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Abstract

The theory of approach spaces [5, 6] has set the context in which numer-
ical topological concepts exist. The successful interaction between frames
and topology on the one hand [4] and the search for a good notion of sobri-
ety in the context of approach theory on the other hand was the motivation
to develop a theory of approach frames [1].

The original definition of approach frames was given in terms of an im-
plicitly defined set of equations. In this work, we describe a subset of this
by a finite axiom scheme (of only six types of equations) which implies all
the equations originally involved and hence provides a substantial simplifi-
cation of the definition of approach frames. Furthermore we show that the
category of approach frames is the Eilenberg-Moore category for the monad
determined by the functor which takes each approach frame to the set of its
regular functions.

Introduction and background

An approach frame is a frame equipped with two families of unary operations,
(Aα)α∈[0,∞] and (Sα)α∈[0,∞], which satisfy all identities that hold for ∧,

∨

, 0, ∞, Aα,

Sα in the frame [0, ∞] with

Aα : λ 7→ λ + α and Sα : λ 7→ (λ − α) ∨ 0.

In general, the Aα and Sα are called shift operators, and specifically the up-shift
and the down-shift operators, respectively. Also, at times, we shall use a unified
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notation and define Oα for each α ∈ R as

Oα :=

{

Aα (α ≥ 0)

S−α (α < 0).

A morphism between approach frames is a shift operator preserving frame ho-
momorphism.

In order to obtain the desired simplified axiomatic presentation of the cate-
gory AFrm of approach frames, we introduce a finitely described subset F of
the equations defining approach frames and then prove that any frame equipped
with unary operations Aα and Sα, α ∈ [0, ∞], which satisfy the equations in F is in
fact an approach frame. The technique for this is to show that any frame of the lat-
ter kind is the image of some approach frame by some shift operator-preserving
frame homomorphism and hence itself an approach frame.

Approach spaces have applications in approximation theory [7, 8], probability
theory [6] chapter 5.1, functional analysis [9, 14, 15, 16], categorical topology [3, 6]
and many other fields. They have several well known equivalent characteriza-
tions [6]. One that is of particular interest to us is the characterization in terms
of the regular function frame. Thus an approach space is a pair (X,R) where
R ⊂ [0, ∞]X is a collection satisfying

(R1) ∀A ⊂ R :
∨

ϕ∈A ϕ ∈ R,

(R2) ∀ϕ, ψ ∈ R : ϕ ∧ ψ ∈ R,

(R3) ∀α ∈ R+, ∀ϕ ∈ R : ϕ + α ∈ R,

(R4) ∀α ∈ R+, ∀ϕ ∈ R : (ϕ − α) ∨ 0 ∈ R.

A map f : X → Y is a contraction between approach spaces (X,RX) and
(Y,RY) if and only if R f (ϕ) := ϕ ◦ f is in RX whenever ϕ is in RY. The category
of approach spaces is denoted Ap.

Approach spaces form a topological construct [10] in which the constructs of
metric spaces (with contractions) and of topological spaces are nicely embedded.
Given a source ( fi : X → (Xi,RXi))i∈I , the initial regular function frame is given
by

RX = {µj ◦ f j|j ∈ I, µj ∈ RXj}
∧
∨

, (1)

with S∧ and S
∨

respectively the saturation of S with respect to finite meets and
arbitrary joins [6].

Because the join and meet operation as well as subtraction Sα ϕ := ϕ ⊖ α with
β ⊖ α := (β − α) ∨ 0 and addition Aα ϕ := ϕ + α are defined in a pointwise way,
any regular function frame is an approach frame. The resulting approach frame
is denoted RfX. We will also use the fact that Ap has an initially dense object
P = ([0, ∞],RP) with

RP = {ϕ ∈ [0, ∞][0,∞]|∀x ∈ [0, ∞], ∀A ⊂ [0, ∞] : ϕ(x)− sup
a∈A

ϕ(a) ≤ x − sup A},

(2)
see e.g. [6].
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1 A basic set of equations

We start by describing, in terms of a finite axiom scheme, a specific part of the
equations used to define approach frames.

Definition 1.1. Let us put OFrm for the category of frames with arbitrary families
(Aα)α∈[0,∞] and (Sα)α∈[0,∞] of unary operations and the frame homomorphisms

that commute with each of these as morphisms. For each α, β in [0, ∞] and for
each subset Y ⊂ [0, ∞] we consider the following formulas:

(I1) Aα ◦ Aβ = Aα+β,

(I2) ∀a : Sα Aαa = a for all (α < ∞),

(I3) ∀a : S∞a = ⊥,

(I4) ∀a : AαSαa = a ∨ Aα⊥,

(I5) ∀a, b : Aα(a ∨ b) = Aαa ∨ Aαb,

(I6) ∀a :
∨

α∈Y Aαa = Asup Ya.

Let F be the set of all equations (I1),. . . ,(I6), where α, β runs through [0, ∞] and Y

runs through 2[0,∞], and let ModF be the subcategory of those L ∈ OFrm which
satisfies these identities.

We denote the forgetful functor from ModF to Set by U and we use the nota-
tion λ for Aλ⊥.

Since F is a subset of the equation-set defining approach frames, it is clear
that

AFrm ⊂ ModF .

In the next section we show that both categories are equal. To this end we derive
some further approach frame identities from those given in 1.1.

Proposition 1.2. Given any L ∈ ModF , the following identities hold for all α, β ∈
[0, ∞], and for all a, b ∈ L, X ⊂ L, Y ⊂ [0, ∞].

rule(1) A∞a = ⊤,

rule(2) A0a = a,

rule(3) S0a = a,

rule(4) Sα+β = Sα ◦ Sβ,

rule(5) Sα(
∨

X =
∨

a∈X Sαa,

rule(6) Aα(a ∧ b) = Aαa ∧ Aαb,

rule(7) Aα(
∨

X) =
∨

a∈X Aαx for
X 6= ∅,

rule(8) Sα(a ∧ b) = Sαa ∧ Sαb,

rule(9) a ≤ Aαa,

rule(10)
∨

α∈Y Sαa = Sinf Ya,

rule(11) Sαa ≤ a,

rule(12) Aαa ∧ Aβa = Aα∧βa,

rule(13) Sαa ∧ Sβa = Sα∨βa,

rule(14) Oαa ≤ Oβa if α ≤ β.

Proof.

(1) By (I3) and (I4) we have for all a ∈ L that A∞⊥ = A∞S∞a = a ∨ A∞⊥, hence
A∞⊥ = ⊤. Using (I5), we then conclude that A∞a = ⊤ for all a ∈ L.
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(2) Note that by (I1) A0a = A0+0a = A0A0a, so applying S0 and (I2) yields the
desired result.

(3) From the previous result and from (I2) we obtain S0a = S0A0a = a.

(4) For α, β < ∞, we have by (I1), (I4) and (I5) that

Aα+βSαSβa = Aβ AαSαSβa = Aβ(Sβa ∨ α) = a ∨ β ∨ (α + β)

= a ∨ (α + β) = Aα+βSα+βa

and applying Sα+β and (I2) gives the wanted result.
If α = ∞ the result is immediate and if β = ∞ we use the easily seen fact that
Sα0 = 0.

(5) It suffices to show that Sα(a ∨ b) = Sαa ∨ Sαb. This shows that Sα is order-
preserving, we have that Aα has this property by (I5) and combined with (I2)
and (I4) this gives us that Aα is the right Galois adjoint of Sα for all α. Since
we are working in a complete lattice, we then have that Sα commutes with all
joins and Aα with all meets.

For α = ∞, the result is immediate. For α < ∞ use (I2), (I4) and (I5) to find

Sα (a ∨ b) = Sα AαSα (a ∨ b) = Sα (a ∨ b ∨ α) = Sα ((a ∨ α) ∨ (b ∨ α))

= Sα (AαSαa ∨ AαSαb) = Sα Aα (Sαa ∨ Sαb) = Sαa ∨ Sαb

(6) Immediate consequence of the proof of the previous rule.

(7) For α = ∞, we have nothing to prove. For α < ∞ we use (I2), rule(5) and the
fact that Aα is order-preserving, hence Aαa ∨ α = Aαa and obtain

Aα

(

∨

X
)

= Aα

(

∨

a∈X

(Sα Aαa)

)

= AαSα

(

∨

a∈X

Aαa

)

=
∨

a∈X

Aαa

(8) This is shown analogous to the proof of rule(5), using distributivity and
rule(6) instead of (I5).

(9) Immediate from rule(2) and (I6).

(10) First, remark that S∞a ≤ Sαa for all α by (I3). Then, for α, β ∈ R+ with α < β
we have by (I1), (I4), (I5) and rule(9)

Aβ(Sαa ∨ Sβa) = AβSαa ∨ AβSβa = Aβ−αAαSαa ∨ AβSβa

= Aβ−α(a ∨ α) ∨ (a ∨ β) = Aβ−αa ∨ a ∨ β

= Aβ−αa ∨ β = Aβ−α(a ∨ α) = Aβ−α AαSαa = AβSαa.

Applying Sβ and (I2) then gives the identity Sαa ∨ Sβa = Sαa.

Now take an arbitrary set Y ⊂ R+. By our remarks above, we can limit
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ourselves to a bounded set Y. Take β = supi∈I αi, using (I1), (I4) and rule(7),
we see

Aβ

(

∨

α∈Y

Sαa

)

=
∨

α∈Y

Aβ−αa ∨ β = Asup(β−α)a ∨ β

= Aβ−inf Ya ∨ β = AβSinf Ya

and by (I2) we obtain
∨

α∈Y Sαa = Sinf Ya.

(11) Immediate from rule(3) and rule(10).

(12) (I6) implies Aαa ≤ Aβa whenever α ≤ β and hence also Aαa ∧ Aβa = Aαa =
Aα∧βa which proves the point since [0, ∞] is totally ordered.

(13) Analogous to the previous rule, using rule(10) instead of (I6).

(14) If α ≤ 0 ≤ β, use rule(9) and rule(11). For α, β ≥ 0, we use (I6) and given
α, β ≤ 0 we need rule(10).

Note that there are dependencies between these derived rules and the axioms,
for example given (I1)–(I4) and the finite version of rule(5) we can prove (I5). Fur-
thermore, with (I1)–(I5) given, we can show that rule(10) implies (I6) for collec-
tions (αi)i∈I with supi∈I αi < ∞.

Remark also that by rule(5) we have that rule(10) is equivalent to rule(10)
formulated for bounded sets Y ⊂ [0, ∞] with inf Y = 0.

2 Main result

Theorem 2.1. For any set S, the approach frame Rf

(

PS
)

is free on {ev(·, s) | s ∈
S} in the category ModF : for any set map τ : S → UL, L ∈ ModF , there exists a
unique h : Rf

(

PS
)

→ L in ModF such that

∀s ∈ S : h(ev(·, s)) = τ(s).

Proof. Any ϕ ∈ RP can be expressed as
∨

x∈[0,∞[

(

(Id + (ϕ(x) − x)) ∨ 0
)

∧ ϕ(x),
so

RP = {(Id
+
⊖ α) ∧ λ | α, λ ∈ R

+}∧
∨

and hence from (1) we find the following formula

Rf

(

P
S
)

=

{

(ev(·, s)
+
⊖ α) ∧ λ

∣

∣ s ∈ S, α, λ ∈ R
+

}∧
∨

. (3)

Let f be in Rf

(

PS
)

. By (3) there exists a collection Y ⊂ [0, ∞], a collection (Kλ)λ∈Y

of finite subsets of S, and for each Kλ a collection (αs)s∈Kλ
⊂ R, such that

f =
∨

λ∈Y

∧

s∈Kλ

Oαsev(·, s) ∧ λ.
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It suffices to show that the assignment

h : Rf

(

P
S
)

→ L :
∨

λ∈Y

∧

s∈Kλ

Oαsev(·, s) ∧ λ 7→
∨

λ∈Y

∧

s∈Kλ

Oαsτ(s) ∧ λ

is a well defined ModF -morphism, uniqueness of h then follows from (3).
We first show that h is well defined, that is,

∨

λ∈Y

∧

s∈Kλ

Oαsτ(s) ∧ λ =
∨

µ∈Z

∧

t∈Mµ

Oβt
τ(t) ∧ µ

whenever
∨

λ∈Y

∧

s∈Kλ

Oαsev(·, s) ∧ λ =
∨

µ∈Z

∧

t∈Mµ

Oβt
ev(·, t) ∧ µ.

So the desired result follows by symmetry if we show that
∧

s∈K

Oαsτ(s) ∧ λ ≤
∨

µ∈Z

∧

t∈Mµ

Oβt
τ(t) ∧ µ

for λ ∈ [0, ∞], K a finite subset of S and (αs)s∈S a collection in [0, ∞] such that
∧

s∈K

Oαsev(·, s) ∧ λ ≤
∨

µ∈Z

∧

t∈Mµ

Oβt
ev(·, t) ∧ µ. (4)

We can suppose that αs ≤ λ for each s ∈ K, since if αs > λ, then also Oαsev(·, s) ≥
λ. We can also suppose that λ < ∞, since for λ = ∞ we use that f =

∨

n∈N f ∧ n
and the same goes in L by (I3) and (I6). Take now K+ := {s ∈ K|αs ≥ 0} and
K− := K \ K+, then evaluating (4) in ϕ ∈ [0, ∞]S given by

ϕ(s) :=











λ − αs s ∈ K+,

λ + αs s ∈ K−,

0 otherwise,

we obtain
λ ≤ sup

µ∈Z

inf
t∈Mµ

(Oβt
ϕ(t)) ∧ µ.

For each ǫ ∈]0, λ[, take µǫ ∈ Z such that

λ − ǫ ≤ inf
t∈Mµǫ

(Oβt
ϕ(t)) ∧ µǫ. (5)

For each ǫ we make the decomposition Mµǫ = (Mµǫ \ K) ∪ M+
µǫ

∪ M−
µǫ

, with

M+
µǫ

:= Mµǫ ∩ K+ and M−
µǫ

:= Mµǫ ∩ K−. Thus the inequality (5) falls apart:

λ − ǫ ≤ min
t∈M+

µǫ

Oβt
(λ − αt), (6)

λ − ǫ ≤ min
t∈M−

µǫ

Oβt
(λ + αt), (7)

λ − ǫ ≤ min
t∈Mµǫ\K

Oβt
(0), (8)

λ − ǫ ≤ µǫ. (9)
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Explicitly inequality (6) looks like

λ − ǫ ≤ min
t∈M1

(λ − αt + βt) ∧ min
t∈M2

(((λ − αt)− |βt|) ∨ 0),

with M1 := {t ∈ Mµǫ | βt ≥ 0} and M2 := {t ∈ Mµǫ | βt < 0}. Thus for t ∈ M1

we have αt − ǫ ≤ βt and so Sǫ Aαt τ(t) ≤ Aβt
τ(t) by rule(14) (since Sǫ Aαt = Oαt−ǫ

by (I1), (I2) and rule(4)). For t ∈ M2 we formally have λ − ǫ ≤ (λ − αt − βt) ∨ 0,
which actually reduces to λ − ǫ ≤ λ − αt − βt, thus αt − ǫ ≤ −βt, so analogously
we find Sǫ Aαt τ(t) ≤ Sβτ(t). By rule(8) we then obtain

Sǫ

∧

s∈K+

Aαs τ(s) =
∧

s∈K+

Sǫ Aαs τ(s) ≤
∧

t∈M+
µǫ

Oβt
τ(t).

We decompose (7) analogously and for t ∈ M1 we have Sαt+ǫt ≤ Aβt
τ(t) and

for t ∈ M2 we find Sαt+ǫτ(t) ≤ Sβt
τ(t) by rule(14). Using rule(8) and rule(4) we

get

Sǫ

∧

s∈K−

Sαs τ(s) =
∧

s∈K−

Sαs+ǫτ(s) ≤
∧

s∈K−

Oβsτ(s) ≤
∧

t∈M−
µǫ

Oβt
τ(t).

From (8) we deduce in a similar way that

λ − ǫ ≤
∧

t∈Mµǫ\K

Oβt
τ(t).

Finally, from (9) we know by rule(14)

λ − ǫ ≤ µǫ.

Using rule(3), rule(10) and rule(8), we find

∧

s∈K+

Aαs τ(s) ∧
∧

s∈K−

Sαs τ(s) ∧ λ =
∨

ǫ>0

Sǫ





∧

s∈K+

Aαs τ(s) ∧
∧

s∈K−

Sαs τ(s) ∧ λ





=
∨

ǫ>0

Sǫ(
∧

s∈K+

Aαs τ(s)) ∧ Sǫ(
∧

s∈K−

Sαs τ(s)) ∧ λ − ǫ

≤
∨

ǫ>0

∧

t∈M+
µǫ

Oβt
τ(t) ∧

∧

t∈M−
µǫ

Oβt
τ(t) ∧

∧

t∈Mµǫ\K

Oβt
τ(t) ∧ µǫ

≤
∨

ǫ>0

∧

t∈Mµǫ

Oβt
τ(t) ∧ µǫ ≤

∨

µ∈Z

∧

t∈Mµ

Oβt
τ(t) ∧ µ.

To show that h is a ModF -morphism, we will first remark that it is a frame
homomorphism: by construction it is clear that h commutes with arbitrary joins
and, since Rf

(

PS
)

and L are frames, h also commutes with finite meets. We have
that h commutes with A∞ and S∞ by (I3). Take α < ∞. To see that

h
(

Aα

(
∨

λ∈Y

∧

s∈Kλ

Oαsev(·, s) ∧λ
)

)

=h
(

∨

λ∈Y

(
∧

s∈Kλ

Oαs+αev(·, s) ∧(λ+α)
)

∨ α
)

=
∨

λ∈Y

(
∧

s∈Kλ

Oαs+ατ(s) ∧ (λ + α)
)

∨ α = Aα

(
∨

λ∈Y

∧

s∈Kλ

Oαsτ(s) ∧ λ
)
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we use that AαOβ = Oα+β ∨α (which follows out (I1), (I2), (I4) and rule(4)), rule(7)
and rule(6). For Sα, the proof is analogous with the application of SαOβ = Oβ−α,
rule(5) and rule(8).

Corollary 2.2. Any L ∈ ModF is the homomorphic image of an approach frame.

Proof. Take an onto map τ : S → UL and apply the previous theorem.

Using that AFrm is equational and that homomorphisms transport algebraic
equalities we can conclude the following theorem.

Theorem 2.3. The categories ModF and AFrm are equal. Hence, in order to
prove that a frame L with operation Aλ and Sλ is an approach frame, it suffices
to check the equalities in 1.1.

Corollary 2.4. The functor Rf (P
−) : Set → AFrm is left adjoint to the underlying

set functor U : AFrm → Set.

3 AFrm as Eilenberg-Moore category derived from approach

spaces

Note that we have a functor

R : Apop → Set : (X
f
→ Y) 7−→ (RY

R f
→ RX),

with R f (φ) = φ ◦ f . It follows from the fat that R = Ap(−, P) that the assign-
ment

P
− : Set → Apop : (S1

f
→ S2) 7−→ (PS2

P
−( f )
→ P

S1),

with P
−( f )(a) := a ◦ f for a : S2 → [0, ∞], introduces a functor that is left adjoint

to R.
Since R f is a shift operator preserving frame homomorphism, the functor R

extends to

Rf : Apop → AFrm : (X
f
→ Y) 7−→ (RfY

R f
→ RfX).

Theorem 3.1. The category AFrm is monadic. Moreover, in the following dia-
gram

Apop Rf //

R ⊢
��

AFrm

U ⊢
��

Set

P−

OO

Set,

Rf(P
−)

OO (10)

Rf is the comparison functor of the adjunction R ⊢ P−.

Proof. Note that the co-unit of the adjunction R ⊢ P− is the map

ǫX : X → P
RX : x 7→ ev(·, x),

so the monad is
T = (T, η, µ), (11)
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with T = R(P−) and where the multiplication is µ = RǫP− [12], thus given on a
set S by

µS : T2 S → T S : ψ 7−→
(

µS(ψ) : [0, ∞]S → [0, ∞] : a 7→ ψ(ev(·, a))
)

.

Since AFrm is an equationally defined category with a left adjoint to the for-
getful functor, it follows follows from [4, 12] that this category is monadic.

It is clear that both adjunctions Rf(P
−) ⊣ U and P− ⊣ R have the same unit

η. Let S be a set. The assignment

P
S → P

R(PS) : a 7→ ev(·, a)

is a morphism in Ap. Hence, by applying Rf, we obtain the following morphism
of approach frames

Rf

(

P
R(PS)

)

→ Rf

(

P
S
)

: ψ 7→ h(ψ),

with
h(ψ) : [0, ∞]S → [0, ∞] : a 7→ ψ(ev(·, a)).

Note that for any φ ∈ R
(

PS
)

= URf

(

PS
)

,

h(ev(·, φ)) = φ,

so h is the counit of the adjunction Rf(P
−) ⊣ U and hence Uh the corresponding

multiplication. This shows that both adjunctions have the same multiplication,
and hence the same monad T (11).

The fact that Rf is indeed the comparison functor follows from [11] (VI The-
orem 1), because in the diagram (10) both the ↓→→↓-square and the ↑→→↑-square
commute.

With the previous result we can also compare the AFrm − Ap and the Frm −
Top situations with each other. For the latter there is the diagram analogous to
the one in (10)

Topop O //

Top(−,S) ⊢
��

Frm

U ⊢
��

Set

S−

OO

Set,

OS−

OO

where S is the Sierpinski space, S− is left adjoint to Top(−, S) as a general fact,
UO ≃ Top(−, S) by the nature of S, and OS− is left adjoint to the underlying set
functor U. Furthermore everything works out as in the previous case, so that Frm
is seen as the Eilenberg-Moore category determined by Top(−, S) with O as the
comparison functor.
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