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Abstract

In this paper, using the Kakutani-Fan-Glicksberg fixed point theorem, we
obtain an existence theorem of a point which is simultaneously fixed point
for a given mapping and equilibrium point for a very general vector equilib-
rium problem. Finally some particular cases are discussed and three appli-
cations are given.

1 Introduction and preliminaries

If X and Y are topological spaces a multivalued mapping (or simply, a mapping)
T : X ⊸ Y is said to be: (i) upper semicontinuous (in short, u.s.c) (respectively,
lower semicontinuous (in short, l.s.c.)) if for every closed subset B of Y the set
{x ∈ X : T(x) ∩ B 6= ∅} (respectively, {x ∈ X : T(x) ⊆ B}) is closed; (ii) closed if
its graph (that is, the set GrT = {(x, y) ∈ X × Y : y ∈ T(x), x ∈ X }) is a closed
subset of X × Y; (iii) compact if T(X) is contained in a compact subset of Y.

The following lemma collects known facts about u.s.c. or l.s.c. mappings (see
for instance [14] for assertions (i) and (ii), respectively [26] for assertion (iii)).

Lemma 1 Let X and Y be topological spaces and T : X ⊸ Y be a mapping.

(i) If Y is regular and T is u.s.c. with closed values, then T is closed.

(ii) If Y is compact and T is closed, then T is u.s.c..

(iii) T is l.s.c. if and only if for any x ∈ X, y ∈ T(x) and any net {xt} converging to
x, there exists a net {yt} converging to y, with yt ∈ T(xt) for each t.

Received by the editors April 2009.
Communicated by E. Colebunders.
Key words and phrases : equilibrium problem, fixed point theorem, quasiconvex (quasicon-

cave) mapping, C(x)-quasiconvex mapping.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 919–928



920 M. Balaj

Since the topological vector spaces are regular, by (i) and (ii) we infer that,
if Y is a compact subset of a topological vector space, a closed-valued mapping
T : X ⊸ Y is u.s.c. if an only if it is closed.

Let X be a nonempty subset of a topological vector space and f : X × X → R

be a function with f (x, x) ≥ 0 for all x ∈ X. Then the scalar equilibrium problem,
in the sense of Blum and Oettli ([7]), is to find a x̃ ∈ X such that f (x̃, y) ≥ 0 for
all y ∈ X. This problem includes fundamental mathematical problems like op-
timization problems, variational inequalities, fixed point problems, saddle point
problems, problems of Nash equilibria, complementary problems (see [7]). In the
last years the scalar equilibrium problem was extensively generalized in several
ways to vector equilibrium for multivalued mappings (see [1], [2], [8-11], [13],
[15-20] and the references therein).

In many of the papers mentioned above, for a suitable choice of the sets X and
Z and of the mappings F : X × X ⊸ Z, C : X ⊸ Z, the authors study, all or part
of the following equilibrium problems:

(I) Find x̃ ∈ X such that F(x̃, y)ρiC(x̃), for all y ∈ X,

where, ρi (i = 1, 4) are (binary) relations on 2Z defined by:

(i) Aρ1B ⇔ A ⊆ B,

(ii) Aρ2B ⇔ A * B,

(iii) Aρ3B ⇔ A ∩ B 6= ∅,

(iv) Aρ4B ⇔ A ∩ B = ∅,

for A, B ⊆ Z.
In [4-6], [21], [24] and [25] the authors unify and extend all these problems

considering an arbitrary relation ρ on 2Z and looking for a point x̃ ∈ X such that

(II) F(x̃, y) ρ C(x̃), for all y ∈ X.

On the other hand, in [3], [10] and [21] is investigated the following problem,
called vector quasi-equilibrium problem:

If F, C, ρi are as above and T : X ⊸ X is a suitable mapping, find x̃ ∈ X such
that

(III) x̃ ∈ T(x̃) and F(x̃, y)ρi C(x̃) for all y ∈ T(x̃).

The following hybrid problem arises naturally:
Find a point x̃ ∈ X such that

(IV) x̃ ∈ T(x̃) and F(x̃, y)ρ C(x̃) for all y ∈ X.

In the next section we give an existence theorem for this problem in the case
when T is a Kakutani mapping and ρ is an arbitrary relation on 2Z. In Section 3
problem (III) will be studied in the particular cases ρ = ρ1 and ρ = ρ2, respec-
tively. Three applications will be given in the last section of the paper.
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2 Main result

Lemma 2 ([19]) Let X be a topological space, Y be a topological vector space and S, T :
X ⊸ Y be two mappings. If S is u.s.c. with nonempty compact values and T is closed,
then S + T is a closed mapping.

Lemma 3 Let X be a topological space and Y be a Hausdorff topological vector space.
If f : X → R is a continuous function and T : X ⊸ Y a compact closed mapping, then
the mapping f T : X ⊸ Y defined by ( f T)(x) = f (x)T(x) is closed.

Proof. Let (x, y) ∈ Gr( f T). Then there exists a net {(xt, yt)}t∈∆ in Gr( f T) con-
verging to (x, y). For each t ∈ ∆ we have yt = f (xt)zt, for some zt ∈ T(xt). Since

T(X) is compact there is a subnet {ztα} of {zt} converging to a point z ∈ T(X).
Since the mapping T is closed, z ∈ T(x). Hence, ytα → f (x)z ∈ ( f T)(x). The
space Y being Hausdorff, y = f (x)z. It follows that (x, y) ∈ Gr( f T) hence the
mapping f T is closed.

Definition 1. ([12]) For a subset K of a vector space E and x ∈ E, the outward
set of K at x is denoted and defined as follows:

O(K; x) =
⋃

λ≥1(λx + (1 − λ)K).

If A is a nonempty set and ρ is a relation on A we denote by ρc the complemen-
tary relation of ρ (that is, for any a, b ∈ A exactly one of the following assertions
aρ b, aρc b holds).

Theorem 1. Let X be a nonempty compact convex subset of a locally convex Hausdorff
topological vector space, Z be a nonempty set, ρ be a relation on 2Z and T : X ⊸ X,
F : X × X ⊸ Z and C : X ⊸ Z be three mappings satisfying the following conditions:

(i) T is u.s.c. with nonempty compact convex values;

(ii) for each x ∈ X, the set {y ∈ X : F(x, y)ρcC(x)} is convex;

(iii) for each y ∈ X, the set {x ∈ X : F(x, y)ρC(x)} is closed in X;

(iv) for each x ∈ X and y ∈ O
(

T(x); x
)
∩ X, F(x, y)ρC(x).

Then there exists x̃ ∈ X such that x̃ ∈ T(x̃) and F(x̃, y) ρC(x̃) for all y ∈ X.

Proof. For y ∈ X, let Gy = {x ∈ X : F(x, y)ρcC(x)}. Let G0 = {x ∈ X : x /∈ T(x)}.
Since the mapping T is closed, it follows readily that G0 is open.

Suppose that the conclusion is false. Then for each x ∈ X, either x ∈ G0 or
x ∈ Gy, for some y ∈ X. Thus, X = G0

⋃⋃
y∈X Gy. Since X is compact, there

exists a finite set {y1, · · · , yn} ⊂ X such that X = G0 ∪
⋃n

i=1 Gyi
. For the sake

of simplicity, we will put Gi instead of Gyi
. Let {α0, α1, . . . , αn} be a partition

of unity on X subordinated to the open cover {G0, G1, · · · , Gn}. Recall that this
means that





αi : X → [0, 1] is continuous, for each i ∈ {0, 1, . . . , n};
αi(x) > 0 ⇒ x ∈ Gi;

∑
n
i=0 αi(x) = 1 for each x ∈ X.
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Define the mapping S : X ⊸ X by

S(x) = α0(x)T(x) + α1(x)y1 + ·+ αn(x)yn.

It is clear that S has nonempty compact convex values. Since the mapping x 7→
α1(x)y1 + · · ·+ αn(x)yn is closed, combining Lemmas 2 and 3 we infer that S is
closed, hence u.s.c. By Kakutani-Fan-Glicksberg fixed point theorem, there exists
x0 ∈ X such that x0 ∈ S(x0). We shall prove that each of the cases α0(x0) = 0,
α0(x0) = 1 and α0(x0) ∈ (0, 1) leads to a contradiction.

Let I = {i ∈ {1, · · · , n} : αi(x0) > 0}. For each i ∈ I, x0 ∈ Gi, hence
F(x0, yi)ρ

cC(x0).
If α0(x0) = 0, then

x0 = ∑
i∈I

αi(x0)yi ∈ co{yi : i ∈ I}.

By (ii), it follows that F(x0, x0)ρ
c C(x0). On the other hand, since x0 ∈ O

(
T(x0);

x0

)
∩ X, F(x0, x0)ρC(x0). We have thus obtained a contradiction.
If α0(x0) = 1, it follows that x0 ∈ S(x0) = T(x0). On the other hand, since

α0(x0) > 0, x0 ∈ G0, that is, x0 /∈ T(x0); a contradiction again.
If α0(x0) ∈ (0, 1), then there exists y0 ∈ T(x0) such that

x0 = α0(x0)y0 + ∑
i∈I

αi(x0)yi.

Dividing the previous relation by 1− α0(x0) and denoting by λ = 1
1−α0(x0)

we get

λx0 + (1 − λ)y0 = ∑
i∈I

αi(x0)

1 − α0(x0)
yi.

Since λx0 + (1 − λ)y0 ∈ co{yi : i ∈ I}, by (ii) we have F(x0, λx0 + (1 − λ)y0)ρ
c

C(x0). On the other hand, since λ > 1, by (iv) we get F(x0, λx0 +(1−λ)y0)ρ C(x0).
The contradiction obtained completes the proof.

Remark 1. Denote by Sρ the set of all x̃ ∈ X satisfying the conclusion of Theo-
rem 1. Since Sρ = {x ∈ X : x ∈ T(x)} ∩

⋂
y∈X{x ∈ X : F(x, y)ρ C(x)}, by the

requirements of the theorem it follows that Sρ is a closed subset of X and, since X
is compact, Sρ is compact, too.

Recall that a mapping T : X ⊸ Y (X and Y topological spaces) is said to be
selectionable if there exists a continuous function g : X → Y such that g(x) ∈
T(x), for all x ∈ X. If X is a paracompact topological space and Y is a convex set
in a Hausdorff topological vector space, by the selection theorem of Yannelis and
Prabhakar [27], any mapping T : X ⊸ Y with nonempty convex values and open
fibers is selectionable. Also, when X is paracompact and Y is Banach space, T is
selectionable, if it is l.s.c. with closed convex values, according to the well-known
Michael’s selection theorem ([22]).

Corollary 2. Let X be a nonempty compact convex subset of a Hausdorff locally con-
vex topological vector space, Z be a nonempty set, ρ be a relation on 2Z and T : X ⊸ X,
F : X × X ⊸ Z and C : X ⊸ Z be three mappings satisfying conditions (ii), (iii) and
(iv) in Theorem 1. If T is selectionable, then there exists x̃ ∈ X such that x̃ ∈ T(x̃) and
F(x̃, y)ρ C(x̃) for all y ∈ X.
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Proof. Let g : X → Y be a continuous selection of T and the mapping T1 : X ⊸ X
defined by T1(x) = {g(x)}. Apply Theorem 1 for the mappings T1, F, C.

3 Particular cases of Theorem 1

In this section we show that if the relation ρ is one of the relations ρi considered
in the first section of the paper, conditions (ii) and (iii) in Theorem 1 can be re-
placed by suitable conditions on the mappings F and C. Let us observe that each
existence result concerning relation ρ1 (respectively, ρ2) yields an existence theo-
rem for ρ4 (respectively ρ3), if we take into account the following equivalences:
F(x, y) ⊆ C(x) ⇔ F(x, y) ∩ Cc(x) = ∅ and F(x, y) * C(x) ⇔ F(x, y) ∩ Cc(x) 6=
∅. For this reason we can fix our attention on relations ρ1 and ρ2, only.

Definition 2. ( [23]) Let X and Z be convex sets in two vector spaces. A map-
ping F : X ⊸ Z is said to be:

(a) quasiconvex if F(x1) ∩ C 6= ∅ and F(x2) ∩ C 6= ∅ ⇒ F(x) ∩ C 6= ∅ for all
convex sets C ⊆ Z, x1, x2 ∈ X and x ∈ co{x1, x2};

(b) quasiconcave if F(x1) ⊆ C and F(x2) ⊆ C ⇒ F(x) ⊆ C for all convex sets
C ⊆ Z, x1, x2 ∈ X and x ∈ co{x1, x2}.

It is clear that any convex (respectively, concave) mapping is quasiconvex (re-
spectively, quasiconcave).

Definition 3. ([2]) Let X and Y be two nonempty convex subsets of two vector
spaces and Z be a vector space. Let F : X × Y ⊸ Z and C : X ⊸ Z be two
mappings such that for each x ∈ X, C(x) is a convex cone. We say that:

(i) F is C(x)-quasiconvex if for all x ∈ X, y1, y2 ∈ Y and λ ∈ [0, 1], we have
either F(x, y1) ⊆ F(x, λy1 + (1 − λ)y2) + C(x), or F(x, y2) ⊆ F(x, λy1 +
(1 − λ)y2) + C(x).

(ii) F is C(x)-quasiconvex-like if for any x ∈ X, y1, y2 ∈ Y and λ ∈ [0, 1], we have
either F(x, λy1 + (1 − λ)y2) ⊆ F(x, y1)− C(x), or F(x, λy1 + (1 − λ)y2) ⊆
F(x, y2)− C(x).

In the next results we suppose that Z is a topological vector space.

Theorem 3. Suppose that for ρ = ρ1 conditions (i) and (iv) in Theorem 1 are fulfilled.
Moreover suppose that:

(ii) either

(ii1) for each x ∈ X, the mapping F(x, ·) is quasiconvex and Z \ C(x) is convex set; or

(ii2) C has nonempty convex cone values and the mapping F is C(x)-quasiconvex;

(iii) C is closed mapping and for each y ∈ X, F(·, y) is l.s.c.

Then there exists x̃ ∈ X such that x̃ ∈ T(x̃) and F(x̃, y) ⊆ C(x̃) for all y ∈ X.
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Proof. We proof first that for x ∈ X, arbitrarily fixed, the set M = {y ∈ X :
F(x, y) * C(x)} = {y ∈ X : F(x, y) ∩ (Z \ C(x)) 6= ∅} is convex. Clearly, this
is the situation in case (ii1). Suppose now that (ii2) holds and let y1, y2 ∈ M
and λ ∈ [0, 1]. Then F(x, y1) * C(x) and F(x, y2) * C(x). We want to show
that F(x, λy1 + (1 − λ)y2) * C(x). Suppose to the contrary that F(x, λy1 + (1 −
λ)y2) ⊆ C(x). Since F is C(x)-quasiconvex, for some i ∈ {1, 2} we obtain the
following contradiction

F(x, yi) ⊆ F(x, λy1 + (1 − λ)y2) + C(x) ⊆ C(x) + C(x) = C(x).
We show now that for y ∈ X, arbitrarily fixed, the set N = {x ∈ X : F(x, y) ⊆

C(x)} is closed in X. Indeed, if x ∈ N (the closure being considered relative to
X) then there exists a net {xt}t∈∆ in N such that xt → x. Then, for each t ∈ ∆,
F(xt, y) ⊆ C(xt). Let z ∈ F(x, y). Since F(·, y) is l.s.c., by Lemma 1 (iii), there is
a net {zt}t∈∆ in Z converging to z such that zt ∈ F(xt, y) for all t ∈ ∆. It follows
that zt ∈ C(xt) and since C is closed, z ∈ C(x) hence F(x, z) ⊆ C(x). This shows
that the set N is closed.

The desired conclusion follows now from Theorem 1.

Example Let X = [0, 3], Z = R and the mappings F : [0, 3] × [0, 3] ⊸ R,
C : [0, 3] ⊸ R and T : [0, 3] ⊸ [0, 3] defined by

F(x, y) = [x + y,+∞), C(x) = [2x − 1,+∞),

T(x) =

{
[−x + 2,−2x + 3] if x ∈ [0, 1) ,[
(x − 2)2, x

]
if x ∈ [1, 3] .

Observe that F(x, y) ⊆ C(x) if and only if x ≤ y + 1 and

O
(
T(x); x

)
∩ X =





[0, x] if x ∈ [0, 1) ,
{1} if x = 1,
[x, 3] if x ∈ (1, 3] .

One readily verify that the mappings F, C, T satisfy all the requirements of Theo-
rem 3. The unique x̃ satisfying the conclusion of Theorem 3 is x̃ = 1.

Theorem 4. Suppose that for ρ = ρ2 conditions (i), and (iv) in Theorem 1 are fulfilled.
Moreover suppose that:

(ii) either

(ii1) for each x ∈ X, the mapping F(x, ·) is quasiconcave and C(x) is convex set; or

(ii2) C has nonempty convex cone values and the mapping F is C(x)-quasiconvex-like;

(iii) C has open graph and for each y ∈ X, F(·, y) is u.s.c.

Then there exists x̃ ∈ X such that x̃ ∈ T(x̃) and F(x̃, y) * C(x̃) for all y ∈ X.

The proof of the previous theorem is similar to that of Theorem 3. For the
proof of the fact that, in the case ρ = ρ2 condition (iii) in Theorem 4 implies the
condition similarly denoted in Theorem 1 see, for example, the proof of Theorem
2.1 in [2].
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4 Applications

We give in this section some applications for Theorems 3 and 4. The first one is a
common fixed point theorem.

Theorem 5. Let (E, 〈·, ·〉) be a real inner product space and X be a nonempty compact
convex subset of E. Let T : X ⊸ X be a u.s.c. mapping with nonempty compact convex
values and f : X → X be a continuous function. Suppose that

〈 f (x)− x, y − x〉 ≥ 0, for each x ∈ X and y ∈ T(x). (1)

Then, there exists x̃ ∈ X such that f (x̃) = x̃ ∈ T(x̃).

Proof. Take in Theorem 3, Z = R,

F(x, y) = [‖y − f (x)‖ − ‖x − f (x)‖,+∞), C(x) = [0,+∞),

where ‖ · ‖ is the norm generated by the inner product 〈·, ·〉.
Observe that F(x, y) ⊆ C(x) ⇔ ‖x − f (x)‖ ≤ ‖y − f (x)‖. Since the function

y 7→ ‖y − f (x)‖ is quasiconvex, it is easy to see that F is C(x)-quasiconvex. Thus,
condition (ii2) in Theorem 3 holds.

Let x ∈ X and z ∈ O
(

T(x); x
)
∩X. Then z = λx + (1− λ)y, for some y ∈ T(x)

and λ ≥ 1. Taking into account (1), we have
‖z − f (x)‖2 = ‖ (x − f (x)) + (λ − 1)(x − y)‖2 = ‖x − f (x)‖2 + 2(λ − 1)〈x −

f (x), x − y〉+ (λ − 1)2‖x − y‖2 ≥ ‖x − f (x)‖2.
Thus, for ρ = ρ1 condition (iv) in Theorem 1 is fulfilled. One readily check

that all the other requirements of Theorem 3 are fulfilled. Consequently there
exists x̃ ∈ X such that x̃ ∈ T(x̃) and ‖x̃ − f (x̃)‖ ≤ ‖y − f (x̃)‖, for each y ∈ X.

Taking y = f (x̃) we get ‖x̃ − f (x̃)‖ ≤ 0, that is x̃ = f (x̃). So, f (x̃) = x̃ ∈
T(x̃).

Theorem 6. Let E be a locally convex Hausdorff topological vector space and X be
a nonempty compact convex subset of E. Let T : X ⊸ X be a u.s.c. mapping with
nonempty compact convex values and L be a continuous function from X to E∗ endowed
with weak∗-topology. Suppose that:

(i) 〈L(x), x〉 ≥ 0, for all x ∈ X;

(ii) maxy∈T(x)〈L(x), y〉 ≤ 〈L(x), x〉, for all x ∈ X.

Then there exists x̃ ∈ X such that x̃ ∈ T(x̃) and 〈L(x̃), y〉 ≥ 0, for all y ∈ X.

Proof. We take in Theorem 3, Z = R and for all x, y ∈ X,
F(x, y) = {〈L(x), y〉}, C(x) = [0,+∞).
Then, F(x, y) ⊆ C(x) ⇔ 〈L(x), y〉 ≥ 0. We show that, for ρ = ρ1 condition

(iv) in Theorem 1 is fulfilled. Let x ∈ X and y ∈ T(x). By (ii), 〈L(x), y〉 ≤
〈L(x), x〉. Then, for any λ ≥ 1 for which λx + (1 − λ)y ∈ X we have 〈L(x), λx +
(1 − λ)y〉 = 〈L(x), y〉 + λ[〈L(x), x〉 − 〈L(x), y〉] ≥ 0. It is easy to see that all the
other requirements of Theorem 3 are satisfied. The desired conclusion follows by
Theorem 3.



926 M. Balaj

As application of Theorem 4 we shall obtain an existence theorem for the so-
lution of a quasivector optimization problem. But first we need recall some con-
cepts. Let X be a nonempty compact convex of R

n and C be a proper, closed,
pointed and convex cone of R

m. A function ϕ : X → R
m is said to be C-convex if,

for every x1, x2 ∈ X and λ ∈ [0, 1], we have

λϕ(x1) + (1 − λ)ϕ(x2)− ϕ(λx1 + (1 − λ)x2) ∈ C.

Following [2], for a such function, we define the subdifferential of ϕ in x ∈ X,
denoted by ∂ϕ(x), as

ϕ(x) = {u ∈ (Rn, R
m)∗ : ϕ(y)− ϕ(x)− 〈u, y − x〉 ∈ C, ∀y ∈ X},

where (Rn, R
m)∗ and 〈u, x〉 denote the space of linear continuous function from

R
n into R

m and the evaluation of u ∈ (Rn, R
m)∗ at x ∈ R

n, respectively.
The following theorem and its proof are inspired from Theorem 4.1 in [3].

Theorem 7. Let X be a nonempty compact convex subset of R
n, C be a proper, closed,

pointed and convex cone of R
m, T : X ⊸ X be a u.s.c. mapping with nonempty compact

convex values and ϕ : X → R
m be a C-convex function. Suppose that:

(i) ∂ϕ is a u.s.c. mapping with nonempty compact convex values;

(ii) for each x ∈ X and y ∈ T(x), ϕ(y)− ϕ(x) /∈ C.

Then there exists x̃ ∈ X such that x̃ ∈ T(x̃) and ϕ(y)− ϕ(x̃) /∈ −int C, for all y ∈ X.

Proof. We take in Theorem 4, Z = R and for any x, y ∈ X,

F(x, y) = 〈∂ϕ(x), y − x〉 = {〈u, y − x〉 : u ∈ ∂ϕ(x)}, C(x) = −int C.

Then, F(x, y) * C(x) ⇔ ∃u ∈ ϕ(x) : 〈u, y − x〉 /∈ −int C.
Since the mapping ∂ϕ is u.s.c. with compact values, by Theorem 1 in [16],

it follows that for each y ∈ X, F(·, y) is u.s.c.. We claim that 〈u, y − x〉 /∈ C,
whenever x ∈ X, y ∈ T(x) and u ∈ ∂ϕ(x). Supposing the contrary, we infer that

ϕ(y)− ϕ(x) ∈ 〈u, y − x〉+ C ⊆ C,

and this contradicts (ii). For x, y, u as above and λ > 1 such that λx + (1 − λ)y ∈
X we have

〈u, (λx + (1 − λ)y)− x〉 = (1 − λ)〈u, y − x〉 /∈ −C,

and consequently,
〈u, (λx + (1 − λ)y)− x〉 /∈ −int C. (2)

Obviously (2) holds too, when λ = 1. This proves that, for ρ = ρ2 condition (iv)
in Theorem 1 is fulfilled. One can be easily check that the other requirements of
Theorem 4 are also satisfied. Then, according to this theorem, there exists x̃ ∈ X
such that x̃ ∈ T(x̃) and

∀y ∈ X ∃u ∈ ∂ϕ(x̃) : 〈u, y − x̃〉 /∈ −int C. (3)

Since u ∈ ∂ϕ(x̃), we have

ϕ(y)− ϕ(x̃)− 〈u, y − x̃〉 ∈ C. (4)

Combining (3) and (4), we get ϕ(y)− ϕ(x̃) /∈ −int C, for all y ∈ X.
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