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Abstract

Some existence theorems are obtained by the least action principle for
periodic solutions of nonautonomous second-order differential systems with
(g, p)-Laplacian.

1 Introduction

In the last years many authors starting with Mawhin and Willem (see [1]) proved
the existence of solutions for problem

ii(t) = VF(t,u(t)) ae. t € [0,T], )
u(0) — u(T) = u(0) —u(T) =0, @)

under suitable conditions on the potential F (see [7]-[19]). Also in a series of
papers (see [2]-[4]) we have generalized some of these results for the case when
the potential F is just locally Lipschitz in the second variable x not continuously
differentiable. Very recent (see [5] and [6]) we have considered the second order
Hamiltonian inclusions systems with p-Laplacian.

The aim of this paper is to show how the results obtained in [14] can be gener-
alized. More exactly our results represent the extensions to second-order differ-
ential systems with (g, p)-Laplacian.
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Consider the second order system
(| ()]17 201 (8)) = Vi, F(t, w1 (1), ua(t),
S ([ (1)|P~21a(t)) = Vi, E(t,up (t), uz(t)) ae. t € [0, T} o)
u1(0) —ur(T) = i1 (0) — 11 (T) =0,
uZ( ) —uz(T) = u2(0) —1i2(T) =0,

where 1 < p,g < oo, T > 0,and F: [0,T] x RN x RN — R satisfy the following
assumption (A):

e Fis measurable in t for each (x,x) € RN x RY;
e Fis continuously differentiable in (x1, x7) for a.e. t € [0, T);
e there exist 21,4, € C(Ry,R;)and b € L' (0, T; R, ) such that
[F(t,x1,x2)|, [V F(t,x1,%2) |, [V F(t, 31, %2)] < [a1(Jx1]) + a2(|x2])]b(#)
for all (x1,x,) € RN x RN and a.e. t € [0, T).
Definition 1. (see [14]) A function G : RN — R is called to be (A, u)—subconvex if

G(A(x +y)) < pu(G(x) +G(y))
for some A,y > 0and all x,y € RN.

Remark 1. (see [14]) When A = y = 2, a function (2, 2) —subconvex is called convex.
When A = u = 1, a function (1,1)—subconvex is called subadditive.
When A =1, u > 0, a function (1, u)—subconvex is called y—subadditive.

2 Main results

Theorem 1. Assume that F = F| + F,, where Fy, F, satisfy assumption (A) and the
following conditions:

(i) Fi(t,-,-) is (A, u)-subconvex with A > 1/2and 0 < u < 27"'A" for ae.
t € [0, T] where r = min(q, p);

(ii) there exist f;, gi € LY0,T;Ry), i = 1,2and ay € 0,g—1), a0 € [0,p—1)
such that

|V Ba(t, x1, x2)| < f1(8)[x1]™ + g1(¢)
|V, FBa(t, 21, x2)| < fo(t)]x2]™ + g2(t)
forall (x1,x) € RN x RN and a.e. t € [0, T);
(i11)

1 1 /T T
/ / - F t//\x /)\x dt+/ F t,x , X dti| — +OO
|21 T80 + [xp |02 [P‘/O 1, Ay, Aza) 0 2(t 31, 32)

as|x|=\/|x1|2+|x2|2—>oo,where%+ =1land 1 —|—1=1
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Then the problem (2) has at least one solution which minimizes the function ¢ : W =
W%’q X W%’p — R given by

o) =3 [+ 5 [ fus(olPa + [ Ft (0,0

Theorem 2. Assume that F = F; + F,, where Fy, F, satisfy assumption (A) and the
following conditions:

(iv) Fi(t,-,-) is (A, p)-subconvex with A > 1/2and 0 < u < 2" "'A" for ae.
t € [0,T] where r = min(q, p), and there exists v € L'(0,T;R), hy,hy €
LY(0, T;RN) with fOT hi(t)dt = 0,i = 1,2 such that

Fi(t,x1,x2) > ((h1(t), ha(t)), (x1,x2)) + 7 (t)
forall (x1,x) € RN x RN and a.e. t € [0, T);
(v) there exist g1,9> € L1(0, T;Ry), co € R such that

Vi, Ba(t, x1,x2)| < g1(t)
|V, B2 (t,x1,x2)| < g2t

~—

forall (x1,x2) € RN x RN and a.e. t € [0, T], and

T
/ Ey(t, x1, x2)dt > cg
0

forall x € RY;
(vi)

1 T T
ﬁ/ F (i’, Axl,sz)dt —|—/ Fz(i', xl,xz)dt — +00
0 0

as |x| = +/|x1]? + |x2]? — oo.
Then the problem (2) has at least one solution which minimizes ¢ on W.

Theorem 3. Assume that F = Fy + F,, where Fy, F, satisfy assumption (A) and the
following conditions:

(vii) Fi(t,-,-) is (A, u)-subconvex with A > 1/2 and 0 < u < 2'71A" for ae.
t € [0, T] where r = min(q,p), and there exists v € L'(0,T;R), hy,hy €
LY(0, T; RN) with [} hi(t)dt = 0,i = 1,2 such that

Fi(t,x1,%2) > ((h1(t), h2(t)), (x1,x2)) + ()

forall (x1,x3) € RN x RN and a.e. t € [0, T);
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(viii) there exist f;,¢; € LY(0,T;Ry), i = 1,2and a1 € [0, —1), ap € [0,p — 1)
such that

|V B2t x1, x0)| < fr()]xe|™ + g1(t)
|V, Fa(t, x1,x2)| < fa(t)]x2]™ + g2(t)

forall (x1,x) € RN x RN and a.e. t € [0, T);
(ix)
1
|x1]‘1’0¢1 + |x2’P’txz

as |x| = /|x1]% + |x2|? — oo.

Then the problem (2) has at least one solution which minimizes ¢ on W.

T
/ Fz(t, X1, xz)dt — 400
0

Remark 2. Theorems 1, 2 and 3 generalizes the corresponding Theorems 1, 2 and 3
of [14]. In fact, it follows from these theorems letting p = q = 2 and F(t,x1,%2) =

Fl(t, xl).

3 The proofs of the theorems

We introduce some functional spaces. Let T > 0 be a positive number and
1 < g,p < . We use | - | to denote the Euclidean norm in RN. We denote by

W%’p the Sobolev space of functions u € LP(0, T;RYN) having a weak derivative
i € LP(0, T;RYN). The norm in W%’P is defined by

==

Jull oo = ([} ()P + 1) 7))

Moreover, we use the space W defined by
W =Wl x WP

with the norm ([ (u1, u2)||w = [[u1l| s + [[u2]] 1. It is clear that W is a reflexive
T T

Banach space.
We recall that

T 1
— Pde)’ =
Jully = () lu()Pde) " and: [l = max u(t)

telo,T

For our aims it is necessary to recall some very well know results (for proof
and details see [1]).

Proposition 4. Each u € W%’p can be written as u(t) = i + 1(t) with

7 = %/()Tu(t)dt, /OTﬁ(t)dt _o.
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We have the Sobolev’s inequality

|l < Cillill,  foreachu € Wy?,
and Wirtinger’s inequality

lall, < Collill,  foreachu € WyP.

In [11] the authors have proved the following result (see Lemma 3.1) which
generalize a very well known result proved by Jean Mawhin and Michel Willem
(see Theorem 1.4 in [1]):

Lemma 5. Let L : [0,T] x RN x RN x RN x RN — R, (tx1,x,y1,¥2) —
L(t, x1,x2,Y1,Y2) be measurable in t for each (x1,x2,Y1,y2) for a.e. t € [0, T]. If there
exist a; € C(Ry,R.), b € LY(0,T;RL), and ¢; € L7 (0, T;Ry),co € LP' (0, T; R,
1 <gqp< oo,%—e—% = 1,%—#% = 1, such that for a.e. t € [0,T] and every
(x1,x2,y1,¥2) € RN x RN x RN x RN, one has

IL(t, x1, %2, y1,92)] < [an(|xa]) +az(lx2)] [B(F) + [y1]7 + |y2l”]
D L(t, x1, %2, y1,2)| < [aa(|xa]) + az(|x2])] [b() + [y2]]
IDa, Lt x1, %2, y1,y2)| < [ax(|xa]) +aa(|x2])] [B(2) + [y17]
Dy, L(t, %1, x2,y1,52)| < [aa(|xa]) + a2 (|xa))] [ea () + [y2]77]
Dy, L(t,x1, %2, y1,52)| < [ma(|xa]) + a2 (|x2))] [ea(t) + 2]~ "]

then the function ¢ : W%’q X W%’p — IR defined by

T
(i, 1) = /0 L(t, uy (), ua (1), 1y (1), tha (£) )it

is continuously differentiable on W%’q X W%’p and

(9, 2), (01,22)) = [ [(DuyL (ki (6) (),
Dy L, 1 (1), (1), 1 (1), (1)), 01
—|—(Dx2L(i', ul( ) (t),u1 (i’),uz(t , 02
(DLt 1 (8), ua(8), i (), 02 (1)), 02

Corollary 6. Let L : [0, T] x RN x RN x RN x RN — R be defined by
1 1
L(t/ X1, xZ/yllyZ) = §|y1|q + E|y2|P + F(t/ x11x2)

where F : [0, T] x RN x RN — R satisfy condition (A). If (u1,uz) € Wyl x Wi isa
solution of the corresponding Euler equation ¢'(u1,uy) = 0, then (u1,uy) is a solution

of (2).

Remark 3. The function ¢ is weakly lower semi-continuous (w.l.s.c.) on W as the sum
of two convex continuous functions and of a weakly continuous one.
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Proof of Theorem 1. Like in [14] we obtain
B
Fi(t,x1,x2) < (22+1}4(|X1|l3 + [x0]P) + 1)(010 + a20)b(t)
for all (x1,x2) € RN x RN and a.e. t € [0,T], where B < r, and a;p =

maXp<s<14;(s),i =1,2.
It follows from (i), (ii) and Sobolev’s inequality that

}/OT [B(t,un (1), uz(t)) — Ba(t, al,az)]dt} <

T
< ‘/0 (B (t, un (t), ua(t)) —Fz(t,ul(t),ﬁz)]dt‘+
T
+‘/0 [Fz(t,m(t),ﬁz)—Fz(t,al,az)]dt‘ _
_ ’ /OT /Ol(Vx2Fz(t,u1(t),ﬂ2 +sa2(t)),a2(t))dsdt)+
+‘ /OT /Ol(Vxle(t,ﬁl—I—sﬁl(t),ﬁz),ﬁl(t))dsdt‘ <
< [7 [ ptolae +smatoyslilasa + [ [ g0y ) asa
[0 i s o @ lasa+ [ [ a0l (0lasar <
T T
<2(|ml* + 12 2) 1l | oDt + ol [ ga(t)dt+

T T
£2(jm [ + ) |l [ AW+ Imls [ gi(tdt =

= cq ||y | + 2010|8111 || o + c13]| 1 [| oot

oo ||| 527 4 2000 |22 | 120 + €23 2|00 <

< e[l |5 + 260 ) M1 [1in || + sl [l g+

o1 [|t12 |52 + 2800|182 ]%2 112y + EasJtia | p <

o 1. o -
< el |5 + ZHMHZ + E13l|t1||g + Cr2f @ [TH +

o 1. o o
+C21||uz||§2+1+$||uz||5+C23\|u:z\|p+C:zz!uz|pl“2

for all (u1,uy) € W and some positive constants €11, . . ., 22. Hence we have

o) = ¢ [T+ [P [ 0,0

+ /OT Byt 11 (8), up (1)) — Ba(t, iy, )] dt + /OT B(t iy, dp)dt >
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a+1

||u1||q—611\|u1|| — Gyl [l — Eralm |7+

1

T
!
p||uz||p—c21||uz||“2+ — &liall — Exalia|P"2 + /O Ea(t, iy, itn)dt -+

T T
+% [ Rl am At — [ F(— (6, —m(0)d >
0 0

> 2q || — ena |5 — el [lg — Erala [T+

T
—||u2||p — C21||L‘2||Wrl — eplltiz |l — Cnlma|P®2 + | Ea(t, iy, i) dt+
2p 0

1 B 3 3 T
“7/0 Pl(t,Aﬁl,Aaz)dt—[zz+1y(||u1||£o+||u2||fo)+1}(a10+a20)/0 b(t)dt >

+1 ~ . ~ .
_zquuluq—cunuln“l = el g — S I+

1

—pHqup—fleHu:zH’Xz+1

T
— & |ualp — 531“%”5 —C3 + /0 Ey(t, i1y, 1ip)dt+

1 (T / /
+;/0 F1(t,/\ﬂl,)\ﬂ2)dt—max(c”lz,fzz)(’ﬂ”q “1+C~22|a2]1’“2) _

1 DC1+

||u1||q—c11||u1|| — |t ||g — G || |1B+

1 ap+1

—||M2||p — Colfua[y> " — Easllui2|lp — 531||ﬂ2||§ — &+
2p

1 1 (T i )
|7 |75 4 G |1 | P2 [_/0 Fy(t, Aiiy, Aip)dt+

+(Jm |7 + el "2) { M

T
+/0 Fz(t,ﬂl,ﬁz)dt} —max(ﬁlz,ﬁzz)}

for all (u1,uy) € W, which imply that ¢(uy, up) — +o0 as ||(ug, uz)||w — oo due
to (iii). By Theorem 1.1 in [1] and Corollary 6 we complete our proof.

Proof of Theorem 2. Let (uy, uy) be a minimizing sequence of ¢. It follows
from (iv), (v) and Sobolev’s inequality that

1 rT ] 1 T ) T
(s wae) = [ i)t [l (O1F et [ Rt (1), (1))
T 1. . 1. p
+ [ Pt 0) ()t > i+ el o+

4 [ (0, 0)), g (00, ()t + [ (Ot [ Bt g m)

T r1
[ (Taaalt (1) g+ st (1), (1) s+
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Nsele [ 0)1dt ~ aal [ Ira(oa+ [ y(e)it + o
—/O /O(Vxle(t,ﬂm+Sﬁlk(f)/ﬂzk),ﬁ1k(t))d5dtZ
1, a1, 3 T 3 T
> el el — Nl [ (60t~ scls | a(t)dt >

1. . 1,. o o -
> g\lumHZ + ;Huzk\lﬁ — &1ty — E2||tiok |y + E3

for all k and some constants ¢1, &, ¢3, which implies that (7, iy ) is bounded. On
the other hand, in a way similar to the proof of Theorem 1, one has

T
’/0 [B2(t, ur(t), ua(t)) — Fz(f/ﬂlrﬂzﬂdt’ < izl [lg + E2slfuizlp

for all (u1,uy) € W and some positive constants ¢33, &3, which implies that

@ (U, tpg) > 5||u1k||q ;Huzkll%

1 /T T
+ﬁ/0 F1(f//\ﬁ1k//\ﬁ2k)dt—/0 Fy(t, — i (t), —1ik () )dt+
T

T
+/o (B> (t, uqpe(t), ua (t)) — Ea(t, ﬁlk/azk)}dt'i'/o Fy(t, iy, tipr)dt >
Lo g~ T, p . . s
> §\|u1k||q — C13 |kl + EH”Zka — Coalltigg|lp — [a1 (|| 1] e0) +

T T 1 T
vaa(lael)] [ b0t + [ Bty i+ [t Ay, A

for all k. It follows from (vi) and the boundedness of (ilyy, fipx) that (i, ok ) is
bounded. Hence ¢ has a bounded minimizing sequence (11, ). Now Theorem
2 follows from Theorem 1.1 in [1] and Corollary 6.

Proof of Theorem 3. From (vii) and Sobolev’s inequality it follows like in the
proof of Theorem 1 that

o) > linlf+ 3l [ (0 (0, (a6 a0+ [

T o T o
+ /O Eo(t, iy, in)dt + /O Byt 11 (b), un (1)) — Bo(t, i1y, )] dt >

> 1
=2

Dcﬁ—l

i |8 — [l |5 — Eaalliia g — Eaalim |7+

ar+1

1 _ ] o
HuZHp Catl|ta||y> " — Easlluiz|lp — Cnltia|P "2+

+/0 Bt @y, i dt+/ dt—\|u1||oo/ Iy (¢ ]dt—||u2||oo/ I (£)|dt >
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a+1

||u1\|q—011||u1|| — Cral|t ][4+

ay+1

1 ol
_pH”ZHp — enlia|[p" — Caalltiaflp —c—

! ! T
— max (&1, &) (|1 7% + ]2 + /0 Ba(t, iy, ity)dt =

1
2q

a+1

— |l | — el || — Grallina|lg+

ar+1

1 . s
_pH”ZHp — eolua[y" — alltiallp — o+

1
|ﬂ1]‘1'0¢1 + ’g2|}7’zxz

! / T
—|—(|ﬂ1 741 4 |izp |P “2) [ /0 E(t, 111, 1ip)dt — max(&ra, 522)]
for all (11, u) € W and some positive constants ¢11, €14, €21, &24. Now follows like
in the proof of Theorem 1 that ¢ is coercive by (ix), which completes the proof.
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