On a Beck-Putnam-Rehder Theorem

Mohammed Hichem Mortad*

Abstract

We give a simple and easy proof of a result obtained by W. Rehder who generalized, in his turn, a famous result by Beck and Putnam. We then give a generalization to unbounded operators.

1 Introduction

W. A. Beck and C. R. Putnam proved in [1] the following result:

Theorem 1. Let A be a bounded operator on a Hilbert space. Let N be a normal operator such that $AN = N^*A$. If, whenever z is not real, either z or its conjugate \overline{z} does not lie in the spectrum of N, then AN = NA.

W. Rehder [5] gave a generalization of this theorem and proved:

Theorem 2. Assume that A is a bounded operator on a Hilbert space. Let N and M be two normal operators such that AN = MA. Assume further that

1. $\sigma(M^*) \subset \sigma(N)$, and

2. whenever z is not real, either z or its conjugate \overline{z} does not lie in the spectrum of N.

Then $AN = M^*A$.

Received by the editors February 2009.

Communicated by A. Valette.

2000 Mathematics Subject Classification : Primary 47A05, 47A62. Secondary 47A10.

Key words and phrases : Beck-Putnam theorem. Normal Operators. Spectrum. Adjoints. Operator's Matrices.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 737-740

^{*}Supported in part by "Laboratoire de Mathématiques, Géométrie, Analyse, Contrôle & Applications".

Rehder's proof was interesting, however, not a straightforward one. In this short paper, we reduce Theorem 2 to Theorem 1 by means of an operator's matrix trick with also a slight weakening of Rehder Theorem's hypotheses. The last result in this paper is a generalization of Theorem 3 (see below) to unbounded operators.

Finally we assume the reader is familiar with notions and results on linear operators on a Hilbert space (see e.g. [2, 3, 4]).

2 Main Results

The first main result is the following theorem:

Theorem 3. Assume that A is a bounded operator on a Hilbert space. Let N and M be two normal operators such that AN = MA. Assume further that, whenever z is not real, either z or its conjugate \overline{z} does not lie in $\sigma(M^*) \cup \sigma(N)$. Then $AN = M^*A$.

Proof. Let *M* and *N* be two bounded normal operators and let *A* be a bounded operator all defined on a Hilbert space \mathcal{H} . Define on $\mathcal{H} \oplus \mathcal{H}$ the following operators

$$\widetilde{N} = \left(\begin{array}{cc} M^* & 0 \\ 0 & N \end{array} \right) \text{ and } \widetilde{A} = \left(\begin{array}{cc} 0 & A \\ 0 & 0 \end{array} \right).$$

Since *M* and *N* are normal, so is N (as one can easily check). Besides one has

$$\widetilde{A}\widetilde{N} = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} M^* & 0 \\ 0 & N \end{pmatrix} = \begin{pmatrix} 0 & AN \\ 0 & 0 \end{pmatrix}$$

and

$$\widetilde{N}^*\widetilde{A} = \left(\begin{array}{cc} M & 0 \\ 0 & N^* \end{array}\right) \left(\begin{array}{cc} 0 & A \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & MA \\ 0 & 0 \end{array}\right).$$

Since AN = MA, $\widetilde{A}\widetilde{N} = \widetilde{N}^*\widetilde{A}$. We also know that $\sigma(\widetilde{N}) = \sigma(M^*) \cup \sigma(N)$. But by hypothesis whenever z is not real either $z \notin \sigma(M^*) \cup \sigma(N)$ or $\overline{z} \notin \sigma(M^*) \cup \sigma(N)$ and hence whenever z is not real either $z \notin \sigma(\widetilde{N})$ or $\overline{z} \notin \sigma(\widetilde{N})$. Thus Theorem 1 applies and gives

$$\widetilde{A}\widetilde{N} = \widetilde{N}\widetilde{A}$$
 or $AN = M^*A$.

Theorem 2 has become now a corollary to the previous theorem. We have

Corollary 1. Assume that A is a bounded operator on a Hilbert space. Let N and M be two normal operators such that AN = MA. Assume further that

- 1. $\sigma(M^*) \subset \sigma(N)$, and
- 2. whenever z is not real, either z or its conjugate \overline{z} does not lie in the spectrum of N.

Then $AN = M^*A$.

Proof. The proof follows from the observation

$$\sigma(M^*) \subset \sigma(N) \Longrightarrow \sigma(\tilde{N}) = \sigma(M^*) \cup \sigma(N) = \sigma(N).$$

Theorem 3 has an analog for unbounded operators which is the following theorem:

Theorem 4. Assume that A is a bounded operator on a Hilbert space. Let N and M be two unbounded normal operators (with domains D(N) and D(M) respectively) such that $AN \subset MA$. Assume further that, whenever z is not real, either z or its conjugate \overline{z} does not lie in $\sigma(M^*) \cup \sigma(N)$. Then $AN \subset M^*A$.

Proof. Let *m* and *n* be both in \mathbb{N} . Consider the two closed balls

 $B_n = \{ z \in \mathbb{C} : |z| \le n \}$ and $B_m = \{ z \in \mathbb{C} : |z| \le m \}.$

Let $P_{B_n}(N)$ and $P_{B_m}(M)$ be the spectral projections associated with N and M respectively. Then $N_n := NP_{B_n}(N)$ and $M_m := MP_{B_m}(M)$ are bounded normal operators.

As $AN \subset MA$, then AN and MA coincide on D(AN) = D(N). Since $\operatorname{ran} P_{B_n}(N) \subset D(N)$, one can say that $ANP_{B_n}(N) = MAP_{B_n}(N)$.

Now known properties about the spectral measures and theorem yield

$$[P_{B_m}(M)AP_{B_n}(N)]N_n = M_m[P_{B_m}(M)AP_{B_n}(N)].$$

Let *z* be a non-real number. Since $z \notin \sigma(M^*) \cup \sigma(N)$ or $\overline{z} \notin \sigma(M^*) \cup \sigma(N)$, $z \notin \sigma(M_m^*) \cup \sigma(N_n)$ or $\overline{z} \notin \sigma(M_m^*) \cup \sigma(N_n)$ for all *n* and all *m*. Hence Theorem 3 applies and yields

$$[P_{B_m}(M)AP_{B_n}(N)]NP_{B_n}(N) = P_{B_m}(M)M^*[P_{B_m}(M)AP_{B_n}(N)].$$

Thus

$$P_{B_m}(M)ANP_{B_n}(N)f = P_{B_m}(M)M^*AP_{B_n}(N)f, \ \forall f \in D(N) = D(N^*)$$

(and hence $Af \in D(M) = D(M^*)$). Sending both *n* and *m* to ∞ we get $P_{B_n}(N) \rightarrow I$ and $P_{B_m}(M) \rightarrow I$ respectively (and both in strong operator topology).

Therefore

$$ANf = M^*Af, \forall f \in D(N) (\subset D(M^*A) = D(MA)).$$

Thus $AN \subset M^*A$.

Acknowledgment

The author thanks the referee for his/her comments.

References

- [1] W. A. Beck, C. R. Putnam, A Note on Normal Operators and Their Adjoints, *J. London Math. Soc.*, **31** (1956), 213-216.
- [2] J. B. Conway, A Course in Functional Analysis, Springer, 1990 (2nd edition).

- [3] I. Gohberg, S. Goldberg, M. A. Kaashoek, *Basic Classes of Linear Operators*, Birkhäuser Verlag, Basel, 2003.
- [4] W. Rudin, Functional Analysis, McGraw-Hill, 1991 (2nd edition).
- [5] W. Rehder, On the Adjoints of Normal Operators, *Arch. Math. (Basel)*, **37/2** (1981) 169-172.

Département de Mathématiques, Université d'Oran (Es-senia), B.P. 1524, El Menouar, Oran 31000, Algeria. email:mhmortad@gmail.com, mortad@univ-oran.dz.