 3b2x3 + b5(x1 − 3y1 + y2)

+ b1(−2x2 + z1)− 2b2z2 − 3b3z3 = 0,

eq5 := −b6x2 + b5(x1 − y1 − y2) + b3(x2 − z3) + b1z3 − b2(x3 + z2 − z4) = 0,

eq6 := −b2y1 + b2y2 − b4z1 + 3b4z3 = 0,

eq7 := b1(y1 − y2) + b4(−3z2 + z4) = 0,

eq8 := −3b1x3 + 3b3x3 + b6x3 − b4(x1 + y1 − 3y2) + 3b1z2 + 3b2z3 = 0,

eq9 := b2(x1 + y1) + b5(x3 + 3z2) = 0,

eq10 := −b3(x1 + y2) + b5(x2 + 3z3) = 0,

eq11 := b1x3 − b6x3 + b4(x1 − y1 − y2)− b1z2 + b3z2 − b2(x2 − z1 + z3) = 0,

eq12 := 3b2x2 + 3b1x3 − 2b3x3 − b6x3 + b4(x1 + y1 − 3y2)

− 3b1z2 − 2b2z3 + b3z4 = 0,

eq13 := b3(−y1 + y2) + b5(z1 − 3z3) = 0,

eq14 := b2y1 − b2y2 + 3b5z2 − b5z4 = 0,

eq15 := b2(−y1 + y2)− b5(x3 + z2) + b4(x2 + z3) = 0,

eq16 := 3b2y1 − b2y2 + 2b5z2 + b4(−2x2 + z1 − z3) = 0,

eq17 := −(b1 + b6)y1 + (b3 + b6)y2 − b4(x3 − 2z2) + b5(x2 − 2z3) = 0,

eq18 := b2(y1 − 3y2)− 2b4z3 + b5(2x3 + z2 − z4) = 0,

eq19 := −b4(x1 + y1) + b6(x3 + 3z2) = 0,

eq20 := b5(x1 + 3y1 − 2y2)− b6(x2 + 3z1 − 6z3) = 0,

eq21 := −b4(x1 − 2y1 + 3y2) + b6(x3 − 6z2 + 3z4) = 0,

eq22 := b5(x1 + y2)− b6(x2 + 3z3) = 0.
(5.13)

By the Gauss equation (2.4) we get moreover that
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b1 = −c + x2
2 − x1y1 + y2

1 − x2z1 − x3z2,

b2 = x2(x3 − z2)− x3z3,

b3 = −c + x2
3 − x1y2 + y2

2 − x2z3 − x3z4,

b4 = x3y1 + (−y1 + y2)z2,

b5 = x2y2 + (y1 − y2)z3,

b6 = −c − y1y2 + z2
2 − z1z3 + z2

3 − z2z4.

(5.14)

First we look at the case that b2
1 + b2

2 + b2
3 + b2

4 + b2
5 + b2

6 = 0, i.e. b1 = b2 =
b3 = b4 = b5 = b6 = 0. Assume that this is true in a neighborhood of the point p.
Hence M3 is flat, i.e. 〈R(Ei , Ej)Ek, El〉 = 0, ∀i, j, k, l = 1, 2, 3. By (2.4) we get

〈h(Ei , Ek), h(Ej, El)〉 − 〈h(Ei , El), h(Ej, Ek)〉
+ c(〈Ei , Ek〉〈Ej, El〉 − 〈Ei, El〉〈Ej, Ek〉) = 0, ∀i, j, k, l = 1, 2, 3,

(5.15)

which implies

〈∇h(Ei , Ej, Ek), h(El , Em)〉+ 〈∇h(Ei , El, Em), h(Ej, Ek)〉
−〈∇h(Ei , Ek, El), h(Ej, Em)〉 − 〈∇h(Ei , Ej, Em), h(Ek , El)〉 = 0,

∀ i, j, k, l, m = 1, 2, 3.

(5.16)

We insert (5.1) and (5.2) into (5.16) and obtain x1 = x2 = x3 = y1 = y2 = z1 =
z2 = z3 = z4 = 0, in a neighborhood of p. Hence M3 is totally geodesic, and
therefore also has parallel second fundamental form. This is a contradiction with
a1 6= 0.

When b2
1 + b2

2 + b2
3 + b2

4 + b2
5 + b2

6 6= 0, we can look at the system (5.13) as a
system of linear equations in the variables x1, x2, x3, y1, y2, z1, z2, z3, z4 under
the condition (5.14). Note that if x1 = x2 = x3 = y1 = y2 = z1 = z2 = z3 =
z4 = 0, M3 is totally geodesic which is a contradiction. Henceforth we are only
interested in nontrivial solutions. Note also that if y1 = y2 (on an open set), by
the choice of frame we also must have that x2 = 0.

Using the Reduce command of Mathematica, more precisely using

Reduce[{eq2 == 0, eq3 == 0, eq6 == 0, eq7 == 0, eq19 == 0, eq22 == 0,

eq20 == 0, eq21 == 0, eq9 == 0, eq10 == 0, eq13 == 0, eq14 == 0,

eq15 == 0, eq18 == 0, eq17 == 0, eq16 == 0, eq8 == 0, eq11 == 0,

eq12 == 0, eq4 == 0, eq5 == 0, eq1 == 0}, {x1, y1, y2, x2, x3, z1, z2, z3, z4}]

which is particularly adapted for solving a system of linear equations with pa-
rameters, we find that the system (5.13) only has nontrivial real solutions in the
following cases:

(i) b5 = b4 = b2 = 0, b1 = b3 = b6 6= 0, y1 = y2 = −x1, x2 = 0, z1 = z3 = 0,
z2 = − 1

3 x3 and z4 = −x3,

(ii) b5 = b4 = b3 = b2 = b1 = 0, b6 6= 0, y1 = y2, x2 = x3 = 0, z1 = z2 = z3 =
z4 = 0,
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(iii) b6 = b5 = b4 = b2 = b1 = 0, b3 6= 0, y1 = y2 = x1 = 0, x2 = x3 = 0,
z2 = z3 = z4 = 0,

(iv) b6 = b5 = b4 = b3 = b2 = 0, b1 6= 0, y1 = y2 = x1 = 0, x2 = 0, z1 = z3 = 0,
z2 = x3,

(v) b5 = b3 = b2 = 0, b1b6 = b2
4, b6 6= 0 6= b4, y2 =

b2
1x1−3b2

1y1+b2
4y1

b2
4

, x2 = 0,

x3 =
b1x1−2b1y1

b4
, z1 = z3 = 0, z2 =

b1x3+b4y1−b4y2
b1

and z4 =
2b1y1+b1y2

b4
,

(vi) b5 = b4 = b2 = 0, b1 = b3 = −b6 6= 0, y1 = y2 = −x1,x2 = x3 = 0,

z1 = z2 = z3 = z4 = 0,

(vii) b4 = b5 = b6 = 0, b1b3 = b2
2 6= 0, x1 = y1 = y2 = x2 = x3 = 0, z2 = − b1

b2
z1,

z3 = − b1
b2

z2, z4 = − b1
b2

z3.

(viii) b4 = b2 = b1 = 0, 3b2
5 = b2

6, 3b3 = b6, y1 = 1
3 x1, x2 = b5x1−2b5y2

b6
,

x3 = z2 = z4 = 0, z1 = b6x1+6b6y2
9b5

, z3 = 1
8(−x2 + 3z1),

(ix) b4 = b2 = b1 = 0, b3b6 = b2
5, b6 6= 0, 3b3 − b6 6= 0, y2 = b3x1−b6y1

3b3−b6
, x2 = b5

b6
(x1 −

2y2), x3 = z2 = z4 = 0, z1 =
2b3x1+3b3y1−2b6y1+2b6y2

3b5
and z3 =

(b3x2−b5y1+b5y2)
b3

,

(x) b5 = b4 = b2 = 0, b1 = b3 6= 0, b2
3 6= b2

6, y1 = y2 = −x1, x2 = x3 = 0,
z1 = z2 = z3 = z4 = 0,

(xi) b6 = b5 = b4 = b2 = 0, 2b1 = b3 6= 0, y1 = y2 = x1 = 0, x2 = 0, z1 = z3 = 0,

z2 = b1−b3
b1

x3 and z4 = −x3.

We now look at the above solutions in more detail, taking also into account
(5.14) and the fact that M3 has isotropic cubic tensor. If necessary by restricting to
an open dense subset of M3, we may assume that a solution remains valid on an
open set. We get:

(i) b5 = b4 = b2 = 0, b1 = b3 = b6 6= 0. From b1 = b6 and (5.14), we

immediately obtain that also 3x2
1 +

5x2
3

9 = 0. This implies that all components of
the second fundamental form vanish, which is a contradiction.

(ii) b1 = b2 = b3 = b4 = b5 = 0, b6 6= 0, in this case, using also (5.14), we
get x1 = y1 − c

y1
, x2 = x3 = 0, y2 = y1, z1 = z2 = z3 = z4 = 0. Moreover,

b6 = −c − y2
1 6= 0. So by (5.9) and (5.11) we get z112 = z113 = 0. Next from (2.3),

(4.11), (5.2) and (5.3) we get







∇h(E1, E1, E1) = (1 +
c

y2
1

)E1(y1)JE1 = a1 JE1,

∇h(E1, E1, E2) = E1(y1)JE2 = −a1 JE2,

So, as a1 6= 0, we get that c = −2y2
1. However, this implies that y1 is constant and

hence a1 vanishes. This is a contradiction.
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(iii) b1 = b2 = b4 = b5 = b6 = 0, b3 6= 0, in this case a contradiction follows
from (5.14).

(iv) b2 = b3 = b4 = b5 = b6 = 0, b1 6= 0, in this case we get x1 = x2 = y1 =
y2 = 0, z1 = 0, z2 = x3, z3 = 0, z4 = x3 − c

x3
, b1 = −c − x2

3 6= 0. We proceed

again as for case (ii) in order to obtain a contradiction.
(vii) b4 = b5 = b6 = 0, b1b3 = b2

2 6= 0, x1 = y1 = y2 = x2 = x3 = 0,

z2 = − b1
b2

z1, z2 =
b2

1

b2
2
z1, z2 = − b3

1

b3
2
z1. Using (5.14) we find that b2 = 0 which leads

to a contradiction.
(viii) and (ix) In both cases we have b4 = b2 = b1 = 0, b2

5 = b3b6 6= 0 and the

solution can be rewritten as x1 = b5
b3
(x2 + 2z3), x3 = 0, y1 = b5

b3
z3 +

b3
b5
(x2 −

z3), y2 = b5
b3

z3, y3 = 0, z1 =
b2

3

b2
5
(x2 − z3) + 3z3, z2 = 0, z4 = 0. After a direct

calculation, we get z112 = z113 = z213 = z312 = 0, z212 = z313 = −E1(a1)
4a1

. Hence by

the definition of the curvature 〈R(Ei , Ej)Ek, El〉, we can calculate that

〈R(E2, E1)E2, E1〉 = 〈R(E3, E1)E3, E1〉 =
5(E1(a1))

2 − 4a1E1(E1(a1))

16a2
1

,

which is a contradiction with b1 = 0, b3 6= 0.

(v) b5 = b3 = b2 = 0, b1b6 = b2
4, b6 6= 0 6= b4, y2 =

b2
1x1−3b2

1y1+b2
4y1

b2
4

, x2 = 0,

x3 = b1x1−2b1y1
b4

, z1 = z3 = 0, z2 = b1x3+b4y1−b4y2
b1

and z4 = 2b1y1+b1y2
b4

. Changing the

roles of E2 and E3 this case reduces to the previous one and hence a contradiction
follows in the same way.

(vi) and (x) In both cases, we get x2 = x3 = 0, y1 = y2 = −x1, y3 = 0, z1 =
z2 = z3 = z4 = 0 and b2 = b4 = b5 = 0, b1 = b3 = −c + 2x2

1 6= 0, b6 = −c − x2
1,

and the second fundamental form of M3 takes the following form
{

h(E1, E1) = x1 JE1, h(E2, E2) = h(E3, E3) = −x1 JE1,

h(E1, E2) = −x1 JE2, h(E1, E2) = −x1 JE2, h(E2, E3) = 0.

So by (5.9) and (5.11) we get z112 = z113 = 0. Next from (2.3), (4.11), (5.2) and (5.3)
we get

∇h(E1, E1, E1) = E1(x1)JE1 = a1 JE1.

In case (vi), from b6 = −b1 we get x2
1 = −2c hence E1(x1) = 0, which together

with the previous formula imply a1 vanishes. So we get a contradiction.
In case (x), following [7], [8] (cf. [13], [18]), we obtain that M3 is isotropic

and H-umbilical and therefore locally congruent to one of the examples 6-10 with
n = 3.

(xi) b2 = b4 = b5 = b6 = 0, b3 = 2b1 6= 0. From (5.14) it follows that c = 0 and

b3 = 2x2
3. From (5.6) - (5.11) we get z113 = − 3x3

3
2a1

, z112 = z312 = z213 = 0, z212 =

z313 = −E1(a1)
4a1

. It follows from (2.3), (4.11), (5.2) and (5.3) that


















〈∇h(E1, E1, E3), JE3〉 = −9x4
3

2a1
= −a1,

〈∇h(E1, E1, E2), JE2〉 = −3x4
3

2a1
= −a1,
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so we get a1 = 0, which is a contradiction.
Hence, we have completed the proof of Theorem 1.1.

Acknowledgements: The authors would like to express their thanks to the ref-
eree for some useful comments.
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