On a Beck-Putnam-Rehder Theorem

Mohammed Hichem Mortad*

Abstract

We give a simple and easy proof of a result obtained by W. Rehder who generalized, in his turn, a famous result by Beck and Putnam. We then give a generalization to unbounded operators.

1 Introduction

W. A. Beck and C. R. Putnam proved in [1] the following result:

Theorem 1. Let A be a bounded operator on a Hilbert space. Let N be a normal operator such that $A N=N^{*} A$. If, whenever z is not real, either z or its conjugate \bar{z} does not lie in the spectrum of N, then $A N=N A$.
W. Rehder [5] gave a generalization of this theorem and proved:

Theorem 2. Assume that A is a bounded operator on a Hilbert space. Let N and M be two normal operators such that $A N=M A$. Assume further that

1. $\sigma\left(M^{*}\right) \subset \sigma(N)$, and
2. whenever z is not real, either z or its conjugate \bar{z} does not lie in the spectrum of N.

Then $A N=M^{*} A$.

[^0]Rehder's proof was interesting, however, not a straightforward one. In this short paper, we reduce Theorem 2 to Theorem 1 by means of an operator's matrix trick with also a slight weakening of Rehder Theorem's hypotheses. The last result in this paper is a generalization of Theorem 3 (see below) to unbounded operators.

Finally we assume the reader is familiar with notions and results on linear operators on a Hilbert space (see e.g. [2, 3, 4]).

2 Main Results

The first main result is the following theorem:
Theorem 3. Assume that A is a bounded operator on a Hilbert space. Let N and M be two normal operators such that $A N=M A$. Assume further that, whenever z is not real, either z or its conjugate \bar{z} does not lie in $\sigma\left(M^{*}\right) \cup \sigma(N)$. Then $A N=M^{*} A$.

Proof. Let M and N be two bounded normal operators and let A be a bounded operator all defined on a Hilbert space \mathcal{H}. Define on $\mathcal{H} \oplus \mathcal{H}$ the following operators

$$
\widetilde{N}=\left(\begin{array}{cc}
M^{*} & 0 \\
0 & N
\end{array}\right) \text { and } \widetilde{A}=\left(\begin{array}{cc}
0 & A \\
0 & 0
\end{array}\right) .
$$

Since M and N are normal, so is \widetilde{N} (as one can easily check). Besides one has

$$
\widetilde{A} \widetilde{N}=\left(\begin{array}{cc}
0 & A \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
M^{*} & 0 \\
0 & N
\end{array}\right)=\left(\begin{array}{cc}
0 & A N \\
0 & 0
\end{array}\right)
$$

and

$$
\widetilde{N}^{*} \widetilde{A}=\left(\begin{array}{cc}
M & 0 \\
0 & N^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & A \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & M A \\
0 & 0
\end{array}\right) .
$$

Since $A N=M A, \widetilde{A} \widetilde{N}=\widetilde{N}^{*} \widetilde{A}$. We also know that $\sigma(\widetilde{N})=\sigma\left(M^{*}\right) \cup \sigma(N)$. But by hypothesis whenever z is not real either $z \notin \sigma\left(M^{*}\right) \cup \sigma(N)$ or $\bar{z} \notin \sigma\left(M^{*}\right) \cup \sigma(N)$ and hence whenever z is not real either $z \notin \sigma(\widetilde{N})$ or $\bar{z} \notin \sigma(\widetilde{N})$. Thus Theorem 1 applies and gives

$$
\widetilde{A} \widetilde{N}=\widetilde{N} \widetilde{A} \text { or } A N=M^{*} A .
$$

Theorem 2 has become now a corollary to the previous theorem. We have
Corollary 1. Assume that A is a bounded operator on a Hilbert space. Let N and M be two normal operators such that $A N=M A$. Assume further that

1. $\sigma\left(M^{*}\right) \subset \sigma(N)$, and
2. whenever z is not real, either z or its conjugate \bar{z} does not lie in the spectrum of N.

Then $A N=M^{*} A$.
Proof. The proof follows from the observation

$$
\sigma\left(M^{*}\right) \subset \sigma(N) \Longrightarrow \sigma(\widetilde{N})=\sigma\left(M^{*}\right) \cup \sigma(N)=\sigma(N)
$$

Theorem 3 has an analog for unbounded operators which is the following theorem:

Theorem 4. Assume that A is a bounded operator on a Hilbert space. Let N and M be two unbounded normal operators (with domains $D(N)$ and $D(M)$ respectively) such that $A N \subset M A$. Assume further that, whenever z is not real, either z or its conjugate \bar{z} does not lie in $\sigma\left(M^{*}\right) \cup \sigma(N)$. Then $A N \subset M^{*} A$.

Proof. Let m and n be both in \mathbb{N}. Consider the two closed balls

$$
B_{n}=\{z \in \mathbb{C}:|z| \leq n\} \text { and } B_{m}=\{z \in \mathbb{C}:|z| \leq m\}
$$

Let $P_{B_{n}}(N)$ and $P_{B_{m}}(M)$ be the spectral projections associated with N and M respectively. Then $N_{n}:=N P_{B_{n}}(N)$ and $M_{m}:=M P_{B_{m}}(M)$ are bounded normal operators.

As $A N \subset M A$, then $A N$ and $M A$ coincide on $D(A N)=D(N)$. Since $\operatorname{ran} P_{B_{n}}(N) \subset D(N)$, one can say that $A N P_{B_{n}}(N)=M A P_{B_{n}}(N)$.

Now known properties about the spectral measures and theorem yield

$$
\left[P_{B_{m}}(M) A P_{B_{n}}(N)\right] N_{n}=M_{m}\left[P_{B_{m}}(M) A P_{B_{n}}(N)\right]
$$

Let z be a non-real number. Since $z \notin \sigma\left(M^{*}\right) \cup \sigma(N)$ or $\bar{z} \notin \sigma\left(M^{*}\right) \cup \sigma(N)$, $z \notin \sigma\left(M_{m}^{*}\right) \cup \sigma\left(N_{n}\right)$ or $\bar{z} \notin \sigma\left(M_{m}^{*}\right) \cup \sigma\left(N_{n}\right)$ for all n and all m. Hence Theorem 3 applies and yields

$$
\left[P_{B_{m}}(M) A P_{B_{n}}(N)\right] N P_{B_{n}}(N)=P_{B_{m}}(M) M^{*}\left[P_{B_{m}}(M) A P_{B_{n}}(N)\right]
$$

Thus

$$
P_{B_{m}}(M) A N P_{B_{n}}(N) f=P_{B_{m}}(M) M^{*} A P_{B_{n}}(N) f, \forall f \in D(N)=D\left(N^{*}\right)
$$

(and hence $A f \in D(M)=D\left(M^{*}\right)$). Sending both n and m to ∞ we get $P_{B_{n}}(N) \rightarrow$ I and $P_{B_{m}}(M) \rightarrow I$ respectively (and both in strong operator topology).

Therefore

$$
A N f=M^{*} A f, \forall f \in D(N)\left(\subset D\left(M^{*} A\right)=D(M A)\right)
$$

Thus $A N \subset M^{*} A$.

Acknowledgment

The author thanks the referee for his/her comments.

References

[1] W. A. Beck, C. R. Putnam, A Note on Normal Operators and Their Adjoints, J. London Math. Soc., 31 (1956), 213-216.
[2] J. B. Conway, A Course in Functional Analysis, Springer, 1990 (2nd edition).
[3] I. Gohberg, S. Goldberg, M. A. Kaashoek, Basic Classes of Linear Operators, Birkhäuser Verlag, Basel, 2003.
[4] W. Rudin, Functional Analysis, McGraw-Hill, 1991 (2nd edition).
[5] W. Rehder, On the Adjoints of Normal Operators, Arch. Math. (Basel), 37/2 (1981) 169-172.

Département de Mathématiques,
Université d'Oran (Es-senia),
B.P. 1524, El Menouar,

Oran 31000, Algeria.
email:mhmortad@gmail.com, mortad@univ-oran.dz.

[^0]: *Supported in part by "Laboratoire de Mathématiques, Géométrie, Analyse, Contrôle \& Applications".

 Received by the editors February 2009.
 Communicated by A. Valette.
 2000 Mathematics Subject Classification : Primary 47A05, 47A62. Secondary 47A10.
 Key words and phrases : Beck-Putnam theorem. Normal Operators. Spectrum. Adjoints. Operator's Matrices.

