
On a Beck-Putnam-Rehder Theorem

Mohammed Hichem Mortad
∗

Abstract

We give a simple and easy proof of a result obtained by W. Rehder who
generalized, in his turn, a famous result by Beck and Putnam. We then give
a generalization to unbounded operators.

1 Introduction

W. A. Beck and C. R. Putnam proved in [1] the following result:

Theorem 1. Let A be a bounded operator on a Hilbert space. Let N be a normal operator
such that AN = N∗A. If, whenever z is not real, either z or its conjugate z does not lie
in the spectrum of N, then AN = NA.

W. Rehder [5] gave a generalization of this theorem and proved:

Theorem 2. Assume that A is a bounded operator on a Hilbert space. Let N and M be
two normal operators such that AN = MA. Assume further that

1. σ(M∗) ⊂ σ(N), and

2. whenever z is not real, either z or its conjugate z does not lie in the spectrum of N.

Then AN = M∗A.
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plications”.

Received by the editors February 2009.
Communicated by A. Valette.
2000 Mathematics Subject Classification : Primary 47A05, 47A62. Secondary 47A10.
Key words and phrases : Beck-Putnam theorem. Normal Operators. Spectrum. Adjoints. Op-

erator’s Matrices.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 737–740



738 M. H. Mortad

Rehder’s proof was interesting, however, not a straightforward one. In this
short paper, we reduce Theorem 2 to Theorem 1 by means of an operator’s matrix
trick with also a slight weakening of Rehder Theorem’s hypotheses. The last
result in this paper is a generalization of Theorem 3 (see below) to unbounded
operators.

Finally we assume the reader is familiar with notions and results on linear
operators on a Hilbert space (see e.g. [2, 3, 4]).

2 Main Results

The first main result is the following theorem:

Theorem 3. Assume that A is a bounded operator on a Hilbert space. Let N and M be
two normal operators such that AN = MA. Assume further that, whenever z is not real,
either z or its conjugate z does not lie in σ(M∗) ∪ σ(N). Then AN = M∗A.

Proof. Let M and N be two bounded normal operators and let A be a bounded
operator all defined on a Hilbert space H. Define on H⊕H the following opera-
tors

Ñ =

(
M∗ 0
0 N

)
and Ã =

(
0 A
0 0

)
.

Since M and N are normal, so is Ñ (as one can easily check). Besides one has

ÃÑ =

(
0 A
0 0

)(
M∗ 0
0 N

)
=

(
0 AN
0 0

)

and

Ñ∗ Ã =

(
M 0
0 N∗

)(
0 A
0 0

)
=

(
0 MA
0 0

)
.

Since AN = MA, ÃÑ = Ñ∗ Ã. We also know that σ(Ñ) = σ(M∗) ∪ σ(N). But by
hypothesis whenever z is not real either z 6∈ σ(M∗) ∪ σ(N) or z 6∈ σ(M∗) ∪ σ(N)

and hence whenever z is not real either z 6∈ σ(Ñ) or z 6∈ σ(Ñ). Thus Theorem 1
applies and gives

ÃÑ = ÑÃ or AN = M∗A.

Theorem 2 has become now a corollary to the previous theorem. We have

Corollary 1. Assume that A is a bounded operator on a Hilbert space. Let N and M be
two normal operators such that AN = MA. Assume further that

1. σ(M∗) ⊂ σ(N), and

2. whenever z is not real, either z or its conjugate z does not lie in the spectrum of N.

Then AN = M∗A.

Proof. The proof follows from the observation

σ(M∗) ⊂ σ(N) =⇒ σ(Ñ) = σ(M∗) ∪ σ(N) = σ(N).
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Theorem 3 has an analog for unbounded operators which is the following
theorem:

Theorem 4. Assume that A is a bounded operator on a Hilbert space. Let N and M
be two unbounded normal operators (with domains D(N) and D(M) respectively) such
that AN ⊂ MA. Assume further that, whenever z is not real, either z or its conjugate z
does not lie in σ(M∗) ∪ σ(N). Then AN ⊂ M∗A.

Proof. Let m and n be both in N. Consider the two closed balls

Bn = {z ∈ C : |z| ≤ n} and Bm = {z ∈ C : |z| ≤ m}.

Let PBn(N) and PBm(M) be the spectral projections associated with N and M re-
spectively. Then Nn := NPBn(N) and Mm := MPBm(M) are bounded normal
operators.

As AN ⊂ MA, then AN and MA coincide on D(AN) = D(N). Since
ranPBn(N) ⊂ D(N), one can say that ANPBn(N) = MAPBn(N).

Now known properties about the spectral measures and theorem yield

[PBm(M)APBn (N)]Nn = Mm[PBm(M)APBn (N)].

Let z be a non-real number. Since z 6∈ σ(M∗) ∪ σ(N) or z 6∈ σ(M∗) ∪ σ(N),
z 6∈ σ(M∗

m) ∪ σ(Nn) or z 6∈ σ(M∗
m) ∪ σ(Nn) for all n and all m. Hence Theorem 3

applies and yields

[PBm(M)APBn (N)]NPBn (N) = PBm(M)M∗[PBm(M)APBn (N)].

Thus

PBm(M)ANPBn (N) f = PBm(M)M∗APBn(N) f , ∀ f ∈ D(N) = D(N∗)

(and hence A f ∈ D(M) = D(M∗)). Sending both n and m to ∞ we get PBn(N) →
I and PBm(M) → I respectively (and both in strong operator topology).

Therefore

AN f = M∗A f , ∀ f ∈ D(N) (⊂ D(M∗A) = D(MA)).

Thus AN ⊂ M∗A.
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Département de Mathématiques,
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