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Abstract

In this paper, using the Kakutani-Fan-Glicksberg fixed point theorem, we
obtain an existence theorem of a point which is simultaneously fixed point
for a given mapping and equilibrium point for a very general vector equilib-
rium problem. Finally some particular cases are discussed and three appli-
cations are given.

1 Introduction and preliminaries

If X and Y are topological spaces a multivalued mapping (or simply, a mapping)
T : X — Y is said to be: (i) upper semicontinuous (in short, u.s.c) (respectively,
lower semicontinuous (in short, l.s.c.)) if for every closed subset B of Y the set
{x € X: T(x) N B # @} (respectively, {x € X : T(x) C B}) is closed; (ii) closed if
its graph (that is, the set GrT = {(x,y) € X x Y : y € T(x), x € X }) is a closed
subset of X x Y; (iii) compact if T(X) is contained in a compact subset of Y.

The following lemma collects known facts about u.s.c. or l.s.c. mappings (see
for instance [14] for assertions (i) and (ii), respectively [26] for assertion (iii)).

Lemma 1 Let X and Y be topological spaces and T : X —o Y be a mapping.

(i) IfY is reqular and T is u.s.c. with closed values, then T is closed.
(ii) If Y is compact and T is closed, then T is u.s.c..

(iii) T is L.s.c. if and only if for any x € X, y € T(x) and any net {x;} converging to
x, there exists a net {y; } converging to y, with y; € T(x;) for each t.
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Since the topological vector spaces are regular, by (i) and (ii) we infer that,
if Y is a compact subset of a topological vector space, a closed-valued mapping
T : X —o Yisus.c. if an only if it is closed.

Let X be a nonempty subset of a topological vector space and f : X x X — R
be a function with f(x,x) > 0 for all x € X. Then the scalar equilibrium problem,
in the sense of Blum and Oettli ([7]), is to find a X € X such that f(x,y) > 0 for
all y € X. This problem includes fundamental mathematical problems like op-
timization problems, variational inequalities, fixed point problems, saddle point
problems, problems of Nash equilibria, complementary problems (see [7]). In the
last years the scalar equilibrium problem was extensively generalized in several
ways to vector equilibrium for multivalued mappings (see [1], [2], [8-11], [13],
[15-20] and the references therein).

In many of the papers mentioned above, for a suitable choice of the sets X and
Z and of the mappings F : X x X — Z, C : X —o Z, the authors study, all or part
of the following equilibrium problem:s:

(I) Find X € X such that F(x,y)p;C(X), forall y € X,

where, p; (i = 1,4) are (binary) relations on 2% defined by:
(i) ApB < ACB,
(ii) ApxB< A ¢ B,
(ili) Ap3B < ANB # @,
(iv) ApsB= ANB=20Q,

for A,B C Z.
In [4-6], [21], [24] and [25] the authors unify and extend all these problems
considering an arbitrary relation p on 22 and looking for a point ¥ € X such that

(I) F(x,y) p C(X), forally € X.

On the other hand, in [3], [10] and [21] is investigated the following problem,
called vector quasi-equilibrium problem:

If F,C,p; are as above and T : X —o X is a suitable mapping, find X € X such
that

(III) X € T(x) and F(X,y)p; C(X) forall y € T(X).

The following hybrid problem arises naturally:
Find a point X € X such that

(IV) X € T(X) and F(X,y)p C(X) forally € X.

In the next section we give an existence theorem for this problem in the case
when T is a Kakutani mapping and p is an arbitrary relation on 2Z. In Section 3
problem (II) will be studied in the particular cases p = p; and p = py, respec-
tively. Three applications will be given in the last section of the paper.
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2 Main result

Lemma 2 ([19]) Let X be a topological space, Y be a topological vector space and S, T :
X —o Y be two mappings. If S is u.s.c. with nonempty compact values and T is closed,
then S + T is a closed mapping.

Lemma 3 Let X be a topological space and Y be a Hausdorff topological vector space.
If f + X — Ris a continuous function and T : X —o Y a compact closed mapping, then
the mapping fT : X — Y defined by (fT)(x) = f(x)T(x) is closed.
Proof. Let (x,y) € Gr(fT). Then there exists a net {(x¢,yt) }tea in Gr(fT) con-
verging to (x,y). For each t € A we have y; = f(x¢)z¢, for some z; € T(x;). Since
T(X) is compact there is a subnet {z;, } of {z;} converging to a point z € T(X).
Since the mapping T is closed, z € T(x). Hence, y:, — f(x)z € (fT)(x). The
space Y being Hausdorff, y = f(x)z. It follows that (x,y) € Gr(fT) hence the
mapping fT is closed. n

Definition 1. ([12]) For a subset K of a vector space E and x € E, the outward
set of K at x is denoted and defined as follows:
O(K;x) = Upsy(Ax + (1 - A)K).

If A is anonempty setand p is a relation on A we denote by p the complemen-

tary relation of p (that is, for any a,b € A exactly one of the following assertions
ap b,ap b holds).

Theorem 1. Let X be a nonempty compact convex subset of a locally convex Hausdorff
topological vector space, Z be a nonempty set, p be a relation on 2% and T : X —o X,
F:Xx X —oZand C: X —o Z be three mappings satisfying the following conditions:

(i) T is u.s.c. with nonempty compact convex values;
(ii) foreach x € X, the set {y € X : F(x,y)p°C(x)} is convex;
(iii) foreachy € X, theset {x € X : F(x,y)pC(x)} is closed in X;
(iv) foreach x € X andy € O(T(x);x) N X, F(x,y)pC(x).
Then there exists X € X such that X € T(X) and F(X,y) pC(X) forally € X.

Proof. Fory € X,let G, = {x € X : F(x,y)p°C(x)}. Let Go = {x € X : x & T(x)}.
Since the mapping T is closed, it follows readily that Gy is open.

Suppose that the conclusion is false. Then for each x € X, either x € Gy or
x € Gy, for some y € X. Thus, X = GoUUyecx Gy- Since X is compact, there
exists a finite set {y1,---,y»} C X such that X = GoU U, G,. For the sake
of simplicity, we will put G; instead of Gy,. Let {ag, a1, ..., &y} be a partition
of unity on X subordinated to the open cover {Gg, Gy, - - -, Gy }. Recall that this
means that

ai(x) >0=x€G;;

a; : X — [0,1] is continuous, for each i € {0,1,...,n};
Y oai(x) =1foreach x € X.
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Define the mapping S : X — X by
5(x) = ao(0)T(x) + a1 (x)y1 + - + an(x)yn-

It is clear that S has nonempty compact convex values. Since the mapping x —
a1(x)y1 + - - - + an(x)yn is closed, combining Lemmas 2 and 3 we infer that S is
closed, hence u.s.c. By Kakutani-Fan-Glicksberg fixed point theorem, there exists
xg € X such that xg € S(xg). We shall prove that each of the cases ag(xg) = 0,
ap(x9) = 1and ap(xg) € (0,1) leads to a contradiction.

Let] = {i € {1,---,n} : aj(xg) > 0}. Foreachi € I, xy € G;j, hence
F(xo, yi)p“C(xo).

If ap(x0) = 0, then

xXo = thi(xo)yi € co{y; :i € I}.
i€l
By (ii), it follows that F(xg, x9)p¢ C(xp). On the other hand, since xo € O(T(xp);
x0) N X, F(xo, x0)pC(x0). We have thus obtained a contradiction.
If ag(xp) = 1, it follows that xo € S(xg) = T(xp). On the other hand, since
ap(x0) > 0, xp € Gy, thatis, xg ¢ T(xp); a contradiction again.
If ap(xp) € (0,1), then there exists yp € T(xg) such that

xo = ao(x0)yo + Y_ ai(x0)Vi.

i€l

Dividing the previous relation by 1 — ao(xo) and denoting by A = —1—

ED) we get

Axg+(1—A)yo =) #i(xo)

ie1 1—ao(xo) s

Since Axg+ (1 — A)yo € co{y; : i € I}, by (ii) we have F(xg, Axg + (1 — A)yo)p©
C(xp). On the other hand, since A > 1, by (iv) we get F(xo, Axo+ (1 — A)yp)p C(xo).
The contradiction obtained completes the proof. n

Remark 1. Denote by S, the set of all X € X satisfying the conclusion of Theo-
rem 1. Since Sp = {x € X : x € T(x)} NNyex{x € X : F(x,y)p C(x)}, by the
requirements of the theorem it follows that S, is a closed subset of X and, since X
is compact, S, is compact, too.

Recall that a mapping T : X — Y (X and Y topological spaces) is said to be
selectionable if there exists a continuous function g : X — Y such that g(x) €
T(x), for all x € X. If X is a paracompact topological space and Y is a convex set
in a Hausdorff topological vector space, by the selection theorem of Yannelis and
Prabhakar [27], any mapping T : X — Y with nonempty convex values and open
fibers is selectionable. Also, when X is paracompact and Y is Banach space, T is
selectionable, if it is 1.s.c. with closed convex values, according to the well-known
Michael’s selection theorem ([22]).

Corollary 2. Let X be a nonempty compact convex subset of a Hausdorff locally con-
vex topological vector space, Z be a nonempty set, p be a relation on 2% and T : X —o X,
F:XxX —o Zand C: X —o Z be three mappings satisfying conditions (ii), (iii) and
(iv) in Theorem 1. If T is selectionable, then there exists X € X such that X € T(X) and
F(x,y)p C(X) forally € X.
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Proof. Let g : X — Y be a continuous selection of T and the mapping T7 : X — X
defined by Ty (x) = {g(x)}. Apply Theorem 1 for the mappings T, F, C. ]

3 Particular cases of Theorem 1

In this section we show that if the relation p is one of the relations p; considered
in the first section of the paper, conditions (ii) and (iii) in Theorem 1 can be re-
placed by suitable conditions on the mappings F and C. Let us observe that each
existence result concerning relation p; (respectively, p») yields an existence theo-
rem for p4 (respectively p3), if we take into account the following equivalences:
F(x,y) C C(x) < F(x,y) NC(x) = @ and F(x,y) € C(x) < F(x,y) NC(x) #
@. For this reason we can fix our attention on relations p; and p,, only.

Definition 2. ( [23]) Let X and Z be convex sets in two vector spaces. A map-
ping F : X —o Z is said to be:
(a) quasiconvex if F(x1) NC # @ and F(x;) NC # @ = F(x) N C # @ for all
convex sets C C Z, x1,xp € X and x € co{x1, x2};
(b) quasiconcave if F(x1) C C and F(x3) € C = F(x) C C for all convex sets
CCZ x1,x € Xand x € co{xy, x2}.

It is clear that any convex (respectively, concave) mapping is quasiconvex (re-
spectively, quasiconcave).

Definition 3. ([2]) Let X and Y be two nonempty convex subsets of two vector
spaces and Z be a vector space. Let F : X XY — Zand C : X — Z be two
mappings such that for each x € X, C(x) is a convex cone. We say that:

(i) F is C(x)-quasiconvex if for all x € X,y1, y» € Y and A € [0,1], we have
either F(x,11) € F(x,Ay; + (1 — A)y2) + C(x), or F(x,y2) C F(x,Ay1 +
(1= A)y2) +C(x).

(ii) Fis C(x)-quasiconvex-like if for any x € X, y1,y» € Y and A € [0,1], we have
either F(x,Ay; + (1 — A)y2) C F(x,y1) — C(x), or F(x,Ay1 + (1 — A)y2) C
F(x,y2) — C(x).

In the next results we suppose that Z is a topological vector space.

Theorem 3. Suppose that for p = p; conditions (i) and (iv) in Theorem 1 are fulfilled.
Moreover suppose that:

(ii) either
(ii1) foreach x € X, the mapping F(x, -) is quasiconvex and Z \ C(x) is convex set; or
(iip) C has nonempty convex cone values and the mapping F is C(x)-quasiconvex;

(iii) C is closed mapping and for eachy € X, F(-,y) is Ls.c.

Then there exists X € X such that X € T(X) and F(X,y) C C(X) forally € X.
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Proof. We proof first that for x € X, arbitrarily fixed, the set M = {y € X :
F(x,y) € C(x)} ={y € X : F(x,y) N (Z\ C(x)) # @} is convex. Clearly, this
is the situation in case (ii;). Suppose now that (ii;) holds and let y1,y, € M
and A € [0,1]. Then F(x,y1) € C(x) and F(x,y2) ¢ C(x). We want to show
that F(x,Ay; + (1 — A)y2) € C(x). Suppose to the contrary that F(x, Ay; + (1 —
A)yz) € C(x). Since F is C(x)-quasiconvex, for some i € {1,2} we obtain the
following contradiction

F(x,y:) C F(x, Ay1 + (1— A)ya) + C(x) € C(x) + C(x) = C(x).

We show now that for y € X, arbitrarily fixed, theset N = {x € X : F(x,y) C
C(x)} is closed in X. Indeed, if x € N (the closure being considered relative to
X) then there exists a net {x;};ca in N such that x; — x. Then, for each t € A,
F(xt,y) C C(x¢). Letz € F(x,y). Since F(-,y) is Ls.c., by Lemma 1 (iii), there is
anet {zt };ea in Z converging to z such that z; € F(x¢,y) for all t € A. It follows
that z; € C(x;) and since C is closed, z € C(x) hence F(x,z) C C(x). This shows
that the set N is closed.

The desired conclusion follows now from Theorem 1. n

Example Let X = [0,3], Z = R and the mappings F : [0,3] x [0,3] — R,
C:]0,3] =Rand T : [0,3] — [0, 3] defined by

F(x,y) = [x+y,+0), C(x) = [2x—1,+00),
[—x+2,—2x+3] if x€[0,1),

T(x) = { [(x —2)2,x] if xe[l1,3].
Observe that F(x,y) C C(x) if and only if x < y + 1 and

[0,x] if x€[0,1),

O(T(x);x) N X = { {1} ifx=1,
[x,3] if x e (1,3].

One readily verify that the mappings F, C, T satisfy all the requirements of Theo-
rem 3. The unique x satisfying the conclusion of Theorem 3 is X = 1.

Theorem 4. Suppose that for p = p, conditions (i), and (iv) in Theorem 1 are fulfilled.
Moreover suppose that:

(ii) either
(ii1) for each x € X, the mapping F(x, -) is quasiconcave and C(x) is convex set; or
(iip) C has nonempty convex cone values and the mapping F is C(x)-quasiconvex-like;
(iii) C has open graph and for eachy € X, F(-,y) is u.s.c.
Then there exists X € X such that X € T(X) and F(X,y) € C(X) forally € X.

The proof of the previous theorem is similar to that of Theorem 3. For the
proof of the fact that, in the case p = p; condition (iii) in Theorem 4 implies the

condition similarly denoted in Theorem 1 see, for example, the proof of Theorem
2.11in [2].
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4 Applications

We give in this section some applications for Theorems 3 and 4. The first one is a
common fixed point theorem.

Theorem 5. Let (E, (-, -)) be a real inner product space and X be a nonempty compact
convex subset of E. Let T : X —o X be a u.s.c. mapping with nonempty compact convex
values and f : X — X be a continuous function. Suppose that

(f(x) —x,y—x) >0, foreach x € X and y € T(x). (1)
Then, there exists X € X such that f(X) = X € T(X).

Proof. Take in Theorem 3, Z = R,

Flx,y) = llly = fFOIl = [lx = f(x)]|, +00),  C(x) = [0, +00),

where || - || is the norm generated by the inner product (-, -).

Observe that F(x,y) C C(x) & |[x — f(x)|| < |ly — f(x)]|. Since the function
y — |y — f(x)|| is quasiconvex, it is easy to see that F is C(x)-quasiconvex. Thus,
condition (iip) in Theorem 3 holds.

Letx € Xandz € O(T(x);x) N X. Thenz = Ax+ (1 —A)y, for some y € T(x)
and A > 1. Taking into account (1), we have

Iz = fFOIP =1l (x = f(x)) + (A= D)(x = )[I> = lx = f()[I> +2(A = 1)(x —
) x=y) + (= D25~ 2 > v — F)P.

Thus, for p = p; condition (iv) in Theorem 1 is fulfilled. One readily check
that all the other requirements of Theorem 3 are fulfilled. Consequently there
exists ¥ € X such that X € T(X) and ||x — f(X)|| < |ly — f(¥)], for each y € X.

Taking y = f(X) we get |X — f(¥)|| < 0, thatis ¥ = f(X). So, f(X) = X €
T(X). ]

Theorem 6. Let E be a locally convex Hausdorff topological vector space and X be
a nonempty compact convex subset of E. Let T : X —o X be a u.s.c. mapping with
nonempty compact convex values and L be a continuous function from X to E* endowed
with weak”-topology. Suppose that:

(i) (L(x),x) >0, forall x € X;
(ii) maxyer(y) (L(x),y) < (L(x),x), forall x € X.
Then there exists X € X such that X € T(X) and (L(X),y) > 0, forally € X.

Proof. We take in Theorem 3, Z = R and for all x,y € X,

F(x,y) = {(L(x), )}, C(x) = [0, +0).

Then, F(x,y) € C(x) < (L(x),y) > 0. We show that, for p = p; condition
(iv) in Theorem 1 is fulfilled. Let x € X and y € T(x). By (ii), (L(x),y) <
(L(x),x). Then, for any A > 1 for which Ax + (1 — A)y € X we have (L(x), Ax +
(1—-A)y) = (L(x),y) + A[(L(x),x) — (L(x),y)] > 0. Itis easy to see that all the
other requirements of Theorem 3 are satisfied. The desired conclusion follows by
Theorem 3. |
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As application of Theorem 4 we shall obtain an existence theorem for the so-
lution of a quasivector optimization problem. But first we need recall some con-
cepts. Let X be a nonempty compact convex of R” and C be a proper, closed,
pointed and convex cone of R™. A function ¢ : X — R™ is said to be C-convex if,
for every x1,x; € X and A € [0, 1], we have

Ap(x1) + (1= A)p(x2) — p(Ax1 + (1 = A)xz) € C.

Following [2], for a such function, we define the subdifferential of ¢ in x € X,
denoted by d¢(x), as

¢(x) = {u € (R",R")" : 9(y) — ¢(x) — (u,y —x) € C,Vy € X},

where (R”, R™)* and (u, x) denote the space of linear continuous function from
R" into R™ and the evaluation of u € (R"”,R™)* at x € R", respectively.
The following theorem and its proof are inspired from Theorem 4.1 in [3].

Theorem 7. Let X be a nonempty compact convex subset of R", C be a proper, closed,
pointed and convex cone of R™, T : X —o X be a u.s.c. mapping with nonempty compact
convex values and ¢ : X — IR be a C-convex function. Suppose that:

(i) ¢ is a u.s.c. mapping with nonempty compact convex values;
(ii) foreachx € Xandy € T(x), ¢(y) — ¢(x) ¢ C.
Then there exists X € X such that X € T(X) and ¢(y) — ¢(X) ¢ —int C, forally € X.
Proof. We take in Theorem 4, Z = R and for any x,y € X,
F(x,y) = (0¢(x),y —x) = {{(u,y —x) : u € dp(x)}, C(x) = —int C.
Then, F(x,y) € C(x) < 3u € ¢(x) : (u,y — x) ¢ —int C.
Since the mapping d¢ is u.s.c. with compact values, by Theorem 1 in [16],
it follows that for each y € X, F(-,y) is u.s.c.. We claim that (u,y — x) ¢ C,
whenever x € X,y € T(x) and u € dg(x). Supposing the contrary, we infer that
oly) —gx) € (wy—x)+CCC

and this contradicts (ii). For x,y, u as above and A > 1 such that Ax + (1 — A)y €
X we have

(1, (Ax + (1= A)y) —x) = (1= D),y —x) & ~C,

and consequently,

(u, Ax + (1 —A)y) —x) ¢ —int C. ()
Obviously (2) holds too, when A = 1. This proves that, for p = p, condition (iv)
in Theorem 1 is fulfilled. One can be easily check that the other requirements of

Theorem 4 are also satisfied. Then, according to this theorem, there exists x € X
such that X € T(X) and

Vye X Juedep(X): (uy—Xx) ¢ —int C. 3)

Since u € d¢(X), we have
o(y) —(x) = (wy —x) € C. (4)
Combining (3) and (4), we get ¢(y) — ¢(X) ¢ —int C,forally € X. ]
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