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Abstract. We prove that any non-archimedean metrizable locally convex space
E with a regular orthogonal basis has the quasi-equivalence property, i.e. any two
orthogonal bases in E are quasi-equivalent. In particular, the power series spaces
A1(a) and A∞(a), the most known and important examples of non-archimedean
nuclear Fréchet spaces, have the quasi-equivalence property. We also show that the
Fréchet spaces: K

N, c0 ×K
N, cN

0 have the quasi-equivalence property.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation | · | : K → [0,∞).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we
refer to [9], [10] and [11]. Orthogonal bases in locally convex spaces are studied in
[4], [5], [6] and [12].

Let E be a metrizable lcs with an orthogonal basis (xn). Clearly, for any sequence
(αn) of non-zero scalars and any permutation σ of N the sequence (αnxσ(n)) is an
orthogonal basis in E. It is interesting to know whether any orthogonal basis (yn)
in E is equivalent to one of the above bases. In other words whether any two
orthogonal bases in E are quasi-equivalent. It is easy to see that it is so if E is a
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normed space with an orthogonal basis. It is not known whether any metrizable lcs
with an orthogonal basis has the quasi-equivalence property.

Developing the ideas of [8] and [7] (see also [1] and [2]) we prove that any two
regular orthogonal bases in a metrizable lcs are semi equivalent (Proposition 3),
and any two orthogonal bases in a metrizable lcs with a regular orthogonal basis
are quasi-equivalent (Theorem 5). In particular, the power series spaces A1(a) and
A∞(a) (see [3]) have the quasi-equivalence property (Corollary 6).

We also show that the Fréchet spaces: K
N, c0 × K

N and cN

0 possess the quasi-
equivalence property (Proposition 8).

2 Preliminaries

The linear span of a subset A of a linear space E is denoted by linA.

Let E, F be locally convex spaces. A map T : E → F is called a linear homeo-

morphism if T is linear, one-to-one, surjective and the maps T, T−1 are continuous.
If there exists a linear homeomorphism T : E → F, then we say that E is isomorphic

to F .

Sequences (xn) and (yn) in a lcs E are equivalent if there exists a linear homeo-
morphism P between the linear spans of (xn) and (yn), such that Pxn = yn for all
n ∈ N. Sequences (xn) and (yn) in a Fréchet space E are equivalent if and only if
there exists a linear homeomorphism P between the closed linear spans of (xn) and
(yn), such that Pxn = yn for all n ∈ N.

Sequences (xn) and (yn) in a lcs E are semi equivalent if for some sequence (αn) of
non-zero scalars the sequences (αnxn) and (yn) are equivalent, and quasi-equivalent

if for some permutation σ of N the sequences (xσ(n)) and (yn) are semi equivalent.

A sequence (xn) in a lcs E is a Schauder basis in E if each x ∈ E can be
written uniquely as x =

∑∞
n=1 αnxn with (αn) ⊂ K and the coefficient functionals

fn : E → K, x → αn (n ∈ N) are continuous.

By a seminorm on a linear space E we mean a function p : E → [0,∞) such
that p(αx) = |α|p(x) for all α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all
x, y ∈ E. A seminorm p on E is a norm if ker p := {x ∈ E : p(x) = 0} = {0}.

The set of all continuous seminorms on a metrizable lcs E is denoted by P(E).
A non-decreasing sequence (pk) ⊂ P(E) is a base in P(E) if for every p ∈ P(E)
there exists k ∈ N with p ≤ pk. A sequence (pk) of norms on E is a base of norms

in P(E) if it is a base in P(E).

Any metrizable lcs E possesses a base (pk) in P(E). Every metrizable lcs E with
a continuous norm has a base (pk) of norms in P(E).

A metrizable lcs E is of finite type if dim(E/ ker p) < ∞ for any p ∈ P(E), and
of countable type if E contains a linearly dense countable set.

A Fréchet space is a metrizable complete lcs.

A Banach space is a normed Fréchet space. Any infinite-dimensional Banach
space of countable type is isomorphic to the Banach space c0 of all sequences in K

converging to zero (with the sup-norm) ([10], Theorem 3.16).

Let p be a seminorm on a linear space E. A sequence (xn) ⊂ E is 1-orthogonal

with respect to p if p(
∑n

i=1 αixi) = max1≤i≤n p(αixi) for all n ∈ N, α1, . . . , αn ∈ K.
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A sequence (xn) in a metrizable lcs E is 1-orthogonal with respect to (pk) ⊂ P(E)
if (xn) is 1-orthogonal with respect to pk for any k ∈ N.

A sequence (xn) in a metrizable lcs E is orthogonal if it is 1-orthogonal with
respect to some base (pk) in P(E). A linearly dense orthogonal sequence of non-zero
elements in a metrizable lcs E is an orthogonal basis in E.

Every orthogonal basis in a metrizable lcs E is a Schauder basis in E ([5], Propo-
sition 1.4) and every Schauder basis in a Fréchet space F is an orthogonal basis in
F ([5], Proposition 1.7).

A metrizable lcs E with an orthogonal basis has the quasi-equivalence property

if any two orthogonal bases in E are quasi-equivalent.
An orthogonal basis (xn) in a metrizable lcs E is regular if there exists a base of

norms (pk) in P(E) such that (xn) is 1-orthogonal with respect to (pk) and

pk(xn)

pk+1(xn)
≥

pk(xn+1)

pk+1(xn+1)
for all k, n ∈ N;

in this case we will say that (xn) is regular with respect to (pk). If (xn) is regular
with respect to (pk), then it is regular with respect to any subsequence (pkm

) of (pk).
Let a = (an) be a non-decreasing sequence of positive real numbers with an →∞.

Then the following spaces are nuclear Fréchet spaces (see [3]):
(1) A1(a) = {(αn) ⊂ K : limn |αn|(

k
k+1

)an = 0 for all k ∈ N} with the base (pk)

of norms: pk((αn)) = k maxn |αn|(
k

k+1
)an , k ∈ N;

(2) A∞(a) = {(αn) ⊂ K : limn |αn|k
an = 0 for all k ∈ N} with the base (qk) of

norms: qk((αn)) = maxn |αn|k
an , k ∈ N.

A1(a) and A∞(a) are the power series spaces (of finite and infinite type, respec-
tively). The standard basis (en) in A1(a) and A∞(a) is regular with respect to the
bases of norms (pk) and (qk), respectively.

3 Results

For arbitrary subsets A, B in a linear space E and a linear subspace L of E we
denote d(A, B, L) = inf{|β| : β ∈ K, A ⊂ (βB + L)} (we put inf ∅ = +∞). Let
dn(A, B) = inf{d(A, B, L) : L < E, dim L ≤ (n− 1)}, n ∈ N.

It is easy to check the following

Remark 1. If A′ ⊂ A ⊂ E, B ⊂ B′ ⊂ E and n ∈ N, then dn(A′, B′) ≤ dn(A, B). If

a, b ∈ (K \ {0}), A, B ⊂ E and n ∈ N, then dn(aA, bB) = |ab−1|dn(A, B).

We will need the following

Lemma 2. Let (fn) be the sequence of coefficient functionals associated with a basis

(xn) in a lcs E. Let (ak), (bk) ⊂ (0,∞) with akb
−1
k ≥ ak+1b

−1
k+1 for all k ∈ N. Put

A = {x ∈ E : |fk(x)| ≤ ak, k ∈ N} and B = {x ∈ E : |fk(x)| ≤ bk, k ∈ N}. Then for

any n ∈ N and α ∈ K with |α| > 1 we have |α|−1anb−1
n ≤ dn(A, B) < |α|anb

−1
n .

Proof. Clearly, there exists β ∈ K with anb−1
n ≤ |β| < |α|anb

−1
n . Let x ∈ A.

Since |β−1fk(x)| ≤ a−1
n bnak ≤ bk for any k ≥ n, then (

∑∞
k=n β−1fk(x)xk) ∈ B. Hence

x ∈ (βB + lin{xi : 1 ≤ i < n}). Thus A ⊂ (βB + lin{xi : 1 ≤ i < n}). This follows
that dn(A, B) < |α|anb

−1
n .
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Now, assume that L < E, β ∈ K, |β| < |α|−1anb−1
n and A ⊂ (βB + L). For

1 ≤ i ≤ n let βi ∈ K with |α|−1ai ≤ |βi| < ai. Then βixi ∈ A ⊂ (βB +L), 1 ≤ i ≤ n.
Thus for any 1 ≤ i ≤ n there exists ui ∈ B such that vi = (βixi − βui) ∈ L.
We shall prove that v1, . . . , vn are linearly independent in L. Let c1, . . . , cn ∈ K

with
∑n

i=1 civi = 0. Put αi
k = fk(ui) for 1 ≤ i ≤ n, k ∈ N. Then |αi

k| ≤ bk for all
1 ≤ i ≤ n, k ∈ N, and

n∑

i=1

ciβixi =
n∑

i=1

βciui =
n∑

i=1

βci(
∞∑

k=1

αi
kxk) =

∞∑

k=1

(
n∑

i=1

βciα
i
k)xk.

Hence (∗) ckβk =
∑n

i=1 βciα
i
k, 1 ≤ k ≤ n. For any 1 ≤ k ≤ n there exists 1 ≤ ik ≤ n

with |αik
k | = max1≤i≤n |α

i
k|. Let 1 ≤ k ≤ n. Put αk = αik

k if αik
k 6= 0, and let αk ∈ K

with 0 < |αk| ≤ bk if αik
k = 0. By (∗), we get

(∗∗) ckβkα
−1
k =

n∑

i=1

(ciβiα
−1
i )(β−1

i αiβαi
kα

−1
k ).

For any 1 ≤ i ≤ n we have

|β−1
i ||αi||β||α

i
kα

−1
k | < (|α|a−1

i )bi(|α|
−1aib

−1
i )1 = 1.

Thus c := max1≤k≤n max1≤i≤n |β
−1
i αiβαi

kα
−1
k | < 1. By (∗∗), we obtain

|ckβkα
−1
k | ≤ c max

1≤i≤n
|ciβiα

−1
i |, 1 ≤ k ≤ n.

Hence ck = 0 for all 1 ≤ k ≤ n.
Thus dim L ≥ n and dn(A, B) ≥ |α|−1anb−1

n . �

Now, we can prove the following

Proposition 3. Any two regular orthogonal bases (xn) and (yn) in a metrizable lcs

E are semi equivalent.

Proof. Let α ∈ K with |α| > 1. Assume that (xn) and (yn) are regular with
respect to bases of norms (pk) and (qk) in P(E), respectively. Without loss of
generality we can assume that

(∗) pn ≤ |α|−2qn ≤ |α|−4pn+1 ≤ |α|−6qn+1 for all n ∈ N.

Set Un = {x ∈ E : pn(x) ≤ 1} and Vn = {y ∈ E : qn(y) ≤ 1} for n ∈ N. Let (fn)
and (gn) be the sequences of coefficient functionals associated with the bases (xn)
and (yn), respectively. Put an,k = pn(xk) and bn,k = qn(yk) for all n, k ∈ N. Then
at,ka

−1
s,k ≥ at,k+1a

−1
s,k+1 and bt,kb

−1
s,k ≥ bt,k+1b

−1
s,k+1 for all t, s, k ∈ N with t ≤ s.

Since pn(x) = maxk |fk(x)|an,k and qn(y) = maxk |gk(y)|bn,k for x, y ∈ E, n ∈ N,
then Un = {x ∈ E : |fk(x)| ≤ a−1

n,k, k ∈ N} and Vn = {y ∈ E : |gk(y)| ≤ b−1
n,k, k ∈ N}

for n ∈ N. Let t, s ∈ N with t ≤ s. By Lemma 2, we obtain
(∗1) |α|−1at,na−1

s,n ≤ dn(Us, Ut) ≤ |α|at,na−1
s,n, n ∈ N;

(∗2) |α|−1bt,nb−1
s,n ≤ dn(Vs, Vt) ≤ |α|bt,nb−1

s,n, n ∈ N.
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Let n ∈ N. Let i, j ∈ N with i ≤ j. By (∗), we have Ui ⊃ α2Vi ⊃ α2Vj ⊃ α4Uj+1.
Hence, by Remark 1, we get

|α|4dn(Uj+1, Ui) = dn(α4Uj+1, Ui) ≤ dn(α2Vj, α
2Vi) = dn(Vj, Vi).

Using (∗1) and (∗2) we obtain that |α|3ai,na−1
j+1,n ≤ |α|bi,nb

−1
j,n.

Now, let i, j ∈ N with j < i. Then we have Vj ⊃ α2Uj+1 ⊃ α2Ui ⊃ α4Vi. Hence
we get |α|4dn(Vi, Vj) ≤ dn(Ui, Uj+1). Thus |α|3bj,nb

−1
i,n ≤ |α|aj+1,na

−1
i,n.

We have proved that |α|2ai,nb−1
i,n ≤ aj+1,nb−1

j,n for all n, i, j ∈ N.
Let n ∈ N, An = supi ai,nb−1

i,n and Bn = infj aj+1,nb
−1
j,n. Then |α|2An ≤ Bn. Thus

there exists cn ∈ K with An ≤ |cn| < Bn. Hence for any k ∈ N we get ak,nb
−1
k,n ≤

|cn| < ak+1,nb−1
k,n; so ak,n ≤ |cn|bk,n < ak+1,n for all k, n ∈ N.

We have shown that pk(xn) ≤ qk(cnyn) < pk+1(xn) for all k, n ∈ N. It follows
that pk(

∑m
n=1 αnxn) ≤ qk(

∑m
n=1 αncnyn) ≤ pk+1(

∑m
n=1 αnxn) for all k, m ∈ N and

α1, . . . , αm ∈ K. This proves that the bases (xn) and (cnyn) in E are equivalent.
Thus the bases (xn), (yn) are semi equivalent. �

Our next result is the following

Proposition 4. Let E be a metrizable lcs with a regular orthogonal basis (xn). Then

for any orthogonal basis (yn) in E there exists a permutation σ of N such that (yσ(n))
is a regular orthogonal basis in E.

Proof. Let (fn) and (gn) be the sequences of coefficient functionals associated
with the bases (xn) and (yn), respectively. Since

1 = |gn(yn)| = |gn(
∞∑

k=1

fk(yn)xk)| = |
∞∑

k=1

fk(yn)gn(xk)| ≤ max
k
|fk(yn)gn(xk)|, n ∈ N,

then for any n ∈ N there exists tn ∈ N with |ftn(yn)gn(xtn)| ≥ 1. For every
s ∈ N we have fs(xs) = fs(

∑∞
n=1 gn(xs)yn) =

∑∞
n=1 fs(yn)gn(xs). Hence we ob-

tain |fs(yn)gn(xs)| →n 0, s ∈ N. Thus for any s ∈ N the set {n ∈ N : tn = s} is
finite. Therefore there exists a permutation σ of N such that the sequence (tσ(n)) is
non-decreasing.

Assume that (xn) is regular with respect to a base of norms (pk) in P(E). For
any k ∈ N there exist a norm qk on E and sk ∈ N with pk ≤ qk ≤ psk

such that (yn)
is 1-orthogonal with respect to qk. For all n, k ∈ N we obtain

pk(ftn(yn)xtn) ≤ max
m

pk(fm(yn)xm) = pk(yn) ≤ |gn(xtn)|−1 max
m

qk(gm(xtn)ym) =

|gn(xtn)|−1qk(xtn) ≤ psk
(ftn(yn)xtn).

Hence (∗) pk(ftn(yn)xtn) ≤ pk(yn) ≤ psk
(ftn(yn)xtn) for all k, n ∈ N.

Put rk(x) = maxn |gn(x)|pk(ftn(yn)xtn), k ∈ N, x ∈ E.
By (∗), we get rk(x) ≤ maxn |gn(x)|qk(yn) = qk(x) ≤ psk

(x), and
pk(x) ≤ maxn |gn(x)|pk(yn) ≤ maxn |gn(x)|psk

(ftn(yn)xtn) = rsk
(x).

Thus (rk) is a base of norms in P(E). Clearly, (yn) is 1-orthogonal with respect
to (rk) and

rk(yn)

rk+1(yn)
=

pk(ftn(yn)xtn)

pk+1(ftn(yn)xtn)
=

pk(xtn)

pk+1(xtn)
for all k, n ∈ N.

Since the basis (xn) is regular with respect to (pk) and the sequence (tσ(n)) is non-
decreasing, the basis (yσ(n)) is regular with respect to (rk). �



470 W. Śliwa

By Propositions 3 and 4, we obtain our main result.

Theorem 5. Any metrizable lcs with a regular orthogonal basis possesses the quasi-

equivalence property.

Corollary 6. The power series spaces A1(a) and A∞(a) have the quasi-equivalence

property. In particular, the space A1(K) of all analytic functions in the unit ball of

K, and the space A∞(K) of all entire functions in K have this property.

By the closed graph theorem (see [9], Theorem 2.49), we get

Remark 7. For orthogonal bases (xn), (yn) in a Fréchet space E the following con-

ditions are equivalent:

(1) the bases (xn) and (yn) are equivalent;

(2) for any (βn) ⊂ K the sequence (βnxn) is convergent to 0 in E if and only if

the sequence (βnyn) is convergent to 0 in E;

(3) for any (βn) ⊂ K the series
∑∞

n=1 βnxn is convergent in E if and only if the

series
∑∞

n=1 βnyn is convergent in E.

Using Remark 7, we shall prove the following

Proposition 8. The Fréchet spaces: K
N, c0, c0 × K

N and cN

0 possess the quasi-

equivalence property.

Proof. (A). First, we show that any two orthogonal bases (xn), (yn) in K
N are

equivalent. Assume that (xn) is 1-orthogonal with respect to a base (pk) in P(KN).
Let k ∈ N. Since the space K

N is of finite type, dim(KN/ ker pk) < ∞. It is easy
to see that ker pk is the closed linear span of {xn : pk(xn) = 0}. Hence the set
{xn : pk(xn) > 0} is finite for any k ∈ N. This follows that for any (βn) ⊂ K, the
sequence (βnxn) is convergent to 0 in K

N. Similarly, for any (βn) ⊂ K, the sequence
(βnyn) is convergent to 0 in K

N. By Remark 7, the bases (xn), (yn) are equivalent.
(B). Any two orthogonal bases (xn), (yn) in c0 are semi equivalent. Indeed, set

||(βn)|| = maxn |βn| for (βn) ∈ c0. Let β ∈ K with |β| > 1. Then there exists a
sequence (βn) ⊂ (K\{0}) such that ||yn|| ≤ ||βnxn|| < |β|||yn|| for any n ∈ N. Using
Remark 7, we infer that the bases (βnxn) and (yn) are equivalent. Hence (xn) and
(yn) are semi equivalent.

(C). Now, we prove that any two orthogonal bases (xn) and (yn) in c0 × K
N

are quasi-equivalent. Set rk((αn), (βn)) = k max{maxn |αn|, max1≤n≤k |βn|} for all
k ∈ N and ((αn), (βn)) ∈ c0 ×K

N. Of course, (rk) is a base in P(c0 ×K
N).

Assume that (xn) is 1-orthogonal with respect to a base (pk) in P(c0 × K
N).

Clearly, there exist m, k ∈ N with r1 ≤ pm ≤ rk. Since ker rk ⊂ ker pm ⊂ ker r1 ⊂
c0 × K

N, then (c0 × K
N/ ker pm) is an infinite-dimensional quotient space of the

Banach space (c0 × K
N/ ker rk) of countable type. Thus (c0 × K

N/ ker pm) is an
infinite-dimensional Banach space of countable type, so it is isomorphic to c0. Put
M = {n ∈ N : pm(xn) > 0}. Denote by X0 and X1 the closed linear spans of
{xn : n ∈ M} and {xn : n ∈ (N \ M)}, respectively. Since c0 × K

N is isomorphic
to X0 × X1 and X1 = ker pm, then X0 is isomorphic to c0 and dim X1 = ∞. For
any s ≥ m there exists t ∈ N with r1 ≤ pm ≤ ps ≤ rt; then dim(ker pm/ ker ps) ≤
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dim(ker r1/ ker rt) < ∞. Thus X1 is an infinite-dimensional Fréchet space of finite
type, so it is isomorphic to K

N.
Similarly, there exists L ⊂ N such that the closed linear span Y0 of {yn : n ∈ L}

is isomorphic to c0 and the closed linear span Y1 of {yn : n ∈ (N \L)} is isomorphic
to K

N.

Let σ be a permutation of N with σ(L) = M . Since any two orthogonal bases
in c0 are semi equivalent, there is a sequence (αn)n∈L ⊂ (K \ {0}) such that the
orthogonal basis (yn)n∈L in Y0 is equivalent to the orthogonal basis (αnxσ(n))n∈L in
X0. Let αn be equal to the unit of K for all n ∈ (N \ L). Then the orthogonal
basis (yn)n∈(N\L) in Y1 is equivalent to the orthogonal basis (αnxσ(n))n∈(N\L) in X1.
Using Remark 7 we obtain that the orthogonal bases (yn), (αnxσ(n)) in c0 ×K

N are
equivalent, so the bases (xn) and (yn) are quasi-equivalent.

(D). Finally, we prove that any two orthogonal bases (xn), (yn) in cN

0 are quasi-
equivalent. Put ||β|| = maxi |βi| for β = (βi) ∈ c0, and rk((αn)) = k max1≤n≤k ||αn||
for all k ∈ N and (αn) ∈ cN

0 . Clearly, (rk) is a base in P(cN

0 ).
Assume that (xn) is 1-orthogonal with respect to a base (pk) in P(cN

0 ). Denote
by p0 the zero seminorm on cN

0 . For any m ∈ N there exist s, k ∈ N such that
pm−1 ≤ rs ≤ rs+1 ≤ pk; then dim(ker pm−1/ ker pk) ≥ dim(ker rs/ ker rs+1) = ∞.
Thus without loss of generality we can assume that dim(ker pm−1/ ker pm) = ∞ for
any m ∈ N.

Let m ∈ N and t ∈ N with pm ≤ rt. Since ker rt ⊂ ker pm ⊂ ker pm−1 ⊂ cN

0 ,
then (ker pm−1/ ker pm) is a quotient space of (ker pm−1/ ker rt) and (ker pm−1/ ker rt)
is a closed subspace of the Banach space (cN

0 / ker rt) of countable type. Thus
(ker pm−1/ ker pm) is an infinite-dimensional Banach space of countable type, so it is
isomorphic to c0.

Similarly, there exists a base (qk) in P(cN

0 ) such that (yn) is 1-orthogonal with
respect to (qk) and the quotient space (ker qm−1/ ker qm) is isomorphic to c0 for any
m ∈ N (we set q0 = p0).

Let k ∈ N. Put Nk = {n ∈ N : xn ∈ (ker pk−1 \ ker pk)} and Mk = {n ∈ N : yn ∈
(ker qk−1 \ ker qk)}. Denote by Xk and Yk the closed linear span of {xn : n ∈ Nk}
and {yn : n ∈ Mk}, respectively. Clearly, ker pk−1 is isomorphic to Xk × ker pk and
ker qk−1 is isomorphic to Yk × ker qk. Hence Xk and Yk are isomorphic to c0. Of
course,

⋃∞
k=1 Nk =

⋃∞
k=1 Mk = N, Ni ∩Nj = ∅ = Mi ∩Mj for all i, j ∈ N with i 6= j,

and the sets Nk, Mk are infinite for any k ∈ N. Thus there exists a permutation σ
of N such that σ(Mk) = Nk for any k ∈ N. Since any two orthogonal bases in c0

are semi equivalent, then there exists a sequence (αn) ⊂ (K \ {0}) such that the
orthogonal basis (αnxσ(n))n∈Mk

in Xk is equivalent to the orthogonal basis (yn)n∈Mk

in Yk for any k ∈ N.
We shall prove that the orthogonal bases (yn), (αnxσ(n)) in cN

0 are equivalent.
Let (βn) ⊂ K. Assume that βnyn → 0 in cN

0 . Then limn∈Mk
βnyn = 0 in cN

0 for any
k ∈ N. By Remark 7, limn∈Mk

βnαnxσ(n) = 0 in cN

0 for any k ∈ N. We show that
βnαnxσ(n) → 0 in cN

0 . Suppose, by contradiction, that there exists a neighborhood
U of 0 in cN

0 and an increasing sequence (sn) ⊂ N such that βsn
αsn

xσ(sn) ∈ (cN

0 \U).
Then for any k ∈ N the set {n ∈ N : σ(sn) ∈ Nk} is finite. Thus for every k ∈ N there
is nk ∈ N with {σ(sn) : n > nk} ⊂

⋃∞
i=k+1 Ni. Hence pk(βsn

αsn
xσ(sn)) = 0 for all

k, n ∈ N with n > nk. It means that βsn
αsn

xσ(sn) →n 0 in cN

0 , a contradiction. Thus
we have proved that βnαnxσ(n) → 0 in cN

0 . Similarly, assuming that βnαnxσ(n) → 0
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in cN

0 , we get βnyn → 0 in cN

0 . By Remark 7, the orthogonal bases (αnxσ(n)), (yn) are
equivalent; so the bases (xn) and (yn) are quasi-equivalent. �
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