The unicity of best approximation in a space of compact operators

Joanna Kowynia*

Abstract

Chebyshev subspaces of $\mathcal{K}(c_0, c_0)$ are studied. A k-dimensional non-interpolating Chebyshev subspace is constructed. The unicity of best approximation in non-Chebyshev subspaces is considered.

1 Introduction

Let \mathbb{K} be the field of real or complex numbers and let $(X, \| \cdot \|)$ be a normed space over \mathbb{K} . Let $\text{ext}S_{X^*}$ denote the set of all extreme points of S_{X^*} , where S_{X^*} is the unit sphere in X^* .

For every $x \in X$ we put

$$E(x) = \{ f \in \text{ext} S_{X^*} : f(x) = ||x|| \}.$$
 (1)

By the Hahn - Banach and the Krein - Milman Theorems, $E(x) \neq \emptyset$. Let for $Y \subset X$,

$$P_Y(x) = \{ y \in Y : ||x - y|| = \text{dist}(x, Y) \}.$$

A linear subspace $Y \subset X$ is called **a Chebyshev subspace** if for every $x \in X$ the set $P_Y(x)$ contains one and only one element.

^{*}Research supported by local grant No. 10.420.03

Received by the editors July 2009.

Communicated by F. Bastin.

Key words and phrases: strongly unique best approximation, interpolating subspace, Chebyshev subspace.

Theorem 1 (see [3]) Assume X is a normed space, $Y \subset X$ is a linear subspace, and let $x \in X \setminus Y$. Then $y_0 \in P_Y(x)$ if and only if for every $y \in Y$ there exists $f \in E(x - y_0)$ with $\Re f(y) \leq 0$.

Definition (see e. g. [8]) An element $y_0 \in Y$ is called a strongly unique best approximation for $x \in X$ if there exists r > 0 such that for every $y \in Y$,

$$||x - y|| \ge ||x - y_0|| + r||y - y_0||.$$

The biggest constant r satisfying the above inequality is called **a strong unicity constant**. There exist two main applications of a strong unicity constant: the error estimate of the Remez algorithm (see e. g. [13]), the Lipschitz continuity of the best approximation mapping at x_0 (assuming that there exists a strongly unique best approximation to x_0) (see e. g. [5, 9, 11]).

Theorem 2 (see [17]) Let $x \in X \setminus Y$ and let Y be a linear subspace of X. Then $y_0 \in Y$ is a strongly unique best approximation for x with a constant r > 0 if and only if for every $y \in Y$ there exists $f \in E(x - y_0)$ with $\Re f(y) \le -r||y||$.

Recall that a k - dimensional subspace \mathcal{V} of a normed space X is called **an interpolating subspace** if for any linearly independent $f_1, f_2, ..., f_k \in \text{ext}S_{X^*}$ and for every $v \in \mathcal{V}$ the following holds:

if
$$f_i(v) = 0$$
, $i = 1, 2, ..., k$ then $v = 0$.

Every interpolating subspace is a finite dimensional Chebyshev subspace. If $\mathcal{V} \subset X$ is an interpolating subspace then every $x \in X$ has a strongly unique best approximation in \mathcal{V} (see [2]).

In this paper we consider $X = \mathcal{K}(c_0, c_0)$ (the space of all compact operators from c_0 to c_0 equipped with the operator norm). Here c_0 denotes the space of all real sequences convergent to zero. For any $x = (x_k) \in c_0$ we put

$$||x||_{\infty} = \sup_{k} |x_k|.$$

In [8, Theorem 3.1] it has been proved that if $\mathcal{V} \subset \mathcal{K}(c_0, c_0)$ is a finite-dimensional Chebyshev subspace then every $A \in \mathcal{K}(c_0, c_0)$ has a strongly unique best approximation in \mathcal{V} .

However, in [8] no example of a non-interpolating Chebyshev subspace has been proposed. If it were true that any finite-dimensional Chebyshev subspace of $\mathcal{K}(c_0, c_0)$ is an interpolating subspace we would have obtained the proof of Theorem 3.1, [8] immediately (see [2] for more details).

The aim of this paper is to show that for every $k < \infty$ there exists a k-dimensional non-interpolating Chebyshev subspace of $\mathcal{K}(c_0, c_0)$.

This result is quite different from the result obtained in [7]. In the space $\mathcal{L}(l_1^n, c_0)$ any finite-dimensional Chebyshev subspace is an interpolating subspace.

Additionally, we discuss the strong unicity of best approximation in some (not necessarily Chebyshev) subspaces of $\mathcal{K}(c_0, c_0)$.

2 k-dimensional Chebyshev subspaces of $\mathcal{K}(c_0, c_0)$

Let $A \in \mathcal{K}(c_0, c_0)$ be represented by a matrix $[a_{ij}]_{i,j \in \mathbb{N}}$. Note that

$$(a_{ij})_{i=1}^{\infty} \in c_0$$
 for every $j \in \mathbb{N}$.

Since each row of a matrix $[a_{ij}]_{i,j\in\mathbb{N}}$ corresponds to a linear functional on c_0 ,

$$(a_{ij})_{i=1}^{\infty} \in l^1$$
 for every $i \in \mathbb{N}$.

Moreover, by the Schur Theorem (see [6])

$$\lim_{i\to\infty}(\sum_{j=1}^{\infty}\mid a_{ij}\mid)=0.$$

Recall (see[4]) that $\operatorname{ext} S_{\mathcal{K}^*(c_0,c_0)}$ consists of functionals of the form $e_i \otimes x$, where $x \in \operatorname{ext} S_{l^{\infty}}$ and

$$(e_i \otimes x)(A) = \sum_{j=1}^{\infty} x_j a_{ij}.$$
 (2)

It is easy to see that

$$||A|| = \sup_{i \ge 1} \sum_{j=1}^{\infty} |a_{ij}|.$$

Remark 1 Let X be a Banach space and let V be a finite-dimensional subspace with $V_1, V_2, ..., V_k$ as a basis.

V is an interpolating subspace if and only if for any linearly independent $f_1, f_2, ..., f_k \in \text{extS}_{X^*}$ the determinant of $[f_i(V_i)]_{i,j=1,2,...,k}$ is not equal to zero.

Proof. We apply the definition of a k - dimensional interpolating subspace and the theory of linear equations. This completes the proof.

In the sequel, we denote by $\lim\{V_1, V_2, ..., V_k\}$ the k-dimensional subspace of $\mathcal{K}(c_0, c_0)$ with $V_1, V_2, ..., V_k$ as a basis.

Example 1 Let $V = [v_{ij}]_{i,j \in \mathbb{N}}$, where $v_{i1} = \frac{1}{2^i}$, $v_{ij} = 0$, $i, j \in \mathbb{N}$, $j \ge 2$. It is obvious that $V = \lim\{V\}$ is a one-dimensional interpolating subspace of $\mathcal{K}(c_0, c_0)$.

Theorem 3 Let $V = \lim\{V_1, V_2, ..., V_n\}$. Let $V_m = [(v_m)_{ij}]_{i,j \in \mathbb{N}}$, m = 1, 2, ..., n. If V is a Chebyshev subspace then

$$\begin{vmatrix} f_{1}(V_{1}) & \dots & f_{1}(V_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ f_{n}(V_{1}) & \dots & f_{n}(V_{n}) \end{vmatrix} \neq 0$$
(3)

for any $f_1,...,f_n \in \text{ext}S_{\mathcal{K}^*(c_0,c_0)}$ such that $f_m = e_{i_m} \otimes x^{i_m}$, m = 1,2,...,n, where $i_m \neq i_k$ for $m \neq k$.

Proof. Assume (3) does not hold. Therefore there exist $f_1,...,f_n \in \text{ext}S_{\mathcal{K}^*(c_0,c_0)}$, $f_m = e_{i_m} \otimes x^{i_m}$, m = 1,2,...,n, where $i_m \neq i_k$ for $m \neq k$ such that $\det D = 0$, where

$$D = \begin{bmatrix} f_1(V_1) & \dots & f_1(V_n) \\ \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ f_n(V_1) & \dots & f_n(V_n) \end{bmatrix}.$$

Since $\det D = \det D^T$, there exists $y = (y_1, y_2, ..., y_n) \neq 0$ such that $D^T y = 0$. Consequently,

$$\sum_{m=1}^{n} y_m f_m |_{\mathcal{V}} = 0.$$
(4)

Since $y \neq 0$, replacing f_m by $-f_m$ if necessary, we may assume $y_m \geq 0$ for m = 1, 2, ..., n and

$$\sum_{m=1}^{n} y_m = 1.$$

Set $C = \{ l \in \{1, 2, ..., n\} : y_l > 0 \}.$

Fix $(d_j)_{j\in\mathbb{N}}$ with the following properties:

$$d_j > 0$$
, $j \in \mathbb{N}$ and $\sum_{j=1}^{\infty} d_j = 1$.

Define $A = [a_{i_v j}]_{i_v, j \in \mathbb{N}} \in \mathcal{K}(c_0, c_0)$ by

$$a_{i_p j} = 0$$
 for $p \notin \mathcal{C}$, $j \in \mathbb{N}$, $a_{i_p j} = d_j \cdot \operatorname{sgn} x^{i_p}(j)$ for $p \in \mathcal{C}$, $j \in \mathbb{N}$.

Note that ||A|| = 1 and

$$E(A) = \{ f_p : p \in \mathcal{C} \}.$$

By (4) and Theorem 1, $0 \in \mathcal{P}_{\mathcal{V}}(A)$.

Since $\det D = 0$, there exists $x = (x_1, x_2, ..., x_n) \neq 0$ such that Dx = 0. Put

$$V = \sum_{m=1}^{n} x_m V_m.$$

Note that $V \neq 0$ and $f_m(V) = 0$, m = 1, 2, ..., n.

By Theorem 2, 0 is not a strongly unique best approximation for A in V. By [8,Theorem 3.1], V is not a Chebyshev subspace and the proof is complete.

Theorem 4 Let $V = lin\{V\}$, $V \in \mathcal{K}(c_0, c_0)$, $V \neq 0$. V = 0 is a Chebyshev subspace if and only if V is an interpolating subspace.

Proof. The classical work here is [12]. In l^1 , the one-dimensional subspace $lin\{v\}$ is Chebyshev iff for every $x \in extS_{l^{\infty}}$ the following holds

$$\sum_{j=1}^{\infty} x(j)v(j) \neq 0.$$

Note that for any $x \in c_0$ we obtain $V(x) = [f_1(x), f_2(x), ...]$, where the functionals f_i correspond to elements of l^1 .

It is obvious that if for any j, $\lim\{f_j\}$ is not a Chebyshev subspace of l^1 , then $\lim\{V\}$ is not a Chebyshev subspace of $\mathcal{K}(c_0,c_0)$.

This proves the theorem.

Note that by a result of Malbrock (see [10] , Theorem 3.3) each one-dimensional subspace $\mathcal{V}=\lim\{V\}\subset\mathcal{L}(c_0,c_0)$ is a Chebyshev subspace iff there exists $\delta>0$ such that

$$|\sum_{j=1}^{\infty} x(j)v_{ij}| \geq \delta,$$

where $|x(j)| = 1, j \in \mathbb{N}$.

Corollary Let $V \subset \mathcal{K}(c_0, c_0)$ be a one-dimensional Chebyshev subspace. Every operator $A \in \mathcal{K}(c_0, c_0)$ has a strongly unique best approximation in V.

Proof. Obvious. For more details we refer the reader to [2].

It is clear that (3) is satisfied for any n-dimensional interpolating subspace. However, (3) is not sufficient for an n-dimensional $(n \ge 2)$ subspace to be Chebyshev.

Example 2 Let $V = lin\{V_1, V_2\}$, where

$$V_1 = \left[egin{array}{cccc} 1 & 0 & . & . & . \ rac{1}{2} & 0 & . & . & . \ rac{1}{4} & 0 & . & . & . \ . & . & . & . & . \end{array}
ight], V_2 = \left[egin{array}{cccc} 1 & 0 & . & . & . \ rac{1}{3} & 0 & . & . & . \ rac{1}{9} & 0 & . & . & . \ . & . & . & . & . \end{array}
ight].$$

Note that V satisfies (3). We claim that V is a non-Chebyshev subspace. Indeed, define $A = [a_{ij}]_{i,j \in \mathbb{N}}$ by

$$a_{12} = 100$$
, $a_{ij} = 0$ for each $(i, j) \neq (1, 2)$, $i, j \in \mathbb{N}$.

It follows that

$$A - (\alpha_1 V_1 + \alpha_2 V_2) = \begin{bmatrix} -\alpha_1 - \alpha_2 & 100 & 0 & . & . \\ -\frac{1}{2}\alpha_1 - \frac{1}{3}\alpha_2 & 0 & . & . & . \\ -\frac{1}{4}\alpha_1 - \frac{1}{9}\alpha_2 & 0 & . & . & . \\ . & . & . & . & . & . \end{bmatrix}, \quad \alpha_1, \alpha_2 \in \mathbb{R}.$$

812 J. Kowynia

Hence

$$||A|| = ||A - (600V_1 - 600V_2)|| = 100 = \inf_{\alpha_1, \alpha_2 \in \mathbb{R}} ||A - (\alpha_1V_1 + \alpha_2V_2)||.$$

Theorem 5 Let $V_1, V_2, ..., V_n$ be given by

where $v_{ij} \neq 0$ for each $i \in \mathbb{N}$, $j \in \{1, 2, ..., n\}$ and

$$\lim_{i\to\infty} v_{ij} = 0 \quad \textit{for each} \quad j \in \{1, 2, ..., n\}.$$

The following statements are equivalent:

(i) For every choice of distinct $j_1,...,j_k$ from $\{1,2,...,n\}$, $\mathcal{V}(j_1,...,j_k):=\lim\{V_{j_1},...,V_{j_k}\}$ is a Chebyshev subspace of $\mathcal{K}(c_0,c_0)$,

(ii)
$$\forall \ 1 \leq k \leq n, \qquad \forall \ 1 \leq j_1 < j_2 < \dots < j_k \leq n, \\ \forall \ 1 \leq i_1 < i_2 < \dots < i_k, \\ \forall \ x_{ml} \in \mathbb{R} : |\ x_{ml} \ | = 1, \ m, \ l = 1, 2, \dots, k \\ det[x_{ml}v_{i_mj_l}]_{m=1,2,\dots,k, \ l=1,2,\dots,k} \neq 0.$$

Proof. First, we assume that (*ii*) holds.

If k = 1 then $V(j_1)$ is an interpolating subspace for every $j_1 \in \{1, 2, ..., n\}$. Let 1 < k < n and assume that for any $j_1, ..., j_k \in \{1, 2, ..., n\}, j_p \neq j_q, p \neq q$, $V_k := V(j_1, ..., j_k)$ is a Chebyshev subspace.

Suppose that there exist $1 \le j_1 < j_2 < ... < j_k < j_{k+1} \le n$ such that

$$V_{k+1} := V(j_1, ..., j_k, j_{k+1})$$

is a non-Chebyshev subspace. Without loss of generality we can assume that for any $k+1 \in \{1,2,...,n\}$, $j_m=m$, m=1,2,...,k+1. This means precisely that $V_{j_m}=[(V_{j_m})_{ij}]_{i,j\in\mathbb{N}}$, where

$$(V_{j_m})_{ij} = \left\{ egin{array}{ll} v_{ij_m}, & j=m \\ 0, & j
eq m \end{array} \right.$$

for $i \in \mathbb{N}$, $m \in \{1, 2, ..., k, k+1\}$.

Since \mathcal{V}_{k+1} is a non-Chebyshev subspace, there exists $A = [a_{ij}]_{i,j \in \mathbb{N}} \in \mathcal{K}(c_0, c_0)$ such that $\sharp \mathcal{P}_{\mathcal{V}_{k+1}}(A) > 1$. We can assume that $0, W \in \mathcal{P}_{\mathcal{V}_{k+1}}(A)$, where $W \neq 0$.

Let $\mathcal{U} = \{i : ||e_i \circ A|| = ||A||\}$. Since $A \in \mathcal{K}(c_0, c_0)$, $\sharp \mathcal{U} < \infty$. For every $i \in \mathcal{U}$ we put

$$E_i = \{ x \in \text{ext} S_{l^{\infty}} : (e_i \otimes x)(A) = ||A|| \}.$$

Since 0, $W \in \mathcal{P}_{\mathcal{V}_{k+1}}(A)$, we conclude that for all $i \in \mathcal{U}$ and $x \in E_i$

$$(e_i \otimes x)(W) \ge 0. \tag{5}$$

Let

$$\mathcal{U}_1 = \{i \in \mathcal{U} : \exists x \in E_i : (e_i \otimes x)(W) = 0\}.$$

Since $0 \in \mathcal{P}_{\mathcal{V}_{k+1}}(A)$, $\mathcal{U}_1 \neq \emptyset$.

We will prove that for any $i \in \mathcal{U}_1$ and $x, y \in E_i$ such that

$$(e_i \otimes x)(W) = (e_i \otimes y)(W) = 0,$$

 $x(l) = y(l), \quad l = 1, 2, ..., k + 1.$ (6)

On the contrary, suppose that (6) does not hold. Let $x, y \in E_i$ be such that

$$(e_i \otimes x)(W) = 0, \qquad (e_i \otimes y)(W) = 0,$$

and

$$x(l) \neq y(l)$$
 for some $l \in \{1, 2, ..., k+1\}$.

Without loss of generality we can assume

$$x(j) = y(j)$$
 for $j = 1, 2, ..., p, p < k + 1$

and

$$x(j) = -y(j)$$
 for $j = p + 1, p + 2, ..., k + 1$.

Hence

$$\sum_{j=1}^{p} x(j)w_{ij} = 0, \qquad \sum_{j=p+1}^{k+1} x(j)w_{ij} = 0.$$
 (7)

As

$$x(j) = -y(j)$$
 for $j = p + 1, p + 2, ..., k + 1$

we obtain

$$a_{ij} = 0$$
 for $j = p + 1, p + 2, ..., k + 1$.

By (5),

$$\sum_{j=p+1}^{k} x(j)w_{ij} - x(k+1)w_{i,k+1} \ge 0$$

$$\sum_{j=p+1}^{k} -x(j)w_{ij} + x(k+1)w_{i,k+1} \ge 0.$$

Therefore

$$\sum_{j=p+1}^{k} x(j)w_{ij} = x(k+1)w_{i,k+1}.$$

By (7), $x(k+1)w_{i,k+1} = 0$. Consequently, $w_{i,k+1} = 0$. Hence $W \in \mathcal{V}_k$. Since $0 \in \mathcal{V}_k$ and \mathcal{V}_k is a Chebyshev subspace, (6) is proved. We will show that there exists $\alpha_0 > 0$ such that for every $\alpha \in (0, \alpha_0]$,

$$E(A - \alpha W) = \{e_i \otimes x : i \in \mathcal{U}_1, (e_i \otimes x)(W) = 0, (e_i \otimes x)(A) = ||A||\}.$$
 (8)

We first prove that

$$\sup\{f(A) : f = e_i \otimes x, i \in \mathcal{U} : f(W) < 0\} \le$$

$$||A|| - 2\min\{|a_{ij}| : i \in \mathcal{U}, j \in \{1, 2, ..., n\}, a_{ij} \ne 0\},$$
(9)

where $A = [a_{ij}]_{i,j \in \mathbb{N}}$.

Let $i \in \mathcal{U}$, $f = e_i \otimes x$, f(W) < 0. Hence there exists $j_0 \in \{1, 2, ..., n\}$ satisfying

$$x(j_0) \neq \operatorname{sgn}(a_{ij_0})$$
 for $a_{ij_0} \neq 0$.

Now, we will show

$$f(A) = \sum_{j=1}^{\infty} x(j)a_{ij} \le ||A|| - 2 ||a_{ij_0}|| \le ||A|| - 2\min\{|a_{ij}|: i \in \mathcal{U}, j = 1, 2, ..., n, |a_{ij}| \ne 0\},\$$

and (9) is proved.

We conclude from (9) that there exist $\alpha_0 > 0$, b > 0 such that for every $\alpha \in (0, \alpha_0]$,

$$f(A - \alpha W) < b < ||A||,$$

where $f \in \text{ext}S_{\mathcal{K}^*(c_0,c_0)}$, f(W) < 0. Assume α_0 is so small that

$$\sup_{i\in\mathbb{N}\setminus\mathcal{U}}\|e_i\circ(A-\alpha_0W)\|<\|A\|.$$

Consequently, if $f \in E(A - \alpha_0 W)$ then $f = e_i \otimes x$, where $i \in \mathcal{U}_1$ and f(W) = 0. Since

$$||A - \alpha_0 W|| = ||A|| = \text{dist}(A, \mathcal{V}_{k+1}),$$

(8) is proved.

Since $\alpha_0 W \in \mathcal{P}_{\mathcal{V}_{k+1}}(A)$, we conclude (see [16]) that

$$\exists 1 \leq q \leq k+2, \qquad \exists \lambda_1, ..., \lambda_q > 0, \qquad \sum_{m=1}^q \lambda_m = 1$$

such that

$$\sum_{m=1}^{q} \lambda_m(e_{i_m} \otimes x^{i_m})|_{\mathcal{V}_{k+1}} = 0, \tag{10}$$

where $(e_{i_m} \otimes x^{i_m})(A - \alpha_0 W) = ||A - \alpha_0 W||$.

Let q be the smallest number having property (10). By (6), $i_j \neq i_l$ for $j \neq l, j, l \in \{1, 2, ..., q\}$. If q = k + 2 then (see [18]) $\alpha_0 W$ is the strongly unique best approximation for A in \mathcal{V}_{k+1} , a contradiction.

Suppose that $1 \le q \le k + 1$. This contradicts (ii).

Let us assume that V_k is a Chebyshev subspace of $\mathcal{K}(c_0, c_0)$ for every $1 \le k \le n$. Suppose that (ii) is false.

Consequently, there exist

$$1 \le k \le n,$$
 $1 \le j_1 < j_2 < ... < j_k \le n,$ $1 \le i_1 < i_2 < ... < i_k,$ $x_{ml} \in \mathbb{R} : |x_{ml}| = 1, m, l = 1, 2, ..., k$

satisfying

$$det[x_{ml}v_{i_mj_l}]_{m=1,2,...,k,\ l=1,2,...,k}=0.$$

It follows that there exist

$$\lambda_1,...,\lambda_k\in\mathbb{R}, \qquad \sum_{m=1}^k\mid \lambda_m\mid>0$$

such that

$$\sum_{m=1}^{k} \lambda_m (e_{i_m} \otimes x^{i_m})|_{\mathcal{V}_k} = 0, \tag{11}$$

where $x^{i_m} = (x^{i_m}(1), x^{i_m}(2),), x^{i_m}(l) = x_{ml}$.

Without loss of generality we can assume

$$\lambda_m > 0$$
, $m = 1, 2, ..., k$, $\sum_{m=1}^k \lambda_m = 1$.

We define an operator $B = [b_{ij}]_{i,j \in \mathbb{N}}$ by

$$b_{ij} = \frac{\operatorname{sgn} x^{i}(j)}{2^{j}}, \quad i \in \{i_{1}, i_{2}, ..., i_{k}\},$$

 $b_{ij} = 0, \quad i \notin \{i_{1}, i_{2}, ..., i_{k}\}, \quad j \in \mathbb{N}.$

Hence $(e_{i_m} \otimes x^{i_m})(B) = ||B||$, m = 1, 2, ..., k. By (11), $0 \in \mathcal{P}_{\mathcal{V}_k}(B)$ and

$$\dim \operatorname{span}\{e_{i_m} \otimes x^{i_m} | \mathcal{V}_k\} < k$$
,

where $dim V_k = k$. Therefore there exists $V \in V_k \setminus \{0\}$ such that

$$(e_{i_m} \otimes x^{i_m})(V) = 0, \quad m = 1, 2, ..., k.$$

Note that (see the proof of the formula (9))

$$\sup\{f(B) : f = e_{i_m} \otimes x, \ m = 1, 2, ..., k, \ f(V) < 0\} < \|B\| - \min\{|b_{ij}| : i = i_1, i_2, ..., i_k, \ j = 1, 2, ..., n\}.$$

Hence there exist $\alpha_0 > 0$, b > 0 such that

$$f(B - \alpha_0 V) \le b < ||B||, \quad f \in \text{ext}S_{\mathcal{K}^*(c_0, c_0)}, \quad f(V) \le 0.$$

Consequently, $||B - \alpha_0 V|| = ||B||$, a contradiction. The proof is complete.

Example 3 We will construct an n - dimensional Chebyshev subspace $\mathcal{V} \subset \mathcal{K}(c_0, c_0)$. Let $0 < t_1 < t_2 < ... < t_{n-1}$ be such that

$$\lim_{i \to \infty} \frac{1}{2^i} t_m^i = 0, \quad m = 1, 2, ..., n - 1.$$

Define $V_m = [(v_m)_{ij}]_{i,j \in \mathbb{N}}$ by

$$(v_m)_{im}=rac{1}{2^i}t^i_m,\quad (v_m)_{ij}=0,\quad i\in\mathbb{N},\quad j
eq m.$$

Hence $V_m \in \mathcal{K}(c_0, c_0)$ for every m = 1, 2, ..., n - 1.

Let $V_{n-1} := \lim\{V_1, V_2, ..., V_{n-1}\}$ satisfy the formula (*ii*) for every $1 \le k \le n-1$. We will construct an operator $V_n \in \mathcal{K}(c_0, c_0)$ such that

 $V_n := \lim\{V_1, V_2, ..., V_{n-1}, V_n\}$ satisfies the formula (*ii*) for every $1 \le k \le n$. Our goal is to find $x \in \mathbb{R}$ such that

$$\lim_{i \to \infty} \frac{1}{2^i} x^i = 0 \tag{12}$$

and

$$W(x, y^1, ..., y^k, i_1, ..., i_k, m_1, ...m_{k-1}) :=$$

$$\begin{vmatrix} y_{1}^{1} \frac{1}{2^{i_{1}}} t_{m_{1}}^{i_{1}} & \dots & y_{1}^{k-1} \frac{1}{2^{i_{1}}} t_{m_{k-1}}^{i_{1}} & y_{1}^{k} \frac{1}{2^{i_{1}}} x^{i_{1}} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ y_{k}^{1} \frac{1}{2^{i_{k}}} t_{m_{1}}^{i_{k}} & \dots & y_{k}^{k-1} \frac{1}{2^{i_{k}}} t_{m_{k-1}}^{i_{k}} & y_{k}^{k} \frac{1}{2^{i_{k}}} x^{i_{k}} \end{vmatrix} \neq 0,$$

$$(13)$$

where $k \in \{1,2,...,n\}$, $i_1,i_2,...,i_k \in \mathbb{N}$, $y^1,...,y^k \in \{-1,1\}^k$, $m_1,m_2,...,m_{k-1} \in \{1,2,...,n-1\}$. Since $W(x,y^1,...,y^k,i_1,...,i_k,m_1,...m_{k-1})$ is not totally equal to zero, we conclude that the set of roots of $W(x,y^1,...,y^k,i_1,...,i_k,m_1,...m_{k-1})$ is finite for arbitrary but fixed $y^1,...,y^k$, $i_1,...,i_k$, $m_1,...m_{k-1}$.

Therefore for all $y^1, ..., y^k$, $i_1, ..., i_k$, $m_1, ..., m_{k-1}$ as above, the set of roots of $W(x, y^1, ..., y^k, i_1, ..., i_k, m_1, ..., m_{k-1})$ is countable. Since \mathbb{R} is not countable we see that there exists $x \in \mathbb{R}$ satisfying (12) and (13).

Remark 2 An n-dimensional Chebyshev subspace proposed in Example 3 is a non-interpolating subspace of $K(c_0, c_0)$.

Proof. Let us assume that $V_n = \lim\{V_1, V_2, ..., V_n\}$ is an n-dimensional Chebyshev subspace, where V_m , m = 1, 2, ..., n are defined in Example 3.

Put $V = \frac{1}{t_1}V_1 - \frac{1}{t_2}V_2$. Note that $V \neq 0$ and $v_{ij} = 0$, $j \geq 3$, $i \in \mathbb{N}$, where $V = [v_{ij}]_{i,j \in \mathbb{N}}$.

It is obvious that there exist $x^1, x^2, ..., x^n \in \text{ext}S_{l^\infty}$ such that $x^m(1) = x^m(2) = 1$, m = 1, 2, ..., n and $f_m := e_1 \otimes x^m$, m = 1, 2, ..., n are linearly independent. Note that

$$f_m(V) = 0, \quad m = 1, 2, ..., n.$$

This completes the proof.

Lemma Let X be a normed space and let \mathcal{V} be a finite-dimensional subspace of X. Let $T \in X$. If $0 \in \mathcal{P}_{\mathcal{V}}(T)$ and 0 is not a strongly unique best approximation for T in \mathcal{V} then

$$\exists V \in \mathcal{V}, \quad V \neq 0$$
 : $\forall f \in E(T) \quad f(V) \geq 0$.

Proof. Let us assume that

$$\forall V \in \mathcal{V}, \quad V \neq 0, \quad \exists f \in E(T) : f(V) < 0.$$

Set for any $V \in \mathcal{V}$, ||V|| = 1,

$$-r_V = \inf\{f(V) : f \in E(T)\},\$$

$$-r = \sup\{-r_V : V \in \mathcal{V}, ||V|| = 1\}.$$

We show that r > 0.

If not, there exists $(V_n) \subset S_{\mathcal{V}}$ such that $-r_{V_n} \geq -\frac{1}{n}$. Since \mathcal{V} is a finite-dimensional subspace, we may assume that $V_n \to V \in S_{\mathcal{V}}$. Take $f \in E(T)$, f(V) < 0. Hence for $n \geq n_0$ there exists d > 0 such that

$$-\frac{1}{n} \le -r_{V_n} \le f(V_n) < f(V) + d < 0,$$

a contradiction. Therefore

$$\forall V \in \mathcal{V}, \quad V \neq 0, \quad \exists f \in E(T) \quad : \quad f\left(\frac{V}{\|V\|}\right) < -r.$$

By the above,

$$\forall V \in \mathcal{V}, \quad V \neq 0, \quad \exists f \in E(T) : \quad f(V) \leq -r \|V\|.$$

Hence 0 is a strongly unique best approximation for T, a contradiction. This proves the lemma.

Theorem 6 Let $V \subset \mathcal{K}(c_0, c_0)$ be an n - dimensional subspace such that

$$\forall V \in \mathcal{V}, \quad \forall i \in \mathbb{N} \quad \sharp \{j \in \mathbb{N} : v_{ij} \neq 0\} < \infty,$$

where $V = [v_{ij}]_{i,j \in \mathbb{N}}$ and let $T \in \mathcal{K}(c_0, c_0)$.

T has a unique best approximation in V if and only if T has a strongly unique best approximation in V.

Proof. Let us assume that 0 is the unique best approximation for T in V. Suppose that 0 is not a strongly unique best approximation. Hence (see Lemma)

$$\exists V \in \mathcal{V}, \quad V \neq 0 \quad : \quad \forall f \in E(T) \quad f(V) \geq 0,$$

where $f = e_i \otimes x^i$ for some $x^i \in \text{ext}S_{l^{\infty}}$.

Put

$$\mathcal{N} = \{ i \in \mathbb{N} : \exists x^i \in \text{ext} S_{I^{\infty}} : e_i \otimes x^i \in E(T) \}.$$

Since *T* is compact, we conclude that $\sharp \mathcal{N} < \infty$. For every $i \in \mathcal{N}$ we set

$$E_i = \{ x^i \in \text{ext} S_{l^{\infty}} : (e_i \otimes x^i)(T) = ||T|| \}.$$

Let $i \in \mathbb{N} \setminus \mathcal{N}$. Hence there exists b > 0 such that

$$(e_i \otimes x)(T) < b < ||T||, \quad x \in \text{ext}S_{l^{\infty}}.$$

Consequently, there exists $\alpha_0 > 0$ such that for every $\alpha \in (0, \alpha_0]$,

$$\mid (e_i \otimes x)(T - \alpha V) \mid < b.$$

Therefore

$$\sup_{i\in\mathbb{N}\setminus\mathcal{N}}\mid (e_i\otimes x)(T-\alpha V)\mid\leq b<\|T\|.$$

Let $i \in \mathcal{N}$ and let $x^i \notin E_i$. From this we conclude that there exists $j_0 \in \mathbb{N}$ such that

$$\operatorname{sgn} x^{i}(j_{0}) \neq \operatorname{sgn}(t_{ij_{0}}), \quad t_{ij_{0}} \neq 0,$$

where $T = [t_{ij}]_{i,j \in \mathbb{N}}$.

Set $J = \{j \in \mathbb{N} : v_{ij} \neq 0\}.$

If $\operatorname{sgn} x^i(j) = \operatorname{sgn}(t_{ij})$ for any $j \in J$, then there exists $y^i \in E_i$ such that

$$(e_i \otimes y^i)(T) = ||T||, \qquad (e_i \otimes y^i)(V) = (e_i \otimes x^i)(V).$$

By the above,

$$(e_i \otimes x^i)(T - \alpha V) \leq ||T|| - (e_i \otimes y^i)(\alpha V) \leq ||T||.$$

Let $\operatorname{sgn} x^i(j_0) \neq \operatorname{sgn}(t_{ij_0})$ for some $j_0 \in J$, where $t_{ij_0} \neq 0$. Since J is finite, there exists $\alpha_0 > 0$ such that

$$\|\alpha_0 V\| < \min\{|t_{ij}|: j \in J, t_{ij} \neq 0\}.$$

Let $\alpha \in (0, \alpha_0]$. Hence

$$(e_{i} \otimes x^{i})(T - \alpha V) = \sum_{j \in J} x^{i}(j)(t_{ij} - \alpha v_{ij}) + \sum_{j \notin J} x^{i}(j)(t_{ij} - \alpha v_{ij}) \leq$$

$$\sum_{j \in J} |t_{ij}| - 2 |t_{ij_{0}}| + \sum_{j \notin J} |t_{ij}| + \alpha ||V|| =$$

$$||T|| + \alpha ||V|| - 2 |t_{ij_{0}}| < ||T||.$$

Finally,

$$||T - \alpha V|| = f(T - \alpha V),$$

where $f = e_i \otimes x^i$, $i \in \mathcal{N}$, $x^i \in E_i$. Hence

$$||T - \alpha V|| = f(T - \alpha V) \le ||T||.$$

The proof is complete.

Acknowledgments The author wishes to thank Professor Lewicki for his remarks and suggestions concerning this article.

References

- [1] A. ALEKSIEWICZ, Analiza funkcjonalna, PWN, Warszawa, 1969
- [2] D. A. AULT, F. R. DEUTSCH, P. D. MORRIS, J. E. OLSON, Interpolating Subspaces in Approximation Theory, *J. Approx. Theory* **3** (1970), 164-182
- [3] B. BROSOWSKI, R. WEGMANN, Charakterisierung bester Approximationen in normirierten Vektorraumen, *J. Approx. Theory* **3** (1970), 369-397
- [4] H. S. COLLINS, W. RUESS, Weak compactness in spaces of compact operators and vector-valued functions, *Pacific J. Math.* **106**, (1983), 45-71
- [5] F. DEUTSCH, W. LI, Strong uniqueness, Lipschitz continuity and continuous selections for metric projections in L_1 , *J. Approx. Theory* **66** (1991), No. 2, 198-224
- [6] R. E. EDWARDS, Functional Analysis Theory and Applications, Dover Publications, Inc. New York, 1994
- [7] J. KOWYNIA, Best approximation in finite dimensional Chebyshev subspaces of $L(l_1^n, c)$, East J. Approx. **12** (2006), No. 4, 407-416
- [8] G. LEWICKI, Best Approximation in Finite Dimensional subspaces of L(W, V), *J. Approx. Theory* **81**, No. 2, (1995), 151-165
- [9] W. LI, Strong uniqueness and Lipschitz continuity, of metric projections: a generalization of classical Haar theory *J. Approx. Theory* **56**, No. 2, (1989), 164-184
- [10] J. MALBROCK, Chebyshev subspaces in the space of bounded linear operators from c_0 to c_0 , *J. Approx. Theory* **9**, No. 2, (1973), 149-164
- [11] G. NÜRNBERGER, Strong unicity constants in Chebyshev approximation *Numerical methods of approx. theory* **8**, (Oberwolfach 1986), 144-154
- [12] R. R. PHELPS, Chebyshev subspaces of finite dimension in L^1 , *Proc. Amer. Math. Soc.* **17**, No. 3, (1966), 646-652

J. Kowynia

[13] E. Remez, General computation Methods of Chebyshev approximation, Atomic Energy, Voroneck, 1957

- [14] W. RUDIN, Functional Analysis, McGraw-Hill Book Company, New York, 1973
- [15] W. M. RUESS, C. STEGALL, Extreme points in duals of operator spaces, *Math. Ann.* **261** (1982), 535-546
- [16] I. SINGER, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, Heidelberg, New York, 1970
- [17] A. WÓJCIK, Characterization of strong unicity by tangent cones, *Approximation and Function Spaces, Proceedings of the International Conference, Gdańsk*, (1979) (Z. Ciesielski, Ed), 854-866, PWN, Warszawa/North-Holland, Amsterdam, 1981
- [18] A. WÓJCIK, J. SUDOLSKI, Some remarks on strong uniqueness of best approximation, *J. Approx. Theory and its Appl.* **6**, No. 2, (1990), 44-78

Department of Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30 - 059 Cracow, Poland e-mail: kowynia@wms.mat.agh.edu.pl