On functions convex in the direction of the real axis with real coefficients

Leopold Koczan

Paweł Zaprawa

Abstract

The paper is concerned with the class $X^{(n)}$ consisting of all functions, which are n-fold symmetric, convex in the direction of the real axis and have real coefficients. For this class we determine the Koebe domain, i.e. the set $\bigcap_{f \in X^{(n)}} f(\Delta)$, as well as the covering domain, i.e. the set $\bigcup_{f \in X^{(n)}} f(\Delta)$. The results depend on the parity of $n \in N$. We also obtain the minorant and the majorant for this class. These functions are defined as follows.

If there exists an analytic, univalent function m satisfying the following conditions: $m^{\prime}(0)>0$, for every $f \in X^{(n)}$ there is $m \prec f$, and $\wedge_{f \in X^{(n)}}[k \prec$ $f \Rightarrow k \prec m]$, then this function is called the minorant of $X^{(n)}$. Similarly, if there exists an analytic, univalent function M such that $M^{\prime}(0)>0$, for every $f \in X^{(n)}$ there is $f \prec M$, and $\bigwedge_{f \in X^{(n)}}[f \prec k \Rightarrow M \prec k]$, then this function is called the majorant of $X^{(n)}$.

If these functions exist, then $m(\Delta)$ and $M(\Delta)$ coincide with the Koebe domain and the covering domain for $X^{(n)}$, respectively.

Introduction

In the beginning we recall that an analytic function f is subordinated to an analytic and univalent function F in $\Delta \equiv\{\zeta \in C:|\zeta|<1\}$ if and only if there exists an analytic function ω such that $\omega(0)=0, \omega(\Delta) \subset \Delta$ and $f(z)=F(\omega(z))$ for $z \in \Delta$. Then we write $f \prec F$.

[^0]Let S denote the set of all functions f analytic and univalent in Δ and normalized by $f(0)=f^{\prime}(0)-1=0$. Let $Y \subset S$ be the class of these functions in S which have real coefficient and which are convex in the direction of the imaginary axis. Similarly, let $X \subset S$ consist of the functions with real coefficients in S, which are convex in the direction of the real axis. We call a function f convex in the direction of the straight line l if the intersection of $f(\Delta)$ and each line k parallel to l is either k, or a segment, or a ray or an empty set.

For a given $\mathcal{Y} \subset S$, if there exists an analytic and univalent function m satisfying the following conditions: $m^{\prime}(0)>0$,

$$
\begin{equation*}
\bigwedge_{f \in \mathcal{Y}} m \prec f \tag{1}
\end{equation*}
$$

and for every analytic function $k, k(0)=0$, there is

$$
\begin{equation*}
\left(\bigwedge_{f \in \mathcal{Y}} k \prec f\right) \Rightarrow k \prec m \tag{2}
\end{equation*}
$$

then this function is called the minorant of \mathcal{Y}. The set $\bigcap_{f \in \mathcal{Y}} f(\Delta)$ is said to be the Koebe domain for \mathcal{Y} and is denoted by $K_{\mathcal{Y}}$. Clearly, if the Koebe domain is a simply connected set, then the minorant exists and $K_{\mathcal{Y}}=m(\Delta)$.

If there exists an analytic and univalent function M such that $M^{\prime}(0)>0$,

$$
\begin{equation*}
\bigwedge_{f \in \mathcal{Y}} f \prec M \tag{3}
\end{equation*}
$$

and for every analytic function $k, k(0)=0$, there is

$$
\begin{equation*}
\left(\bigwedge_{f \in \mathcal{Y}} f \prec k\right) \Rightarrow M \prec k, \tag{4}
\end{equation*}
$$

then this function is called the majorant of \mathcal{Y}. The set $\bigcup_{f \in \mathcal{Y}} f(\Delta)$ is said to be the covering domain for \mathcal{Y} and is denoted by $L_{\mathcal{Y}}$. Notice that if the covering domain is a simply connected set, then the majorant exists. In this case $L \mathcal{Y}=M(\Delta)$. EXAMPLES.

1. For $\mathcal{Y}=S$ there is $m(z)=\frac{1}{4} z, z \in \Delta$, and hence $K_{S}=\Delta_{1 / 4}$. In S the majorant does not exist $\left(L_{S}=C\right)$.
2. For $\mathcal{Y}=Y$ there is $m(z)=\frac{1}{2} z, z \in \Delta$, (McGregor, [5]) and hence $K_{Y}=\Delta_{1 / 2}$. The majorant does not exist $\left(L_{Y}=C\right)$.
3. $\mathcal{Y}=C V R^{(2)}$, where $C V R^{(2)}$ is the class of univalent, convex and odd functions in Δ with real coefficients. The set $K_{C V R^{(2)}}$ was determined by Krzyż and Reade (see [1]). Then, m maps Δ onto the set $K_{C V R^{(2)}}$ and $m^{\prime}(0)>0$. The function $M(z)=\int_{0}^{1} \frac{z}{\sqrt{\left(1-t^{2}\right)\left(1-t^{2} z^{4}\right)}} d t$ is the majorant of $C V R^{(2)}$ (see [4]).

In [2] the class $Y^{(n)}$ was considered. This is the set of n-fold symmetric functions from Y, i.e.

$$
Y^{(n)} \equiv\{f \in Y: f(\varepsilon z)=\varepsilon f(z), z \in \Delta\}, \text { where } \varepsilon=e^{\frac{2 \pi i}{n}}
$$

For functions in $Y^{(n)}$ the property $f(\Delta)=\varepsilon f(\Delta)$ holds. In this case we say that the set $f(\Delta)$ is n-fold symmetric. The symbol $a D$ is understood as $\{a z: z \in D\}$. In the above mentioned paper the authors derived the Koebe set and the covering set as well as the minorant and the majorant in $Y^{(n)}$.

Now we are interested in another subclass of S, namely

$$
X^{(n)} \equiv\{f \in X: f(\varepsilon z)=\varepsilon f(z), z \in \Delta\}
$$

where ε is defined as above.
It is known that if f is in X, then for each $t \in(0,1)$ the function $f(t z) / t$ is also in X. The same is true for functions in $X^{(n)}$. Therefore, the Koebe set for $X^{(n)}$ is, in fact, a domain.

Observe that for even n, all functions from $X^{(n)}$ are odd. Hence

$$
\begin{gather*}
f \in X^{(n)} \Leftrightarrow-i f(i z) \in Y^{(n)} \quad \text { for } \quad n=4 k-2, k \in N, \tag{5}\\
f \in X^{(n)} \Leftrightarrow f \in Y^{(n)} \quad \text { for } \quad n=4 k, k \in N . \tag{6}
\end{gather*}
$$

We conclude from (5-6) that one can transfer the results from $Y^{(n)}$ onto $X^{(n)}$.
Every function in $X^{(n)}$ has real coefficients. For this reason the set $f(\Delta)$ is symmetric with respect to the real axis. Another important property of the class $X^{(n)}$ is given in

Lemma 1. If $f \in X^{(n)}$ then the straight line $k: \zeta=e^{\frac{\pi i}{n}} t, t \in R$ is a symmetry axis of the set $f(\Delta)$.

Proof.
The symmetry with respect to the line $\zeta=e^{\frac{\pi i}{n}} t, t \in R$ means that for arbitrary $z, \zeta \in \Delta$, if

$$
\begin{equation*}
\overline{z e^{-\frac{\pi i}{n}}}=\zeta e^{-\frac{\pi i}{n}} \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\overline{f(z) e^{-\frac{\pi i}{n}}}=f(\zeta) e^{-\frac{\pi i}{n}} \tag{8}
\end{equation*}
$$

Assume that the condition (7) is satisfied. We can write it equivalently in the form

$$
\begin{equation*}
\zeta=\bar{z} e^{\frac{2 \pi i}{n}}=\bar{z} \varepsilon . \tag{9}
\end{equation*}
$$

From properties of $f \in X^{(n)}$ it follows that

$$
\overline{f(z)} \varepsilon=f(\bar{z}) \varepsilon=f(\bar{z} \varepsilon) .
$$

Applying (9) we obtain $\overline{f(z)} \varepsilon=f(\zeta)$. This condition is equivalent to (8).
Corollary 1. If $f \in X^{(n)}$, then each straight line $\zeta=e^{\frac{\pi i}{n} k} t, t \in R, k=0,1, \ldots, 2 n-1$, is a symmetric axis of $f(\Delta)$.

The next lemma follows from Lemma 1 and from properties of the class $X^{(n)}$
Lemma 2. The Koebe domain and the covering domain for $X^{(n)}$ are n-fold symmetric and symmetric with respect to the lines $\zeta=e^{\frac{\pi i}{n} k} t, t \in R, k=0,1, \ldots, 2 n-1$.

Lemma 3. The Koebe domain and the covering domain for $X^{(n)}$ are symmetric with respect to the imaginary axis.

Proof.
If $f \in X^{(n)}$ then $g(z)=-f(-z)$ is also in $X^{(n)}$. Hence the sets $f(\Delta) \cap g(\Delta)$ and $f(\Delta) \cup g(\Delta)$ are symmetric with respect to the imaginary axis. From this

$$
\bigcap_{f \in X^{(n)}} f(\Delta)=\bigcap_{f \in X^{(n)}} f(\Delta) \cap(-f(\Delta)) \quad \text { and } \quad \bigcup_{f \in X^{(n)}} f(\Delta)=\bigcup_{f \in X^{(n)}} f(\Delta) \cup(-f(\Delta))
$$

From convexity of the functions in $X^{(n)}$ in the direction of the real axis we get
Lemma 4. The Koebe domain for $X^{(n)}$ is convex in the direction of the real axis.
For a fixed n we use the notation: $\Lambda_{j}=\{\zeta \in C: 2(j-1) \pi / n \leq \operatorname{Arg} \zeta \leq$ $2 j \pi / n\}, j=1,2, \ldots, n$, and $\Lambda=\{\zeta \in C: 0 \leq \operatorname{Arg} \zeta \leq \pi / n\}$. Furthermore, we will write ∂D to denote the boundary of a set D.

By Lemma 2, we need to determine the boundaries of the Koebe domain and the covering domain for $X^{(n)}$ in the set Λ only.

1 Koebe domain for $X^{(n)}$ and odd n.

Let n be a fixed odd integer, $n \geq 3$. We consider two families of open and n-fold symmetric polygons which are symmetric with respect to the real axis.

The first family consists of polygons such that their successive vertices u, v, w belong to Λ and $\operatorname{Arg} u=0, \operatorname{Arg} v \in\left(0, \frac{\pi}{n}\right), \operatorname{Arg} w=\frac{\pi}{n}$. The polygons' interior angles corresponding with the vertices u, v, w are of the measure $\pi\left(1-\frac{1}{n}\right)$, $\pi\left(1+\frac{1}{n}\right)$ and $\pi\left(1-\frac{3}{n}\right)$, respectively. It means that the measure of the angle with the vertex lying on the real positive semi-axis is equal to $\pi\left(1-\frac{1}{n}\right)$. From the above it follows that polygons of the described type have $4 n$ sides.

This set of polygons is extended on limiting cases. If $u=v$ (hence $\operatorname{Arg} v=0$), then we obtain polygons having $2 n$ sides of the same length and angles measuring $\pi\left(1+\frac{1}{n}\right)$ and $\pi\left(1-\frac{3}{n}\right)$ alternately. If $v=w$ (hence $\operatorname{Arg} v=\frac{\pi}{n}$) then we obtain regular polygons having $2 n$ sides and all angles measuring $\pi\left(1-\frac{1}{n}\right)$.

We denote this family of polygons by \mathcal{V}_{1}. Polygons of this family are shown in Figure 1.

For $n=3$ the sets of the family \mathcal{V}_{1} are unbounded. Every fourth vertex of such a polygon is extended to infinity. For this reason both sides adjacent to every such vertex are parallel. In this way we obtain a star-shaped set with three unbounded strips. The thickness of strips is growing as $\operatorname{Arg} v$ tends to $\frac{\pi}{3}$.

In cases $\operatorname{Arg} v=0$ and $\operatorname{Arg} v=\frac{\pi}{3}$ these sets become a regular hexagon and a three-pointed unbounded star, respectively (see Figure 2).

Despite the unboundedness of these sets, we still call them polygons (of the generalized type).

Figure 1: Polygons: a) $n=5, \operatorname{Arg} v=\frac{\pi}{12} \quad$ b) $n=5, \operatorname{Arg} v=0$.

The second family of polygons, denoted by \mathcal{V}_{2}, is defined as follows:

$$
\mathcal{V}_{2}=\left\{-W: W \in \mathcal{V}_{1}\right\}
$$

Let $f \in X^{(n)}$ and let n be an odd integer greater than or equal to 3 . Assume that $w, \operatorname{Arg} w \in\left[0, \frac{\pi}{n}\right]$, is the omitted value of f. Because of real coefficients, the function f also omits \bar{w}. From this and from n-fold symmetry of f, the set

$$
\begin{equation*}
\Omega=\left\{w \varepsilon^{j}, \bar{w} \varepsilon^{j}: j=0,1, \ldots, n-1\right\} \tag{10}
\end{equation*}
$$

is disjoint from $f(\Delta)$.
All the points in Ω have the same modulus. Therefore, they can be arranged in accordance with the increase of the argument as follows:

$$
\begin{equation*}
0 \leq \arg w \leq \arg \bar{w} \varepsilon \leq \arg w \varepsilon \leq \arg \bar{w} \varepsilon^{2} \leq \cdots \leq \arg w \varepsilon^{n-1} \leq \arg \bar{w} \varepsilon^{n} \leq 2 \pi \tag{11}
\end{equation*}
$$

Now we take three successive points from Ω (in accordance with the order of (11)) in the following way. By w^{*} we denote the point which has the greatest imaginary part among the points in Ω and by w_{L}^{*} and w_{R}^{*} the points directly preceding and succeeding w^{*}. The choice of w^{*} is unique because each set $\Lambda e^{\frac{\pi}{n} k i}$, $k=0,1, \ldots, 2 n-1$, contains only one point of Ω and because the set $\Lambda e^{\frac{\pi n}{n} \frac{n-1}{2} i}$ is symmetric with respect to the imaginary axis. It is easy to check that $w^{*} \in \Lambda_{j_{0}+1}$, where $j_{0}=\operatorname{Ent}\left(\frac{n}{4}\right)$, and $w_{L}^{*}=\overline{w^{*}} \varepsilon^{\frac{n-1}{2}}=\overline{w^{*}} e^{\pi\left(1-\frac{1}{n}\right) i}, w_{R}^{*}=w_{L}^{*} \varepsilon=\overline{w^{*} \varepsilon^{\frac{n+1}{2}}}=$ $\overline{w^{*}} e^{\pi\left(1+\frac{1}{n}\right) i}$.

Additionally, we assume that $w^{*} \in \partial f(\Delta)$. This means that each point of Ω belongs to $\partial f(\Delta)$. The function f is convex in the direction of the real axis, thus f omits all points lying on the ray $l_{R}: \zeta=w^{*}+t, t \geq 0$, or on the ray $l_{L}: \zeta=w^{*}-t, t \geq 0$.

Figure 2: Polygons: a) $n=3, \operatorname{Arg} v=\frac{\pi}{6} \quad$ b) $n=3, \operatorname{Arg} v=\frac{\pi}{3}$.
I. Suppose that $f(\Delta) \cap l_{R}=\varnothing$. From the symmetry of $f \in X^{(n)}$ with respect to the straight line $\zeta=t \varepsilon^{j_{0}}, t \geq 0$, the ray $k_{R}: \zeta=\left(\overline{w^{*}}+t\right) \varepsilon^{2 j_{0}}, t \geq 0$, is also disjoint from $f(\Delta)$. From the n-fold symmetry of f, each ray of the form $l_{R} \varepsilon^{j}$ and $k_{R} \varepsilon^{j}$, $j=0,1, \ldots, n-1$, is disjoint from $f(\Delta)$.

Moreover, since $w_{L}^{*} \notin f(\Delta)$, one of two rays starting from w_{L}^{*} and parallel to the real axis is also disjoint from $f(\Delta)$. This ray appears to be $p_{R}: \zeta=w_{L}^{*}+t, t \geq$ 0 .
Indeed, if the ray $\zeta=w_{L}^{*}-t, t \geq 0$, were disjoint from $f(\Delta)$, then, from the symmetry with respect to the straight line $\zeta=t e^{\frac{\pi}{2}\left(1-\frac{1}{n}\right) i}, t \geq 0$ (by Corollary 1), the ray $\zeta=w^{*}-t e^{\pi\left(1-\frac{1}{n}\right) i}, t \geq 0$, would be disjoint from $f(\Delta)$. From this w^{*} and w_{L}^{*} would not belong to $\partial f(\Delta)$, a contradiction.
From the properties of $X^{(n)}$ it follows that each straight line $p_{R} \varepsilon^{j}, j=0,1, \ldots$, $n-1$, and its reflection in the real axis have no common points with $f(\Delta)$.

We conclude from the above argument that $f(\Delta)$ is contained in a polygon with one vertex in w^{*}. One can verify that this polygon belongs to the family \mathcal{V}_{1} when $n=4 k+1, k \in N$, and to the family \mathcal{V}_{2} when $n=4 k-1, k \in N$.
II. If $f(\Delta) \cap l_{L}=\varnothing$ then each ray $l_{L} \varepsilon^{j}, j=0,1, \ldots, n-1$, and its reflection in the real axis have no common points with $f(\Delta)$. Similarly as in I., it can be proved that $f(\Delta)$ is disjoint from $q_{L}: \zeta=w_{R}^{*}-t, t \geq 0$. From the properties of $X^{(n)}$ it follows that each ray $q_{L}{ }^{j}, j=0,1, \ldots, n-1$, and its reflection in the real axis have no common points with $f(\Delta)$.

From above, $f(\Delta)$ is contained in a polygon with one vertex in w^{*}. This polygon is a member of \mathcal{V}_{2} when $n=4 k+1, k \in N$, and is a member of \mathcal{V}_{1} when $n=4 k-1, k \in N$.

By the Schwarz-Christoffel formulae there exists exactly one analytic function which maps Δ univalently onto a fixed polygon of the family \mathcal{V}_{1} and has positive
derivative in 0 . This function is

$$
\begin{equation*}
\Delta \ni z \mapsto A \int_{0}^{z} \sqrt[n]{\frac{\left(\zeta^{n}-e^{i n \varphi}\right)\left(\zeta^{n}-e^{-i n \varphi}\right)}{\left(\zeta^{n}+1\right)^{3}\left(\zeta^{n}-1\right)}} d \zeta, \text { for a suitable } \varphi \in\left[0, \frac{\pi}{n}\right] \tag{12}
\end{equation*}
$$

From now on we choose the principal branch of the n-th root. It can be easily checked that the above formula is still valid for $\varphi=0$ and $\varphi=\frac{\pi}{n}$.

Putting suitable A into (12) we get the function with classical normalization

$$
\begin{equation*}
\Delta \ni z \mapsto \int_{0}^{z} \sqrt[n]{\frac{\left(1-\zeta^{n} e^{-i n \varphi}\right)\left(1-\zeta^{n} e^{i n \varphi}\right)}{\left(1+\zeta^{n}\right)^{3}\left(1-\zeta^{n}\right)}} d \zeta \tag{13}
\end{equation*}
$$

We denote this function by $F_{1, \varphi}$ and the polygon $F_{1, \varphi}(\Delta)$ by $A_{1, \varphi}$. With this notation $\mathcal{V}_{1}=\left\{\lambda A_{1, \varphi}: \lambda>0, \varphi \in\left[0, \frac{\pi}{n}\right]\right\}$.

Moreover, let

$$
\begin{equation*}
v_{1}(\varphi) \equiv F_{1, \varphi}\left(e^{i \varphi}\right) \tag{14}
\end{equation*}
$$

For a fixed φ, the point $v_{1}(\varphi)$ coincides with the vertex of the polygon $A_{1, \varphi}$ such that its argument is from the range $\left[0, \frac{\pi}{n}\right]$. Hence, v_{1} is given by the formula

$$
\begin{equation*}
v_{1}:\left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i \varphi} \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)\left(1-t^{n} e^{2 i n \varphi}\right)}{\left(1+t^{n} e^{i n \varphi}\right)^{3}\left(1-t^{n} e^{i n \varphi}\right)}} d t \tag{15}
\end{equation*}
$$

and it is an injective function on $\left[0, \frac{\pi}{n}\right]$.
In a similar way, there is exactly one analytic function which maps Δ univalently onto a fixed polygon of the family \mathcal{V}_{2} and has positive derivative in 0 . By the definitions of \mathcal{V}_{1} and \mathcal{V}_{2}, a function f maps Δ onto a polygon of the family \mathcal{V}_{1} if and only if a function g, satisfying $g(z)=-f(-z)$, maps Δ onto a polygon of the family \mathcal{V}_{2}. Therefore, $F_{2, \varphi}: z \mapsto-F_{1, \varphi}(-z)$ is typically normalized and $F_{2, \varphi}(\Delta) \in \mathcal{V}_{2}$.

Let

$$
\begin{equation*}
v_{2}(\varphi) \equiv F_{2, \varphi}\left(e^{i \varphi}\right) \tag{16}
\end{equation*}
$$

Hence, we can write

$$
\begin{equation*}
v_{2}:\left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i \varphi} \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)\left(1-t^{n} e^{2 i n \varphi}\right)}{\left(1+t^{n} e^{i n \varphi}\right)\left(1-t^{n} e^{i n \varphi}\right)^{3}}} d t . \tag{17}
\end{equation*}
$$

Let us define

$$
F_{1}(z)=z \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)\left(1-t^{n} z^{2 n}\right)}{\left(1+t^{n} z^{n}\right)^{3}\left(1-t^{n} z^{n}\right)}} d t
$$

and

$$
F_{2}(z)=z \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)\left(1-t^{n} z^{2 n}\right)}{\left(1+t^{n} z^{n}\right)\left(1-t^{n} z^{n}\right)^{3}}} d t
$$

Theorem 1. Let $n \geq 3$ be odd.

1. The minorant of the class $\left\{f \in X^{(n)}: f(\Delta) \in \mathcal{V}_{1}\right\}$ is
a) F_{1} for $n=4 k-1, k \in N$,
b) F_{2} for $n=4 k+1, k \in N$,
2. The minorant of the class $\left\{f \in X^{(n)}: f(\Delta) \in \mathcal{V}_{2}\right\}$ is
a) F_{2} for $n=4 k-1, k \in N$,
b) F_{1} for $n=4 k+1, k \in N$.

Proof.
For $n=4 k-1, k \in N$, and for a fixed $\varphi \in\left[0, \frac{\pi}{n}\right]$ we have

$$
F_{1}\left(e^{i \varphi}\right)=e^{i \varphi} \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)\left(1-t^{n} e^{2 i n \varphi}\right)}{\left(1+t^{n} e^{i n \varphi}\right)\left(1-t^{n} e^{i n \varphi}\right)^{3}}} d t
$$

Hence, values $F_{1}\left(e^{i \varphi}\right)$ and $v_{1}(\varphi)$ are equal. Moreover, F_{1} is n-fold symmetric and one-to-one on the boundary of Δ. This means that F_{1} is univalent in whole Δ and from this reason F_{1} is the minorant of $\left\{f \in X^{(n)}: f(\Delta) \in \mathcal{V}_{1}\right\}$.
Analogously, one can prove the theorem in other cases.
Theorem 2. Let $n \geq 3$ be odd. Then $K_{X^{(n)}}=F_{1}(\Delta) \cap F_{2}(\Delta)$.
Proof.
Let $n \geq 3$ be an odd fixed number. Let us denote by K the Koebe domain for $X^{(n)}$. From Theorem 1 we know that

$$
\begin{equation*}
K \subset F_{1}(\Delta) \cap F_{2}(\Delta) . \tag{18}
\end{equation*}
$$

Suppose that $w=\varrho e^{i \varphi} \in \Lambda$ is a boundary point of K. Then the point w^{*}, which has the greatest imaginary part among the points of Ω, belongs to

$$
K \cap\left\{\zeta \in C: \frac{n-1}{2 n} \pi \leq \arg \zeta \leq \frac{n+1}{2 n} \pi\right\}
$$

From Lemma 3, $-\overline{w^{*}}$ also belongs to this set. Without a loss of generality we can assume that

$$
\operatorname{Re}-\overline{w^{*}} \leq 0 \leq \operatorname{Re} w^{*} .
$$

We shall discuss three possibilities.
If the open segment with endpoints w^{*} and $-\overline{w^{*}}$ is contained in K, then $w^{*} \neq$ $-\overline{w^{*}}$ and there exists a function $f \in X^{(n)}$ such that $w^{*} \in \partial f(\Delta)$. Hence

$$
\left\{w^{*}+t: t \geq 0\right\} \cap f(\Delta)=\varnothing \quad \text { and } \quad\left\{-\overline{w^{*}}-t: t \geq 0\right\} \cap g(\Delta)=\varnothing
$$

where $g(z) \equiv-f(-z)$. This implies

$$
f \prec F_{1, \varphi} \quad \text { and } \quad g \prec F_{2, \varphi},
$$

but the normalization of f leads to $f \equiv F_{1, \varphi}$ and $g \equiv F_{2, \varphi}$. Therefore,

$$
\partial K \subset \partial F_{1}(\Delta) \cup \partial F_{2}(\Delta)
$$

This and (18) results in $K=F_{1}(\Delta) \cap F_{2}(\Delta)$.
In the second case, if the open segment with endpoints w^{*} and $-\overline{w^{*}}$ is disjoint from K, then the whole straight line passing through these points is also disjoint from K. There exist functions $f, h \in X^{(n)}$ such that $w^{*} \in \partial f(\Delta),-\overline{w^{*}} \in \partial h(\Delta)$ and

$$
\left\{w^{*}+t: t \geq 0\right\} \cap f(\Delta)=\varnothing \quad \text { and } \quad\left\{-\overline{w^{*}}+t: t \geq 0\right\} \cap h(\Delta)=\varnothing
$$

Now we conclude that

$$
f \prec F_{1, \varphi} \quad \text { and } \quad h \prec F_{1, \varphi} .
$$

Then $f \equiv F_{1, \varphi} \equiv h$, and consequently $w^{*}=-\overline{w^{*}}$, a contradiction.
Finally, if $w^{*}=-\overline{w^{*}}$, i.e. $\operatorname{Arg} w^{*}=\frac{\pi}{2}$, then $w^{*} \in \partial F_{1, \varphi}(\Delta)$ and $w^{*} \in \partial F_{2, \varphi}(\Delta)$.
The functions F_{1} and F_{2} are n-fold symmetric and connected by relation $F_{1}(-z)=-F_{2}(z), z \in \Delta$. Observe that for all $z \in \Delta$

$$
F_{1}\left(e^{i \frac{\pi}{n}}\right)=e^{i \frac{\pi}{n}} F_{2}(z)
$$

From the argument similar to this used in the proof of Lemma 1, the curves $\left\{F_{1}\left(e^{i \theta}\right), \theta \in\left[0, \frac{\pi}{n}\right]\right\}$ and $\left\{F_{2}\left(e^{i \theta}\right), \theta \in\left[0, \frac{\pi}{n}\right]\right\}$ are symmetric with respect to the ray $\zeta=e^{\frac{\pi i}{2 n}} t, t \geq 0$. This and Lemma 2 result in

Corollary 2. The set $K_{X^{(n)}}$ for odd $n \geq 3$ is $2 n$-fold symmetric.
Since $K_{X^{(n)}} \cap \Lambda e^{\frac{n-1}{2 n} \pi i}$, or equivalently,

$$
K_{X^{(n)}} \cap\left\{\zeta \in C: \frac{n-1}{2 n} \pi \leq \arg \zeta \leq \frac{n+1}{2 n} \pi\right\}
$$

is convex in the direction of the real axis, each point of the boundary of $K_{X^{(n)}}, n=$ $4 k-1$, which has argument from $\frac{n-1}{2 n} \pi$ to $\frac{\pi}{2}$, is a vertex of some polygon of the family \mathcal{V}_{1} and each point which has argument from $\frac{\pi}{2}$ to $\frac{n+1}{2 n} \pi$ is a vertex of some polygon of the family \mathcal{V}_{2}. The same is true in the case $n=4 k+1$ but with exchanged families \mathcal{V}_{1} and \mathcal{V}_{2}. Combining this and Theorem 2 we obtain
Theorem 3. Let $n \geq 3$ be odd. The boundary of the Koebe domain for $X^{(n)}$ in the set Λ coincides with

$$
\left\{F_{1}\left(e^{i \theta}\right), \theta \in\left[0, \frac{\pi}{2 n}\right]\right\} \cap\left\{F_{2}\left(e^{i \theta}\right), \theta \in\left[\frac{\pi}{2 n}, \frac{\pi}{n}\right]\right\}
$$

Considering $2 n$-fold symmetry of this boundary it is sufficient to describe this curve in any sector of the measure $\frac{\pi}{n}$. The boundary of the Koebe domain for $X^{(n)}$ can be written simply as follows:

Corollary 3. Let $n \geq 3$ be odd. The boundary of the Koebe domain for $X^{(n)}$ is of the form

$$
\bigcup_{=0, \ldots, 2 n-1} e^{j \frac{\pi}{n}} \cdot\left\{F_{1}\left(e^{i \theta}\right), \theta \in\left[-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right]\right\}
$$

At the end of this paragraph it is interesting to look at one special case of the polygons discussed above. For $n=3$ and $\varphi=0$ the function $F_{2,0}$ takes form

$$
\begin{equation*}
F_{2,0}(z)=\int_{0}^{z} \frac{\sqrt[3]{1+\zeta^{3}}}{1-\zeta^{3}} d \zeta \tag{19}
\end{equation*}
$$

Since $F_{2,0}(\Delta)=-F_{1,0}(\Delta)$, the set $F_{2,0}(\Delta)$ is a three-pointed unbounded star (in Figure 2 b the set $F_{1,0}(\Delta)$ is shown). All three bounded vertices of this polygon lie on the circle of the radius

$$
a=\left|F_{2,0}(-1)\right|=\int_{0}^{1} \frac{\sqrt[3]{1-t^{3}}}{1+t^{3}} d t=\frac{\sqrt[3]{2}}{6} B\left(\frac{1}{3}, \frac{2}{3}\right)=\frac{\sqrt[3]{2}}{6} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)
$$

The symbols B and Γ stand for the Beta and the Gamma functions.
Therefore,

$$
a=\frac{\sqrt[3]{2}}{3 \sqrt{3}} \pi=0.761 \ldots
$$

which yields that the width of each strip of this star equals

$$
d=\frac{\sqrt[3]{2}}{3} \pi=1.319 \ldots
$$

The function (19) will also appear in paragraph 4.

2 Koebe domain for $X^{(n)}$ and even n.

Let n be a fixed even integer, $n \geq 2$. From (5-6) and Theorem 4 established in [2] we obtain

Theorem 4. Let $n \geq 2$ be even. The minorant of the class $X^{(n)}$ is of the form

$$
\begin{aligned}
& \text { 1. } \quad G_{1}(z)=z \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)^{2}\left(1-t^{n} z^{2 n}\right)^{2}}{\left(1+t^{n} z^{n}\right)^{4}\left(1-t^{n} z^{n}\right)^{2}}} d t \quad \text { for } \quad n=4 k-2, k \in N \text {, } \\
& \text { 2. } \quad G_{2}(z)=z \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)^{2}\left(1-t^{n} z^{2 n}\right)^{2}}{\left(1-t^{n} z^{n}\right)^{4}\left(1+t^{n} z^{n}\right)^{2}}} d t \quad \text { for } \quad n=4 k, k \in N .
\end{aligned}
$$

From this theorem we get the corollaries
Corollary 4. Let n be a fixed even integer, $n=4 k-2, k \in N$.

1. $G_{1}(\Delta)$ is the Koebe domain for $X^{(n)}$,
2. The boundary of the Koebe domain for $X^{(n)}$ in Λ_{1} is $v_{2}^{1}\left(\left[0, \frac{\pi}{n}\right]\right)$, where v_{2}^{1} is given by

$$
v_{2}^{1}:\left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i \varphi} \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)^{2}\left(1-t^{n} e^{2 i n \varphi}\right)^{2}}{\left(1+t^{n} e^{i n \varphi}\right)^{4}\left(1-t^{n} e^{i n \varphi}\right)^{2}}} d t .
$$

Figure 3: Polygons: a) $n=3, \operatorname{Arg} v=\frac{\pi}{12} \quad$ b) $n=3, \operatorname{Arg} v=\frac{\pi}{6}$.

Corollary 5. Let n be a fixed even integer, $n=4 k, k \in N$.

1. $G_{2}(\Delta)$ is the Koebe domain for $X^{(n)}$,
2. The boundary of the Koebe domain for $X^{(n)}$ in Λ_{1} is $v_{2}^{2}\left(\left[0, \frac{\pi}{n}\right]\right)$, where v_{2}^{2} is given by

$$
v_{2}^{2}:\left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i \varphi} \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n}\right)^{2}\left(1-t^{n} e^{2 i n \varphi}\right)^{2}}{\left(1-t^{n} e^{i n \varphi}\right)^{4}\left(1+t^{n} e^{i n \varphi}\right)^{2}}} d t
$$

3 Covering domain for $X^{(n)}$ and odd n.

Let n be a fixed odd integer, $n \geq 3$. We consider a family of open and n-fold symmetric polygons such that their successive vertices u, v, w belong to Λ and $\operatorname{Arg} u=0, \operatorname{Arg} v \in\left(0, \frac{\pi}{n}\right), \operatorname{Arg} w=\frac{\pi}{n}$. The polygons' interior angles are of the measure $\pi\left(1+\frac{1}{n}\right)$ and $\pi\left(1-\frac{2}{n}\right)$ alternately. The measure of the angle with the vertex lying on the real positive semi-axis is equal to $\pi\left(1+\frac{1}{n}\right)$. From the above it follows that polygons of the described type have $4 n$ sides.

For $n \neq 3$, this family of polygons is extended on limiting cases. If $u=v$ (hence $\operatorname{Arg} v=0$), then we obtain polygons having $2 n$ sides of the same length and angles measuring $\pi\left(1-\frac{3}{n}\right)$ and $\pi\left(1+\frac{1}{n}\right)$ alternately. If $v=w$ (hence $\operatorname{Arg} v=$ $\frac{\pi}{n}$), then we obtain polygons having $2 n$ sides of the same length and angles measuring $\pi\left(1+\frac{1}{n}\right)$ and $\pi\left(1-\frac{3}{n}\right)$ alternately.

In case $n=3$ the limiting polygons become three-pointed stars described in paragraph 2.

We denote this family of polygons by \mathcal{U}. The polygons of this family are shown in Figures 3 and 4.

Figure 4: Polygons: a) $n=5, \operatorname{Arg} v=\frac{3 \pi}{20} \quad$ b) $n=7, \operatorname{Arg} v=0$.
Let $f \in X^{(n)}$ and let n be odd integer greater than or equal to 3. Assume that $w \in \partial f(\Delta)$ and $\operatorname{Arg} w \in\left[0, \frac{\pi}{n}\right]$ for $n \neq 3$ or $\operatorname{Arg} w \in\left(0, \frac{\pi}{n}\right)$ for $n=3$. Because of real coefficients, \bar{w} also belongs to $\partial f(\Delta)$. From this and from n-fold symmetry of f, the set Ω given by (10) is contained in $\partial f(\Delta)$.

Like in the case of the Koebe domain, we choose three successive, in accordance with the order of (11), points from Ω : the w^{*} point which has the greatest imaginary part among the points in Ω and the w_{L}^{*}, w_{R}^{*} points directly preceding and succeeding w^{*}. One can check that $w_{L}^{*} \in \Lambda_{k_{0}}$ and $w_{R}^{*} \in \Lambda_{k_{0}+1}$, where $k_{0}=\operatorname{Ent}\left(\frac{n+2}{4}\right)$.

We claim that the segment $s_{L}=\left\{\zeta=w_{L}^{*}-t, t \geq 0\right\} \cap \Lambda_{k_{0}}$ is contained in $\operatorname{cl}(f(\Delta))$.
Assume that it is not the case. Hence, there exists $w_{0} \in s_{L}$ such that $w_{0} \notin f(\Delta)$. It follows that each ray $\zeta=\left(w_{0}-t\right) \varepsilon^{j}, t \geq 0, j=0,1, \ldots, n-1$, and its reflection in the real axis are disjoint from $f(\Delta)$. Therefore, $f(\Delta)$ is contained in the polygon which has sides included in these rays. It means that $w_{L}^{*} \notin \partial f(\Delta)$, a contradiction.

Similarly, we can prove that $s_{R}=\left\{\zeta=w_{R}^{*}+t, t \geq 0\right\} \cap \Lambda_{k_{0}+1}$ is contained in $\operatorname{cl}(f(\Delta))$.

By Corollary 1, the segments $s_{L} \varepsilon^{j}$ and $s_{R} \varepsilon^{j}, j=0,1, \ldots, n-1$, and their reflection in the real axis are contained in the closure of $f(\Delta)$. Consequently, $f(\Delta)$ is contained in some polygon of the family \mathcal{U}.

The only analytic function which maps Δ univalently onto a fixed polygon of the family \mathcal{U} and has positive derivative in 0 is of the form

$$
\begin{equation*}
\Delta \ni z \mapsto B \int_{0}^{z} \sqrt[n]{\frac{\left(\zeta^{n}+1\right)\left(\zeta^{n}-1\right)}{\left(\zeta^{n}-e^{i n \varphi}\right)^{2}\left(\zeta^{n}-e^{-i n \varphi}\right)^{2}}} d \zeta \text {, for a suitable } \varphi \in\left[0, \frac{\pi}{n}\right] \tag{20}
\end{equation*}
$$

We take the principal branch of the n-th root. The above formula is still valid for $\varphi=0$ and $\varphi=\frac{\pi}{n}$.

Putting suitable B into (20) we get the function with typical normalization

$$
\begin{equation*}
\Delta \ni z \mapsto \int_{0}^{z} \sqrt[n]{\frac{\left(1+\zeta^{n}\right)\left(1-\zeta^{n}\right)}{\left(1-\zeta^{n} e^{-i n \varphi}\right)^{2}\left(1-\zeta^{n} e^{i n \varphi}\right)^{2}}} d \zeta \tag{21}
\end{equation*}
$$

We denote this function by G_{φ} and the polygon $G_{\varphi}(\Delta)$ by B_{φ}. With this notation $\mathcal{U}=\left\{\lambda B_{\varphi}: \lambda>0, \varphi \in\left[0, \frac{\pi}{n}\right]\right\}$.

Moreover, let

$$
\begin{equation*}
u_{1}(\varphi) \equiv G_{\varphi}\left(e^{i \varphi}\right) \tag{22}
\end{equation*}
$$

The point $u_{1}(\varphi)$ coincides with the vertex of the polygon B_{φ} such that the argument of this vertex is from the range $\left[0, \frac{\pi}{n}\right]$. Hence u_{1} is given by the formula

$$
\begin{equation*}
u_{1}:\left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto \int_{0}^{1} \sqrt[n]{\frac{\left(1+t^{n} e^{i n \varphi}\right)\left(1-t^{n} e^{i n \varphi}\right)}{\left(1-t^{n}\right)^{2}\left(1-t^{n} e^{2 i n \varphi}\right)^{2}}} d t \tag{23}
\end{equation*}
$$

and it is an injective function on $\left[0, \frac{\pi}{n}\right]$.
The following theorem can be proved in the same way as Theorems 1-2.
Theorem 5. Let n be a fixed odd integer, $n \geq 3$. The function

$$
G(z)=z \int_{0}^{1} \sqrt[n]{\frac{\left(1+t^{n} z^{n}\right)\left(1-t^{n} z^{n}\right)}{\left(1-t^{n}\right)^{2}\left(1-t^{n} z^{2 n}\right)^{2}}} d t
$$

is the majorant for the class $X^{(n)}$.
Theorem 6. For odd $n, n \geq 3$, there is $L_{X^{(n)}}=G(\Delta)$.
One can easily check that $|G(z)|<|G(1)|$ for $z \in \Delta$. Hence,

Corollary 6.

$$
\sup \left\{|f(z)|: f \in X^{(n)}, z \in \Delta\right\}= \begin{cases}\frac{B\left(\frac{1}{n}, \frac{n-3}{2 n}\right)}{n \sqrt[n]{4}} & \text { for } n \geq 5 \\ \infty \quad \text { for } n=3\end{cases}
$$

4 Covering domain for $X^{(n)}$ and even n.

From (5-6) and from Corollary 13 in [2] we get
Theorem 7. Let n be a fixed even integer, $n \geq 4$. The majorant of the class $X^{(n)}$ is of the form

1. $H_{1}(z)=z \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n} z^{n}\right)^{2}}{\left(1-t^{n}\right)^{2}\left(1-t^{n} z^{2 n}\right)^{2}}} d t \quad$ for $\quad n=4 k-2, k \in N$,
2. $H_{2}(z)=z \int_{0}^{1} \sqrt[n]{\frac{\left(1+t^{n} z^{n}\right)^{2}}{\left(1-t^{n}\right)^{2}\left(1-t^{n} z^{2 n}\right)^{2}}} d t \quad$ for $\quad n=4 k, k \in N$.

This results in
Corollary 7. Let n be a fixed even integer, $n=4 k-2, k=2,3, \ldots$.

1. $H_{1}(\Delta)$ is the covering domain for $X^{(n)}$,
2. The boundary of the covering domain for $X^{(n)}$ in Λ_{1} coincides with $u_{2}^{1}\left(\left[0, \frac{\pi}{n}\right]\right)$, where u_{2}^{1} is given by the formula

$$
u_{2}^{1}:\left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i \varphi} \int_{0}^{1} \sqrt[n]{\frac{\left(1-t^{n} e^{i n \varphi}\right)^{2}}{\left(1-t^{n}\right)^{2}\left(1-t^{n} e^{2 i n \varphi}\right)^{2}}} d t
$$

Corollary 8. Let n be a fixed even integer, $n=4 k, k \in N$.

1. $\mathrm{H}_{2}(\Delta)$ is the covering domain for $X^{(n)}$,
2. The boundary of the covering domain for $X^{(n)}$ in Λ_{1} coincides with $u_{2}^{2}\left(\left[0, \frac{\pi}{n}\right]\right)$, where u_{2}^{2} is given by the formula

$$
u_{2}^{2}:\left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i \varphi} \int_{0}^{1} \sqrt[n]{\frac{\left(1+t^{n} e^{i n \varphi}\right)^{2}}{\left(1-t^{n}\right)^{2}\left(1-t^{n} e^{2 i n \varphi}\right)^{2}}} d t
$$

Theorem 8. The covering domain for $X^{(2)}$ is whole C.
The latter is a simple consequence of

$$
C=h_{0}(\Delta) \cup h_{1}(\Delta) \subset \bigcup_{f \in X^{(2)}} f(\Delta),
$$

where $h_{0}(z)=\frac{z}{1+z^{2}}$ and $h_{1}(z)=\frac{1}{2} \log \frac{1+z}{1-z}$. Both functions h_{0} and h_{1} belong to $X^{(2)}$.

Directly from Corollary 15 in [2] we get
Corollary 9. For even n we have
$\sup \left\{|f(z)|: f \in X^{(n)}, z \in \Delta\right\}= \begin{cases}\frac{B\left(\frac{1}{n}, \frac{n-4}{2 n}\right)}{n \sqrt[n]{4}} & \text { for } n \geq 6 \\ \infty & \text { for } n=2 \text { or } n=4 .\end{cases}$

References

[1] Krzyz, J., Reade, M.O., Koebe domains for certain classes of analytic functions. J. Anal. Math. 18, 185-195 (1967).
[2] Koczan, L., Sobczak-Kneć, M., Zaprawa, P., On functions convex in the direction of the imaginary axis with real coefficients, accepted for publication in Demonstratio Mathematica.
[3] Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann.Univ.Mariae Curie Sklodowska Sect.A Vol. LII,No.2, 103-112 (1998).
[4] Koczan, L., Zaprawa, P., Covering domains for the class of convex n-fold symmetric functions with real coefficients. Bull. Soc. Sci. Lett. Lódz, Sér. Rech. Déform. 52, No.37, 129-135 (2002).
[5] McGregor, M., On three classes of univalent functions with real coefficients. J. London Math. Soc. 39, 43-50 (1964).

Department of Applied Mathematics, Lublin University of Technology,
Nadbystrzycka 38D, 20-618 Lublin, Poland
l.koczan@pollub.pl, p.zaprawa@pollub.pl

[^0]: Received by the editors May 2010.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : Primary 30C45; Secondary 30C80.
 Key words and phrases : covering domain, Koebe domain, convex in the direction of real axis, real coefficients.

