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Abstract

Quasi-quadrics were introduced by Penttila, De Clerck, O’Keefe and Hamil-
ton in [2]. They are defined as point sets which have the same intersection
numbers with respect to hyperplanes as non-singular quadrics. We extend
this definition in two ways.

The first extension is to quasi-Hermitian varieties, which are point sets
which have the same intersection numbers with respect to hyperplanes as
non-singular Hermitian varieties.

The second one is to singular quasi-quadrics, i.e. point sets K which have
the same intersection numbers with respect to hyperplanes as singular quad-
rics. Our starting point was to investigate whether every singular quasi-
quadric is a cone over a non-singular quasi-quadric. This question is tackled
in the case of a point set K with the same intersection numbers with respect
to hyperplanes as a point over an ovoid.

1 Introduction

In [2] quasi-quadrics were introduced, i.e. point sets K in PG(n, q) which have the
same intersection numbers with respect to hyperplanes as non-singular quadrics.
In that paper there is a free construction of these structures, yielding an over-
whelming amount of examples. In this paper we define quasi-Hermitian vari-
eties, i.e. the analogous concept of quasi-quadrics for Hermitian varieties and
provide similar free constructions of them.
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In [4], we proved that if one additionally assumes that K has the same inter-
section numbers with respect to spaces of codimension 2 as non-singular quasi-
quadrics (non-singular Hermitian varieties), then K is a non-singular quadric
(non-singular Hermitian variety).

The goal of this paper is to extend the theory to singular quadrics (Hermitian
varieties). We prove similar results in the low-dimensional case.

2 Quasi-Hermitian varieties

Definition 1. A set of points H in PG(n, q2), is called a quasi-Hermitian variety
in PG(n, q2), if its intersection numbers with hyperplanes are the size of a non-
singular Hermitian variety H(n − 1, q2), namely

(qn + (−1)n−1)(qn−1 − (−1)n−1)

q2 − 1

or the size of a cone with vertex a point p and base a non-singular Hermitian
variety H(n − 2, q2), shortly denoted by pH(n − 2, q2), namely

(qn + (−1)n−1)(qn−1 − (−1)n−1)

q2 − 1
+ (−1)n−1qn−1.

We will call hyperplanes intersecting H in |H(n − 1, q2)| points secant, the
other ones tangent.

We will show that not all quasi-Hermitian varieties are Hermitian varieties.
Our first construction is the Hermitian analogue of a construction method by
Penttila, De Clerck, O’Keefe and Hamilton, a method which they call pivoting.

Let H(n, q2) be a non-singular Hermitian variety. Take a point p on H(n, q2)
and consider the tangent space Π of the Hermitian variety at p. This space inter-
sects the Hermitian variety in a cone with vertex p and base a non-singular Her-
mitian variety H(n − 2, q2) lying in a PG(n − 2, q2). We replace this non-singular
Hermitian variety H(n − 2, q2) by a quasi-Hermitian variety in PG(n − 2, q2), say
H′. We call the set of points contained in (H(n, q2)− pH(n − 2, q2)) ∪ pH′ a piv-
oted set of H(n, q2) with respect to p.

Theorem 2. Every pivoted set of H(n, q2) with respect to a point p of H(n, q2) is a
quasi-Hermitian variety in PG(n, q2).

Proof. We have to prove that all hyperplanes intersect the pivoted set in the correct
number of points. Since we only replace points in the tangent space Π through p,
we only have to look at the intersection of the hyperplanes α with Π.

1) If α equals Π, then α has the same number of intersection points with the
pivoted set as with H(n, q2).

2) Next suppose that α intersects Π in an (n − 2)-dimensional space. If α con-
tains p then there are two cases to consider. The first possibility is that α intersects
H(n− 2, q2) and H′ in the same number of points, in which case the total intersec-
tion number of α and the pivoted set is the same as the intersection number of α
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with H(n, q2). The second possibility is that α has different intersection numbers
with H(n − 2, q2) and H′, but then this difference is equal to,

|H(n − 3, q2)| − |pH(n − 4, q2)| = (−1)nqn−3,

and so the total difference for the intersection size is q2(−1)nqn−3 = (−1)nqn−1

which equals
|H(n − 1, q2)| − |pH(n − 2, q2)|,

hence we get a valid intersection number.
If α does not contain p, then α intersects the intersection of the pivoted set and

Π in a set of size |H′| = |H(n − 2, q2)|, hence the number of intersection points is
unchanged.

The second construction of a quasi-Hermitian variety only works in odd di-
mension since in even dimension the generators are too small for this construc-
tion to work. It is the Hermitian analogue of a theorem of Delanote [3].

Theorem 3. Let Π be an (n − 1)-dimensional space lying on H(2n + 1, q2). Consider
the q + 1 generators Gi, 1 ≤ i ≤ q + 1 on H(2n + 1, q2) through Π. Consider also
spaces Πi, 1 ≤ i ≤ q + 1 through Π inside the tangent space Π∗ of H(2n + 1, q2) at Π

which intersect the Hermitian variety exactly in Π. Consider

H′ = (H(2n + 1, q2)\ ∪i Gi) ∪ (∪iΠi)

This set H′ is a quasi-Hermitian variety in PG(2n + 1, q2).

Proof. Again we only have to look at the intersection of the hyperplanes α with
the (n + 1)-space Π∗ since only there we replace points. If α contains Π∗ then
α has the same number of intersection points with H′ as with H(2n + 1, q2). So
suppose that α intersects Π∗ in an n-dimensional subspace.

1) If α intersects Π∗ in one of the generators Gi, then it is a tangent hyperplane,
hence we get the following number of points in α ∩ H′.

|pH(2n − 1, q2)| − |Gi\Π| = |H(2n, q2)|.

2) If α ∩ Π∗ is one of the Πi then α is a secant hyperplane, hence we get the
following number of points in α ∩ H′.

|Πi\Π|+ |H(2n, q2)| = |pH(2n − 1, q2)|.

3) If α ∩ Π
∗ is an n-dimensional space containing Π different from the gener-

ators Gi and the spaces Πj, then clearly we get a correct number of intersection
points in α ∩ H′.

4) The last possibility is that α intersects each of the q+ 1 n-dimensional spaces
Gi in an (n − 1)-dimensional space Pi with Pi ∩ Π = α ∩ Π = Y an (n − 2)-
dimensional space.

Let Πj ∩ α = Pq+1+j, with j = 1, 2, ..., q + 1. We have replaced (∪
q+1
j=1 Pj)\Y

by (∪
2(q+1)
j=q+2 Pj)\Y. This clearly yields a correct number of intersection points in

α ∩ H′.
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Next we prove the Hermitian analogue of a remark in the Ph.D. thesis of De-
lanote [3]. Again we give a construction of a quasi-Hermitian variety, one which
only works in odd dimension for q = 2.

Theorem 4. Consider H′ = H(2n + 1, q2)\G where G is a generator of H(2n + 1, q2).
The complement of H′ in PG(2n+ 1, q2) is a quasi-Hermitian variety in PG(2n+ 1, q2)
if and only if q = 2.

Proof. A hyperplane α either contains G or intersects G in an (n − 1)-dimensional
space. If α contains G we know α is a tangent hyperplane. So the possible inter-
sections of H′ with hyperplanes are

|pH(2n − 1, q2)| − |G| =
q4n+1 − q2n+1

q2 − 1
,

|H(2n, q2)| − |PG(n − 1, q2)| =
q4n+1 − q2n+1

q2 − 1
,

|pH(2n − 1, q2)| − |PG(n − 1, q2)| =
q4n+1 − q2n+1

q2 − 1
+ q2n.

So we get a two-character set. When looking at the complement of H′ in
PG(2n + 1, q2) we get the following two intersection numbers with hyperplanes.

h1 =
q4n+2 − q4n+1 + q2n+1 − 1

q2 − 1

h2 =
q4n+2 − q4n+1 + q2n+1 − q2n+2 + q2n − 1

q2 − 1

Hence we get the right intersection numbers if and only if q = 2.

3 Singular quasi-quadrics

First we recall the theorem of Bose and Burton.

Definition 5. A blocking set with respect to t-spaces in PG(n, q) is a set B of points
such that every t-dimensional subspace of PG(n, q) meets B in at least one point.

The following result by Bose and Burton gives a nice characterization of the
smallest ones [1].

Theorem 6. If B is a blocking set with respect to t-spaces in PG(n, q) then |B| ≥
|PG(n − t, q)| and equality holds if and only if B is an (n − t)-dimensional subspace.

Next we introduce the concept of singular quasi-quadric

Definition 7. A set K in PG(n, q) having the same number of points as a singular
quadric Q and for which each intersection number with respect to hyperplanes is
also an intersection number of Q with respect to hyperplanes, is called a singular
quasi-quadric.
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A natural question is whether each singular quasi-quadric is formed by the
point set of a vertex over a quasi-quadric. The smallest non-trivial case to inves-
tigate is the case of a point over an oval, this was solved in [5]. In this paper we
investigate the case of a point over an ovoid. It seems to be hard to generalize
this result to either greater vertex, because of the growing number of hyperplane
intersection possibilities or to greater base, because the dimension of a generator
becomes small compared to the dimension of the ambient space.

Consider a set K of q3 + q + 1 points in PG(4, q) such that every hyperplane
intersects K in q + 1, q2 + 1 or q2 + q + 1 points. A solid intersecting K in i points
will be called an i-solid.

Theorem 8. Every (q + 1)-solids contains a line which intersects K in at least q points.
If there are at least three (q + 1)-solids which intersect K in a full line, then the set K is
a cone with vertex a point p and base an ovoid.

If we do not assume there are at least three (q + 1)-solids which intersect K in
a line, we have the following counterexamples:

Example 9. Let q = 2 and let O be an ovoid in a hyperplane Γ of PG(4, q). Let π

be a tangent plane at O in Γ, say at the point x of O. Let p1 6= x and p2 6= x be two
different points in π and consider two disjoint lines L1 and L2, through p1 and p2

respectively, which are not contained in Γ. Then the point set K = O ∪ L1 ∪ L2

satisfies all the desired intersection properties.

Remark 10. Placing the lines L1 and L2 in different positions yields other exam-
ples for the case q = 2.

Example 11. Let O be an ovoid in a hyperplane Γ of PG(4, q), let p be a point not
in Γ and consider the cone K := pO. Let π be a tangent plane at O in Γ, say at
the point x of O, and let L be a line in π through x. Then the set K′ := K \ px ∪ L
satisfies all the desired intersection properties.

We will prove Theorem 8 in several steps, which are described below.

Lemma 12. The number of (q + 1)-solids is q2 + 1.

Proof. Call the number of (q + 1)-solids, (q2 + 1)-solids and (q2 + q + 1)-solids
a, b and c respectively. Counting the total number of solids in a 4-space, the
incident pairs (p, α) where p is a point of K and α a solid, and the number of
ordered triples (p, r, α) where p and r are distinct points of K lying in the solid α

respectively, yields the following equations

a + b + c =
q5 − 1

q − 1
,

a(q + 1) + b(q2 + 1) + c(q2 + q + 1) = (q3 + q + 1)
q4 − 1

q − 1
,

a(q + 1)q + b(q2 + 1)q2 + c(q2 + q + 1)(q2 + q) = (q3 + q + 1)(q3 + q)
q3 − 1

q − 1
.

Solving these equations completes the proof.
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Lemma 13. (i) Every plane which does not meet K is contained in exactly two
(q + 1)-solids.

(ii) Two (q + 1)-solids intersect in at most one point of K.

(iii) Any plane contains at most 2q + 1 points of the set K.

(iv) All (q + 1)-solids which intersect K in a line have a point of K in common.

Proof. Consider a plane π and suppose that |π ∩ K| = x. Consider all solids
through π in PG(4, q) and denote the number of them which are (q + 1)-solids,
(q2 + 1)-solids and (q2 + q + 1)-solids by a, b and c respectively. This yields the
following equation:

x + a(q + 1 − x) + b(q2 + 1 − x) + c(q2 + q + 1 − x) = q3 + q + 1.

After simplifying we get a + c − x = (a − 1)q. This proves (i), (ii) and (iii) im-
mediately. Hence, all (q + 1)-solids which intersect K in a line have a point in
common, otherwise we get a plane intersecting K in at least 3q points.

Lemma 14. Every (q + 1)-solid intersects K contains a line which intersects K in at
least q points.

Proof.
Let Σ be a (q + 1)-solid, and let L be any line of Σ having non-trivial intersec-

tion with K. Suppose that L intersects K in 1 + k points. We calculate a lower
bound for the number of exterior planes (i.e. not intersecting K) of Σ. One easily
sees there are at least (q− k)(q2 + k) exterior lines intersecting L. Furthermore, on
each such line there are at least k exterior planes. Since every exterior plane inter-
sects L, such plane contains exactly q + 1 exterior lines intersecting L. It follows
there are at least

E =
k(q − k)(q2 + k)

q + 1

exterior planes in Σ. By (i) of Lemma 13 this implies there at least E + 1 (q + 1)-
solids in PG(4, q). Hence, by Lemma 12, E ≤ q2 must hold. We obtain that
k ∈ {0, 1, q − 1, q} or (k, q) = (2, 4). We will deal with (k, q) = (2, 4) at the end of
the proof. So suppose that k ∈ {0, 1, q− 1, q}, and that Σ∩K would be an arc in Σ.
Let π be a plane of Σ intersecting K in l + 1 points. We may assume without loss
of generality that l ≥ 2. In π there are exactly q2 + q + 1− (q + 1− l)− (l + 1)l/2
lines exterior to K, and through each of these lines there pass at least l planes of
Σ exterior to K. As the total number of exterior planes in Σ can be at most q2 it
follows that q2 ≤ l2/2, a contradiction.

We now deal with the case (k, q) = (2, 4). There is a line L containing exactly 3
points of Σ ∩K. Let M be the line spanned by the two remaining points in Σ ∩K.

(a) If L∩ M = ∅ then in Σ there are 18 planes exterior to K. By (i) of Lemma 13
each of them is contained in two (q + 1)-solids. This yields a contradiction since
there are only 17 (q + 1)-solids by Lemma 12.

(b) If L ∩ M is a point p /∈ K then inside π = 〈L, m〉 there are 5 lines exterior
to K. Hence in Σ there are 20 planes exterior to K. By (i) of Lemma 13 each of
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them is contained in two (q+ 1)-solids. This yields a contradiction since there are
only 17 (q + 1)-solids by Lemma 12.

(c) If L∩ M is a point p ∈ K then inside π = 〈L, M〉 there are 4 lines exterior to
K. Hence in Σ there are 16 planes exterior to K. By (i) of Lemma 13 each of them
is contained in two (q+ 1)-solids. Assume that at least one (q+ 1)-solid intersects
K in a line. This yields a contradiction since there are only 17 (q + 1)-solids by
Lemma 12.

So we may suppose there are no (q + 1)-solids intersecting K in a full line.
Hence every (q+ 1)-solids contains either 1 line intersecting K in 4 points (type I)
or 2 lines intersecting K each in 3 points (type II). From the above, the intersection
of two (q + 1)-solids of type II can never contain a point of K (as there are 16
exterior planes in such (q + 1)-solids). Hence there must be (q + 1)-solids of
type I, otherwise we get too many points in K. Let Π1 be such solid, and call
h1 the unique point on L1 not belonging to K, where L1 is the unique line of Π1

intersecting K in 4 points. We immediately see that h1 is contained in at least 13
(q + 1)-solids. Furthermore, as all exterior planes of Π1 pas through h1, the point
h1 is contained in all solids of type II. Now define Π2 and h2 analogously to Π1

and h1 for a second (q + 1)-solid Π2 of type I. Assume that h1 6= h2. Since also h2

is contained in at least 13 (q + 1)-solids it follows that the line h1h2 is contained
in at least 9 (q + 1)-solids. This implies the existence of a plane through h1h2

containing at least three (q + 1)-solids, a contradiction. Hence h1 = h2, and the
point h1 is contained in all (q + 1)-solids. Now consider any (q + 1)-solid Σ of
type II. Then h1 ∈ Σ, and furthermore every exterior plane of Σ must contain h1.
This is clearly impossible, hence there are no solids of type II.

Lemma 15. Suppose there are at least three different (q + 1)-solids which intersect K in
a line. Then all (q + 1)-solids intersect K in a line.

Proof. Suppose there is a (q + 1)-solid Π3 which does not contain the common
intersection point p of all (q + 1)-solids which intersect K in a line Li. The space
Π3 intersects each of the lines Li in a point of K. Since there are at least three such
lines, we get, using Lemma 14, a plane containing more than 2q + 1 points of K,
a contradiction.

Consequently every plane π not intersecting K is contained in at most one
(q + 1)-solid, namely 〈p, π〉, a contradicting (i) of Lemma 13. Hence every (q +
1)-solid is blocked by K, so Theorem 6 implies that all (q + 1)-solids intersect K
in a line.

Now we can complete the proof of Theorem 8.

Proof. By Lemma 15 all q2 + 1 (q + 1)-solids intersect K in a line, and these lines
have a point p in common. Since 1 + q(q2 + 1) = q3 + q + 1, it follows that p is
collinear with all other points of the set K.

Let M be a line not through p containing at least three points of K, say r, s
and t. Then t is contained in the plane π spanned by the lines 〈p, r〉 and 〈p, s〉.
Hence π intersects K in at least 2q + 2 points, a contradiction by (iii) of Lemma
13. Hence, all lines not through p intersect K in at most 2 points. Consider a solid
Π not through p. If q > 2 then by the above, Π intersects K in an ovoid. If q = 2,
then an ovoid is a set of 5 points in PG(3, 2) no four of which are coplanar. Let
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π be an arbitrary plane in Π. If |π ∩ K| ≥ 4 then the solid 〈p, π〉 would contain
more than 7 points, a contradiction. This completes the proof.
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