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Abstract

In this note we study large linear structures inside the set of Jones func-
tions, which is a highly pathological class of surjective functions. We show that
there exists an infinite dimensional linear space inside this set of functions.
Moreover, we show that this linear space is isomorphic to RR, that is, it has
the biggest possible dimension. The result presented in this note is an im-
provement of several recent results in the topic of lineability.

1 Preliminaries

This note is a contribution to an ongoing search for what are often large linear
spaces of functions on R which have special properties. Take a function with
some special, weird or unbelievably pathological property. For example, a differen-
tiable nowhere monotone function (see, e.g., [2, 5]). Coming up with a concrete
example of such a function can be difficult. In fact, it may seem so difficult that
if you succeed, you may think that there cannot be too many functions of that
kind. Probably one cannot find infinite dimensional vector spaces or infinitely
generated algebras of such functions. This is, however, exactly what has hap-
pened. The search for large algebraic structures of functions with pathological
properties has lately become somewhat of a new trend in mathematics (see, for
instance, [1–3, 5, 6]). Let us recall that, given certain “special” property, we say
that the subset M of R that satisfies it is κ-lineable if M ∪ {0} contains a vector
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space of dimension κ (finite or infinite). If M contains an infinite-dimensional
vector space, it will be called lineable for short ([2]).

As we have just said, in the last years many authors have been studying the
lineability problem for many subsets of RR. The technique for this series of studies
on lineability has always been sort of standard, namely an infinitely independent
family of functions in R every one of which enjoys this property is constructed,
and then we take the linear span of that family to generate a infinite dimensional
vector space, which is usually the candidate to obtain lineability.

One of the properties that has been studied thoroughly in the last years is
related to the many different degrees of surjectivity in RR. Let us recall some
definitions that will be useful in this note:

Definition 1.1 (see, e.g., [5, 6]). Let f ∈ RR. We say that:

1. f ∈ ES(R) ( f is everywhere surjective) if f (I)=R for every non-trivial interval I.

2. f ∈ SES(R) ( f is strongly everywhere surjective) if f takes all values c times on
any non-trivial interval.

3. f ∈ PES(R) ( f is perfectly everywhere surjective) if for every perfect set P,
f (P) = R.

4. f ∈ J(R) ( f is a Jones function) if for every closed set K ⊂ R2 with uncountable
projection on the x-axis, we have f ∩ K 6= ∅ (see [7]).

Moreover, if S(R) ⊂ RR denotes the set of surjective functions, we have ([5,6])
that

J(R) ( PES(R) ( SES(R) ( ES(R) ( S(R).

All the previous different degrees of surjectivity have been thoroughly studied
in the last years. In [2] the authors proved that ES(R) is 2c-lineable, where c de-
notes the continuum. Later, in [5] the authors proved that PES(R) (and therefore
SES(R)) is 2c-lineable as well, which improves the result from [2] since the class
PES(R) is strictly contained in ES(R). Very recently, in [6], the authors proved
that the set of Jones functions, J(R), is ec-lineable, where

ec = min{ card F : F ⊂ R
R, (∀ϕ ∈ R

R)(∃ f ∈ F)(card( f ∩ ϕ) < c) },

where c
+ ≤ ec ≤ 2c. It is known that ec can be any regular cardinal between c

+

and 2c, depending on the set theoretic system we are working on. In any case, it
is clear that under ZFC+GCH it must be ec = 2c, and in this case the lineability
problem is solved in the optimal way, meaning that we obtain the biggest pos-
sible dimension of a linear space inside J(R) ∪ {0}. In this note we answer the
following question in the negative:

Is the Generalized Continuum Hypothesis (GCH) necessary in order to ob-
tain the 2c-lineability of J(R)?

As we shall see in the next section GCH is not needed to obtain the 2c-lineability of
J(R). Set theoretical considerations, cardinal theory, and classical linear algebra
techniques will be used.
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2 Main result and conclusions

Firstly, let us give the construction of a Jones function. Recall that a set S is a Bern-
stein set if neither S nor R \ S contain a perfect set. (See, for example, [4, (3.11)].)
It is obvious that the intersection of a Bernstein set with any perfect set is not
empty. Actually, this intersection has cardinality c, due to the fact that any perfect
set contains c many pairwise disjoint perfect sets. As a consequence, since any
uncountable Borel (or even analytic) set contains a perfect set, the intersection
of a Bernstein set with any uncountable analytic set has cardinality c. (The in-
tersection with a Bernstein set has cardinality c also for sets in other rather wide
perfect-saturated classes, such as Lebesgue measurable sets with positive mea-
sure or non-meagre sets with the property of Baire.)

Lemma 2.1. Let B ⊂ R a Bernstein set. There exists f ∈ R
R such that f |B ∩ K 6= ∅

for every closed set K ∈ R2 with uncountable projection on the x-axis.

Proof. Let

K = {K ⊂ R
2 : K is closed and πx(K) is uncountable }.

Obviously, cardK = c. Therefore, we can write K = {Kα : α < c }. We shall
build f using transfinite induction. For every α < c, we shall define xα ∈ B and
f (xα), in such way that (xα, f (xα)) ∈ Kα. Let β < c and suppose that we have
defined xα and f (xα) for every α < β. Notice that πx(Kβ) is an uncountable
Fσ set and, as B is a Bernstein set, it must be that card(πx(Kβ) ∩ B) = c. Since
card{xα : α < β} < c, we can find an xβ ∈ (πx(Kβ) ∩ B) \ {xα : α < β}. Choose
now yβ to hold (xβ, yβ) ∈ Kβ and define f (xβ) = yβ. This transfinite process has
defined f on a set {xα : α < c} ⊂ B. Set now f (x) = 0 if x ∈ R \ {xα : α < c}, and
the function is completely defined.

Now we are ready to state and prove the main result of this note:

Theorem 2.2. J(R) is 2c-lineable.

Proof. It is a widely known fact that R can be decomposed into c many pair-
wise disjoint Bernstein sets Bα, α ∈ R. (Consider, for example, the level sets of a
function in PES(R).) For every α ∈ R, define a Jones function fα like that of the
Lemma, i.e., such that f |Bα

∩K 6= ∅ for every closed set K ∈ R2 with uncountable
projection on the x-axis.

For every ϕ ∈ RR, define fϕ(x) = ϕ(α) fα(x), if x ∈ Bα. The set

V = { fϕ | ϕ ∈ RR } is a 2c-dimensional vector space, since the map ϕ 7→ fϕ

is a linear isomorphism from RR onto V. So, it will be enough to prove that
V ⊂ J(R) ∪ {0}.

Let ϕ ∈ RR, and assume that fϕ 6≡ 0. It must be ϕ(α) 6= 0 for some α ∈ R.

Let K ⊂ R2 a closed set with uncountable projection, and let Kα = { (x, y) |
(x, ϕ(α)y) ∈ K }. As Kα is also closed with uncountable projection, f |Bα ∩Kα 6= ∅.
Thus, there exists x ∈ Bα such that (x, fα(x)) ∈ Kα, i.e., (x, f (x)) = (x, ϕ(α) fα(x))
∈ K. That is, f ∩ K 6= ∅.
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Of course, the previous Theorem is a clear improvement of [6, Theorem 3.16]
and it gives the optimal solution for the lineability problem for this class of sur-
jective functions without the need of the Generalized Continuum Hypothesis.
Notice, also, that Theorem 2.2 improves as well [2, Theorem 4.3] and [5, Theo-
rem 2.6], since the 2c-lineability of J(R) automatically provides the 2c-lineability
of the sets PES(R), SES(R), ES(R), and S(R).
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