Radon inversion problem for holomorphic functions on strictly pseudoconvex domains

Piotr Kot

Abstract

Let p > 0 and let $\Omega \subset \mathbb{C}^d$ be a bounded, strictly pseudoconvex domain with boundary of class C^2 . We consider a family of directions in the form of a continuous function $\gamma : \partial \Omega \times [0,1] \ni (z,t) \rightarrow \gamma(z,t) \in \overline{\Omega}$ satisfying some natural properties. Then for a given lower semicontinuous, strictly positive function H on $\partial \Omega$ we construct a holomorphic function $f \in O(\Omega)$ such that $H(z) = \int_0^1 |f(\gamma(z,t))|^p dt$ for η -almost all $z \in \partial \Omega$ where η is a given probability measure on $\partial \Omega$.

1 Introduction

In this paper we intend to investigate the so-called Radon inversion problem, i.e. the problem of reconstructing a function on the basis of known integrals of this function over some subset of submanifolds of its domain.

For a given domain $\Omega \subset \mathbb{C}^n$ and p > 0 we consider a family of holomorphic functions on Ω , integrable along the family of real directions in the form of a continuous function $\gamma : \partial \Omega \times [0,1) \ni (z,t) \rightarrow \gamma(z,t) \in \Omega$. In particular we can define the Radon operator by

$$\mathfrak{R}: \mathbb{O}(\Omega) \times \partial \Omega \ni (f,\xi) \to \mathfrak{R}(f,\xi) = \int_0^1 |f \circ \gamma(\xi,t)|^p dt$$

and formulate the Radon inversion problem in the following way:

Received by the editors February 2009 - In revised form in May 2009.

Communicated by F. Brackx.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 623-640

²⁰⁰⁰ Mathematics Subject Classification : 32A05, 32A35.

Key words and phrases : Radon inversion problem, Dirichlet problem, exceptional sets.

Let us assume that *H* is a lower semicontinuous function on $\partial\Omega$. Is it possible to construct a function $f \in O(\Omega)$ such that $\Re(f, \xi) = H(\xi)$ for $\xi \in \partial\Omega$?

Let us observe that the above problem is similar to the construction of the inner function (see [1, 13, 14, 15]). It is known that a non-constant holomorphic function $f \in O(\Omega)$ with non-tangential limit in all boundary points equal to 1, does not exist. In fact, all the inner functions constructed in the papers [1, 13, 14, 15] have non-tangential limits well defined only in almost all boundary points (in terms of a proper surface measure). In the Radon inversion problem the role of the non-tangential limit is played by the value $\Re(f, \xi)$ which is well defined in all boundary points ξ .

We will solve the probability version of the Radon inversion problem. In particular (see Theorem 4.1) for a given probability measure η on $\partial\Omega$, we construct a holomorphic function f such that $\Re(f,\xi) = H(\xi)$ for η -almost all $\xi \in \partial\Omega$. However, the full version still remains an open problem.

As an application we give a description of so called exceptional sets (Theorem 4.8)

$$E^p_{\Omega}(f) := \{\xi \in \partial\Omega : \Re(f,\xi) = \infty\}.$$
(1.1)

For more information about exceptional sets we refer the reader to e.g. [2, 3, 4, 5, 6, 9, 10, 11].

We also solve the Dirichlet problem for plurisubharmonic and real analytic functions (Theorem 4.4).

1.1 Geometric notions.

In this paper we assume, in general, that $\Omega \subset \mathbb{C}^d$ is a bounded, strictly convex domain with boundary of class C^2 and a defining function ρ . Only the last section will be devoted to strictly pseudoconvex domains. We consider the natural scalar product $\langle \circ, \circ \rangle$. As usual, by $B(\xi; r)$ we denote the open ball with center ξ and radius r, i.e. $B(\xi; r) := \{z \in \mathbb{C}^d : ||\xi - z|| < r\}$. Note that there exists $\pi_d > 0$ such that $\mathcal{L}^{2d}(B(\xi, r)) = \pi_d r^{2d}$ for $\xi \in \mathbb{C}^d$ and r > 0, where \mathcal{L}^{2d} is the 2d-dimensional Lebesgue measure. Assume that $0 \in \Omega \subset B(0, R)$ for some R > 0.

A subset $A \subset \mathbb{C}^d$ is called α -separated if $||z_1 - z_2|| > \alpha$ for all distinct elements z_1 and z_2 of A. It is clear that for $\alpha > 0$ each α -separated subset of $\partial \Omega$ is finite.

If $g : \mathbb{C}^d \to \mathbb{C}$ is a function of class C^2 then we denote $g_{\xi} = \left(\frac{\partial g}{\partial z_1}(\xi), ..., \frac{\partial g}{\partial z_d}(\xi)\right)$ and

$$H_{g}(P,w) := \frac{1}{2} \sum_{j,k=1}^{d} \frac{\partial^{2}g}{\partial z_{j} \partial z_{k}} (P) w_{j} w_{k} + \frac{1}{2} \sum_{j,k=1}^{d} \frac{\partial^{2}g}{\partial \overline{z_{j}} \partial \overline{z_{k}}} (P) \overline{w}_{j} \overline{w}_{k} + \sum_{j,k=1}^{d} \frac{\partial^{2}g}{\partial z_{j} \partial \overline{z_{k}}} (P) w_{j} \overline{w}_{k}.$$

Definition 1.1. Let *X* be a compact subset of $\partial\Omega$. We say that a continuous function $\gamma : X \times [0,1] \ni (z,t) \rightarrow \gamma(z,t) \in \overline{\Omega}$ defines a set of real directions on Ω if γ has the following properties:

- 1. $\gamma(X \times [0,1)) \subset \Omega$.
- 2. $\gamma(X \times \{1\}) \subset \partial \Omega$.

- 3. $\frac{\partial \gamma}{\partial t}(\circ, \circ)$ is a continuous function on $X \times [0, 1]$.
- 4. There exist constants $c_1, c_2 > 0$ such that $c_1 ||z \xi|| \le ||\gamma(z, 1) \gamma(\xi, 1)|| \le c_2 ||z \xi||$ for $z, \xi \in X$.

5. $\gamma(\xi, \circ)$ is tangential to $\partial\Omega$ at $\gamma(\xi, 1)$ i.e. Re $\left\langle \frac{\partial\gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle > 0$ for $\xi \in X$.

2 Preliminary calculations

We need the following result.

Lemma 2.1. There exist constants $c_1, c_2 > 0$ such that for $z, \xi \in \partial \Omega$ one has:

$$c_1 \|z - \xi\|^2 \le \operatorname{Re}\left\langle \xi - z, \overline{\rho_{\xi}} \right\rangle \le c_2 \|z - \xi\|^2.$$
(2.1)

Proof. It suffices to use the same arguments as in the proof [12, Lemma 2.1].

In order to control the values of the functions constructed we need some information about α -separated sets.

Lemma 2.2. Suppose that $A = \{\xi_1, ..., \xi_s\}$ is a $2\alpha t$ -separated subset of $\partial \Omega$. For $z \in \partial \Omega$ let

$$A_k(z) := \left\{ \xi \in A : \alpha kt \le \|z - \xi\| \le \alpha (k+1)t \right\}.$$

Then the set $A_k(z)$ has at most $(k+2)^{2d}$ elements. The set A_0 has at most 1 element and $s \leq \max\left\{1, \left(\frac{2R}{\alpha t}\right)^{2d}\right\}$.

Proof. Putting $\rho(z,\xi) = ||z - \xi||$, it suffices to use the same arguments as in the proof [12, Lemma 2.2].

Lemma 2.3. If $A \subset \partial \Omega$ is αt -separated, then for each $\beta > \alpha$ there exists an integer $K = K(\alpha, \beta)$ such that A can be partitioned into K disjoint βt -separated sets.

Proof. see [12, Lemma 2.3]

3 Basic results for strictly convex domains

Let p > 0. Assume that Ω is a bounded strictly convex domain, X is a compact subset of $\partial \Omega$ and $\gamma : X \times [0,1] \to \overline{\Omega}$ defines a set of real directions on Ω .

In particular there exist constants $c_2 \ge c_1 > 0$ such that

$$c_1 \|z - w\| \le \|\gamma(z, 1) - \gamma(w, 1)\| \le c_2 \|z - w\|$$
(3.1)

for $z, w \in X$. Due to Lemma 2.1 there exist constants $c_3, c_4 > 0$ such that for $z, \xi \in \partial \Omega$

$$-c_{3} \left\| z - \xi \right\|^{2} \leq \operatorname{Re}\left\langle z - \xi, \overline{\rho_{\xi}} \right\rangle \leq -c_{4} \left\| z - \xi \right\|^{2}.$$
(3.2)

Lemma 3.1. Denoting

$$F_{m,\xi}(z) := \left(m \operatorname{Re}\left\langle \frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle \right)^{\frac{1}{p}} \exp\left(\frac{m}{p} \left\langle z - \gamma(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle \right)$$

where $q = \sup_{\xi \in X} \left\{ 1, \operatorname{Re} \left\langle \frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle \right\}$, if $0 < b_1 < 1 < b_2$ then there exist $\alpha, \beta_1, \beta_2, N_0, r_0 > 0$ such that for $m \ge N_0, z, \xi \in X$ one has the following properties:

1. if $||z - \xi|| \leq r_0$ then $b_1 e^{-m\beta_1 ||z - \xi||^2} - e^{-m\alpha} \leq \int_0^1 |F_{m,\xi} \circ \gamma(z,t)|^p dt \leq b_2 e^{-m\beta_2 ||z - \xi||^2} + e^{-m\alpha};$

2. *if*
$$(0 \le t \le 1 - r_0) \lor (||z - \xi|| \ge r_0)$$
 then $|F_{m,\xi} \circ \gamma(z,t)|^p \le e^{-m\alpha}$.

Proof. There exists a constant $1 > r_0 > 0$ such that

$$0 < \frac{1}{b_2} \operatorname{Re}\left\langle \frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle \le \operatorname{Re}\left\langle \frac{\partial \gamma}{\partial t}(z, t), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle \le \frac{1}{b_1} \operatorname{Re}\left\langle \frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle$$
(3.3)

for $t \in [1 - r_0, 1]$ and $z, \xi \in X$ so that $||z - \xi|| \le r_0$. Moreover there exists $\alpha > 0$ such that

$$\operatorname{Re}\left\langle \gamma(z,t) - \gamma(\xi,1), \overline{\rho_{\gamma(\xi,1)}} \right\rangle \leq -2\alpha$$

for $(z, \xi, t) \in \{(x, y, s) \in X \times X \times [0, 1] : ||x - y|| \ge r_0 \lor s \le 1 - r_0\}$. Let N_0 be such that

$$e^{-m\alpha} \ge mqe^{-2m\alpha}$$

for $m \ge N_0$. In particular $|F_{m,\xi} \circ \gamma(z,t)|^p \le mqe^{-2m\alpha} \le e^{-m\alpha}$ for $m \ge N_0$ and $(0 \le t \le 1 - r_0) \lor (||z - \xi|| \ge r_0)$.

Now assume that $||z - \xi|| < r_0$. Due to (3.1), (3.2) and (3.3) we may estimate for $\beta_1 := c_2^2 c_3$, $\beta_2 := c_1^2 c_4$ and $m \ge N_0$:

$$\begin{split} \int_{0}^{1} \left| F_{m,\xi} \circ \gamma(z,t) \right|^{p} dt &\geq \int_{1-r_{0}}^{1} \left| F_{m,\xi} \circ \gamma(z,t) \right|^{p} dt \\ &\geq b_{1} e^{m \left\langle \gamma(z,1) - \gamma(\xi,1), \overline{\rho_{\gamma(\xi,1)}} \right\rangle} - b_{1} e^{m \left\langle \gamma(z,1-r_{0}) - \gamma(\xi,1), \overline{\rho_{\gamma(\xi,1)}} \right\rangle} \\ &\geq b_{1} e^{-mc_{3} \| \gamma(z,1) - \gamma(\xi,1) \|^{2}} - e^{-m\alpha} \geq b_{1} e^{-m\beta_{1} \| z - \xi \|^{2}} - e^{-m\alpha}, \end{split}$$

and

$$\begin{aligned} \int_0^1 \left| F_{m,\xi} \circ \gamma(z,t) \right|^p dt &\leq \int_{1-r_0}^1 \left| F_{m,\xi} \circ \gamma(z,t) \right|^p dt + e^{-m\alpha} \\ &\leq b_2 e^{m \left\langle \gamma(z,1) - \gamma(\xi,1), \overline{\rho_{\gamma(\xi,1)}} \right\rangle} + e^{-m\alpha} \leq b_2 e^{-m\beta_2 ||z-\xi||^2} + e^{-m\alpha}. \end{aligned}$$

Lemma 3.2. Assume that Ω is a bounded domain, X is a compact subset of $\overline{\Omega}$ and $\gamma : X \times [0,1] \to \overline{\Omega}$ is a continuous function such that $\gamma(X \times [0,1)) \subset \Omega$. Let f be a continuous complex function on $\overline{\Omega}$ and $\varepsilon, \delta \in (0,1)$. If $\{g_m\}_{m \in \mathbb{N}}$ is a sequence of

continuous complex functions on $\overline{\Omega}$ such that $\lim_{m\to\infty} g_m(z) = 0$ for $z \in \Omega$, then there exists $m_0 \in \mathbb{N}$ such that

$$\int_{0}^{1} |(f+g_{m})\circ\gamma(z,t)|^{p} dt \geq -\varepsilon + \int_{0}^{1} |f\circ\gamma(z,t)|^{p} dt + \delta^{p} \int_{0}^{1} |g_{m}\circ\gamma(z,t)|^{p} dt$$
$$\int_{0}^{1} \underbrace{|(f+g_{m})\circ\gamma(z,t)|^{p}}_{L_{m}(z,t)} dt \leq \varepsilon + \int_{0}^{1} |f\circ\gamma(z,t)|^{p} dt + \delta^{-p} \int_{0}^{1} |g_{m}\circ\gamma(z,t)|^{p} dt$$

for $m > m_0, z \in X$.

Proof. Let $M := \sup_{z \in \overline{\Omega}} |f(z)|$ and $r \in (\frac{1}{2}, 1)$ be such that $\frac{(1-r)2M^p}{(1-\delta)^p} \leq \frac{\varepsilon}{4}$. We may consider a continuous function $\Psi : X \times \overline{\mathbb{D}} \ni (z, \lambda) \to \int_0^r |f \circ \gamma(z, t) + \lambda|^p dt$. There exists $\alpha \in (0, \sqrt[p]{\frac{\varepsilon}{4}})$ such that $|\Psi(z, 0) - \Psi(z, \lambda)| \leq \frac{\varepsilon}{4}$ for $z \in X$, and $|\lambda| \leq \alpha$. As $\lim_{m\to\infty} g_m(z) = 0$ for $z \in \Omega$, there exists m_0 such that $|g_m \circ \gamma(z, t)| \leq \alpha$ for $m > m_0, 0 \leq t \leq r$ and $z \in X$. In particular for $m > m_0$ and $z \in X$ we can estimate:

$$\int_0^r L_m(z,t)dt \geq -\frac{\varepsilon}{4} + \int_0^r |f \circ \gamma(z,t)|^p dt$$

$$\geq -\frac{\varepsilon}{2} + \int_0^r |f \circ \gamma(z,t)|^p dt + \delta^p \int_0^r |g_m \circ \gamma(z,t)|^p dt$$

and

$$\int_0^r L_m(z,t)dt \leq \frac{\varepsilon}{4} + \int_0^r |f \circ \gamma(z,t)|^p dt$$

$$\leq \frac{\varepsilon}{2} + \int_0^r |f \circ \gamma(z,t)|^p dt + \delta^{-p} \int_0^r |g_m \circ \gamma(z,t)|^p dt.$$

If $t \in A_{1,m,z} := \{t \in [r,1] : |(f+g_m) \circ \gamma(z,t)| \le \delta |g_m \circ \gamma(z,t)|\}$ then $|g_m \circ \gamma(z,t)| \le \frac{|f \circ \gamma(z,t)|}{1-\delta} \le \frac{M}{1-\delta}$. In particular we may estimate

$$\int_{r}^{1} L_{m}(z,t)dt \geq \int_{[r,1]\setminus A_{1,m,z}} \delta^{p} |g_{m} \circ \gamma(z,t)|^{p} dt \geq \int_{r}^{1} |f \circ \gamma(z,t)|^{p} dt + \delta^{p} \int_{r}^{1} |g_{m} \circ \gamma(z,t)|^{p} dt - \int_{r}^{1} M^{p} dt - \int_{r}^{1} \frac{M^{p} \delta^{p}}{(1-\delta)^{p}} dt$$
$$\geq -\frac{\varepsilon}{2} + \int_{r}^{1} |f \circ \gamma(z,t)|^{p} dt + \delta^{p} \int_{r}^{1} |g_{m} \circ \gamma(z,t)|^{p} dt.$$

If $t \in A_{2,m,z} := \left\{ t \in [r,1] : |f \circ \gamma(z,t)| + |g_m \circ \gamma(z,t)| \ge \delta^{-1} |g_m \circ \gamma(z,t)| \right\}$ then $|g_m \circ \gamma(z,t)| \le \frac{|f \circ \gamma(z,t)|}{\delta^{-1}-1} \le \frac{\delta M}{1-\delta}$. In particular

$$\begin{split} \int_{r}^{1} L_{m}(z,t)dt &\leq \int_{[r,1]\setminus A_{2,m,z}} \delta^{-p} \left| g_{m} \circ \gamma(z,t) \right|^{p} dt + \int_{r}^{1} \frac{M^{p}}{(1-\delta)^{p}} dt \\ &\leq \int_{r}^{1} \left| f \circ \gamma(z,t) \right|^{p} dt + \delta^{-p} \int_{r}^{1} \left| g_{m} \circ \gamma(z,t) \right|^{p} dt + \\ &- \int_{r}^{1} M^{p} dt - \int_{r}^{1} \frac{2M^{p}}{(1-\delta)^{p}} dt \\ &\leq -\frac{\varepsilon}{2} + \int_{r}^{1} \left| f \circ \gamma(z,t) \right|^{p} dt + \delta^{-p} \int_{r}^{1} \left| g_{m} \circ \gamma(z,t) \right|^{p} dt. \end{split}$$

Lemma 3.3. There exist constants C > c > 0 such that if T is a compact subset of $\overline{\Omega} \setminus X$, $\varepsilon \in (0, 1)$ and H is a continuous strictly positive function on X, then we can choose $N_1 > 0$ such that for $m \ge N_1$ and each $\frac{C}{\sqrt{m}}$ -separated subset A of X, the holomorphic function $g_{m,A} := \sum_{\xi \in A} (H(\xi))^{\frac{1}{p}} F_{m,\xi}$ satisfies

- 1. $|g_{m,A}(w)| \leq \varepsilon$ for $w \in T$;
- 2. $\int_{0}^{1} |g_{m,A}(\gamma(z,t))|^{p} dt < 2H(z)$ for all $z \in X$;
- 3. $\int_0^1 |g_{m,A}(\gamma(z,t))|^p dt > \frac{H(z)}{2} \text{ for each } z \in X \text{ such that } ||z \xi|| \leq \frac{c}{\sqrt{m}} \text{ for some } \xi \in A.$

Proof. Let us denote $a = \min \left\{1, \frac{1}{p}\right\}$. We may assume that $||H||_{\infty} = 1$. Let $0 < \delta < b_1 < 1 < b_2$ be such that

$$(1+\delta)^{a} (b_{2}+\delta)^{a} + 3\delta^{a} < 2^{a}$$
 (3.4)

$$(1-\delta)^{a} \left(b_{1} e^{-\frac{1}{16}} - \delta\right)^{a} - 3\delta^{a} > 2^{-a}.$$
(3.5)

Now we can choose α , β_1 , β_2 , N_0 , $r_0 > 0$ from Lemma 3.1. Let $c = \frac{1}{4\sqrt{\beta_1}}$. There exists C > 0 such that C > c and for $k \in \mathbb{N} \setminus \{0\}$ we have

$$b_2^a(k+2)^{2d}e^{-rac{aC^2\beta_2k^2}{4}} \le 2^{-k}.$$

Due to Lemma 2.2 we have $\#A \leq \left(\frac{4R\sqrt{m}}{C}\right)^{2d}$.

Let $t := \sup_{w \in T, \xi \in X} \frac{1}{p} \left\langle w - \gamma(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}} \right\rangle$. As t < 0, for $w \in T$, sufficiently large N_1 and $m \ge N_1$, we may estimate

$$|g_{m,A}(w)| \leq \sum_{\xi \in A} (mq)^{\frac{1}{p}} e^{mt} \leq \left(\frac{4R\sqrt{m}}{C}\right)^{2d} (mq)^{\frac{1}{p}} e^{mt} \leq \epsilon$$

and conclude that property (1) holds.

For $z \in X$ let us denote

$$A_k(z) := \left\{ \xi \in A : \frac{Ck}{2\sqrt{m}} \le \|z - \xi\| \le \frac{C(k+1)}{2\sqrt{m}} \right\}.$$

Let now s > 0 be so small that $\|\eta - \xi\| \leq s \implies (1 - \delta)H(\eta) \leq H(\xi) \leq (1 + \delta)H(\eta)$. We may assume that N_1 is large enough that $s \geq \frac{C}{2\sqrt{N_1}} + \frac{c}{\sqrt{N_1}}$ and $e^{-aN_1\alpha} \leq \delta$. Observe that we may estimate

$$b_2^a \sum_{k: C(k+1) \ge 2s\sqrt{m}} (k+2)^{2d} e^{-\frac{aC^2\beta_2k^2}{4}} \le \sum_{k \ge \left[\frac{2s\sqrt{m}}{C} - 1\right]} 2^{-k} \le 2^{-\frac{2s\sqrt{m}}{C} + 1}.$$

Now if $z \in X$ and $A_0(z) = \emptyset$, then, due to (3.4), Lemma 2.2 and Lemma 3.1, we may estimate, for N_1 large enough and $m \ge N_1$

$$\begin{split} \left(\int_{0}^{1} |g_{m,A}(\gamma(z,t))|^{p} dt \right)^{a} &\leq \sum_{k=1}^{\infty} \sum_{\xi \in A_{k}(z)} \left(H(\xi) \int_{0}^{1} |F_{m,\xi}(\gamma(z,t))|^{p} dt \right)^{a} \\ &\leq \sum_{k=1}^{\infty} \sum_{\xi \in A_{k}(z)} H(\xi)^{a} \left(b_{2}^{a} e^{-\frac{aC^{2}\beta_{2}k^{2}}{4}} + e^{-am\alpha} \right) \\ &\leq (1+\delta)^{a} H(z)^{a} \sum_{k=1}^{\left[\frac{2s\sqrt{m}}{C}\right]} b_{2}^{a} (k+2)^{2d} e^{-\frac{aC^{2}\beta_{2}k^{2}}{4}} + \\ &+ 2^{-\frac{2s\sqrt{m}}{C}+1} + \left(\frac{4R\sqrt{m}}{C} \right)^{2d} e^{-am\alpha} \\ &\leq \delta^{a} (1+\delta)^{a} H(z)^{a} + \delta^{a} H(z)^{a} \leq 3\delta^{a} H(z)^{a}. \end{split}$$

Due to Lemma 2.2, if $A_0(z) \neq \emptyset$ then $A_0(z) = \{\xi_0\}$ for some $\xi_0 \in \partial \Omega$ where $||z - \xi|| \leq \frac{C}{2\sqrt{m}} \leq s$. In particular

$$\left(\int_{0}^{1} |g_{m,A}(\gamma(z,t))|^{p} dt \right)^{a} \leq \left(H(\xi_{0}) \int_{0}^{1} |F_{m,\xi_{0}}(\gamma(z,t))|^{p} dt \right)^{a} + 3\delta^{a} H(z)^{a}$$

$$\leq H(\xi_{0})^{a} \left(b_{2} + e^{-m\alpha} \right)^{a} + 3\delta^{a} H(z)^{a}$$

$$\leq H(z)^{a} (1+\delta)^{a} \left(b_{2} + \delta \right)^{a} + 3\delta^{a} H(z)^{a} < 2^{a} H(z)^{a}$$

for $z \in X$, N_1 large enough and $m \ge N_1$, which gives property (2).

Now let $\xi_1 \in A$ be such that $||z - \xi_1|| \le \frac{c}{\sqrt{m}} \le s$. Due to Lemma 3.1 and (3.5) we may estimate, for N_1 large enough and $m \ge N_1$

$$\left(\int_0^1 |g_{m,A}(\gamma(z,t))|^p \, dt \right)^a \geq \left(H(\xi_0) \int_0^1 |F_{m,\xi_1}(\gamma(z,t))|^p \, dt \right)^a - 3\delta^a H(z)^a$$

$$\geq H(\xi_1)^a \left(b_1 e^{-\frac{1}{16}} - e^{-m\alpha} \right)^a - 3\delta^a H(z)^a$$

$$\geq H(z)^a (1-\delta)^a \left(b_1 e^{-\frac{1}{16}} - \delta \right)^a - 3\delta^a H(z)^a > \frac{H(z)^a}{2^a}$$

which gives property (3).

Now we are ready to prove the following result:

Theorem 3.4. There exists a natural number K such that, if $\varepsilon \in (0, 1)$, T is a compact subset of $\overline{\Omega} \setminus X$ and H is a continuous, strictly positive function on X, then there exist holomorphic entire functions $f_1, ..., f_K$ such that $||f_j||_T \leq \varepsilon$, and one has for $z \in X$ the following inequality

$$\frac{H(z)}{4} < \max_{j=1,\dots,K} \int_0^1 \left| f_j(\gamma(z,t)) \right|^p dt < H(z).$$

Proof. Let C > c > 0 be the constants from Lemma 3.3. Due to Lemma 2.3 there exists a natural number K such that each $\frac{c}{\sqrt{m}}$ -separated subset of X can be partitioned into K disjoint $\frac{C}{\sqrt{m}}$ -separated sets. Let A be a maximal $\frac{c}{\sqrt{m}}$ -separated subset of X. It can be partitioned into $A_1, ..., A_K$ disjoint $\frac{C}{\sqrt{m}}$ -separated sets. Now due to Lemma 3.3 there exists m and holomorphic, entire functions $f_j := g_{m,A_j}$ such that $||f_j||_T \le \varepsilon$ and

- 1. $\int_0^1 \left| f_j(\gamma(z,t)) \right|^p dt < H(z) \text{ for all } z \in X;$
- 2. $\int_{0}^{1} \left| f_{j}(\gamma(z,t)) \right|^{p} dt > \frac{H(z)}{4} \text{ for each } z \in X \text{ such that } \|z \xi\| \leq \frac{c}{\sqrt{m}} \text{ for some } \xi \in A_{j}.$

As *A* is a maximal $\frac{c}{\sqrt{m}}$ -separated subset of *X* there exists, for $z \in X$, $j_0 \in \{1, ..., K\}$ and $\xi_{j_0} \in A_{j_0}$ such that $||z - \xi_{j_0}|| \le \frac{c}{\sqrt{m}}$. In particular

$$\frac{H(z)}{4} < \int_0^1 \left| f_{j_0}(\gamma(z,t)) \right|^p dt \le \max_{j=1,\dots,K} \int_0^1 \left| f_j(\gamma(z,t)) \right|^p dt < H(z).$$

4 Consequences of Theorem 3.4 for strictly pseudoconvex domains

In this section we assume that Ω is a bounded, strictly pseudoconvex domain with boundary of class C^2 , X is a compact subset of $\partial\Omega$ and $\gamma : X \times [0,1] \to \overline{\Omega}$ defines a set of real directions on Ω .

As a first application of Theorem 3.4 we give the following result.

Theorem 4.1. It is possible to choose a neighbourhood W of $\overline{\Omega}$ and a natural number K such that, if $\varepsilon \in (0,1)$, T is a compact subset of $\overline{\Omega} \setminus X$ and H is a continuous, strictly positive function on X, then there exist holomorphic functions $f_1, ..., f_K$ on W such that $\|f_j\|_T \leq \varepsilon$, and one has for $z \in X$ the following inequality

$$\frac{H(z)}{4} < \max_{j=1,\dots,K} \int_0^1 \left| f_j(\gamma(z,t)) \right|^p dt < H(z).$$

Proof. By Fornaess' embedding theorem [7], there exists a neighbourhood W of $\overline{\Omega}$, a strictly convex, bounded domain $\widetilde{\Omega} \subset \mathbb{C}^N$ with boundary of class C^2 and a holomorphic mapping $\psi : U \to \mathbb{C}^N$, such that ψ maps W biholomorphically onto some complex submanifold $\psi(W)$ of \mathbb{C}^N , such that

- 1. $\psi(\Omega) \subset \widetilde{\Omega}$;
- 2. $\psi(\partial \Omega) \subset \partial \widetilde{\Omega};$
- 3. $\psi(W \setminus \overline{\Omega}) \subset \mathbb{C}^N \setminus \overline{\widetilde{\Omega}};$
- 4. $\psi(W)$ intersects $\partial \widetilde{\Omega}$ transversally.

Let $\widetilde{X} = \psi(X)$. Observe that

$$\widetilde{\gamma}: \widetilde{X} \times [0,1] \ni (z,t) \to \psi(\gamma(\psi^{-1}(z),t)) \in \overline{\widetilde{\Omega}}$$

defines a set of real directions on Ω . Let *K* be the natural number from Theorem 3.4 used for the domain Ω . Now due to Theorem 3.4 there exist entire holomorphic functions $\tilde{f}_1, ..., \tilde{f}_K$ on \mathbb{C}^N such that $\|\tilde{f}_j\|_{\psi(T)} \leq \varepsilon$, and we have for $z \in \tilde{X}$ the following inequality

$$\frac{H(\psi^{-1}(z))}{4} < \max_{j=1,\dots,K} \int_0^1 \left| \widetilde{f}_j(\widetilde{\gamma}(z,t)) \right|^p dt < H(\psi^{-1}(z)).$$

In particular the functions $f_j = \tilde{f}_j \circ \psi$ have the required properties.

¿From this moment on we assume that *K* and *W* are as in Theorem 4.1.

Lemma 4.2. Let $g_1, ..., g_K$ be continuous complex functions on $\overline{\Omega}$, T be a compact subset of $\overline{\Omega} \setminus X$, $\varepsilon > 0$ and u be a strictly positive, continuous function on X. Then there exist functions $f_1, ..., f_K$ holomorphic on W such that

1.
$$|f_j(z)| \leq \varepsilon$$
 for $z \in T$;

2.
$$u(z) - \varepsilon < \sum_{j=1}^{K} \int_{0}^{1} \left| (f_j + g_j)(\gamma(z, t)) \right|^p dt - \sum_{j=1}^{K} \int_{0}^{1} \left| g_j(\gamma(z, t)) \right|^p dt < u(z)$$

for $z \in X$.

Proof. Let $\theta = 1 - \frac{1}{4K}$, $1 - \delta^{2p} = \frac{1-\theta}{4}$ and $g(z) = \sum_{j=1}^{K} \int_{0}^{1} |g_{j}(\gamma(z,t))|^{p} dt$. Let us define a sequence of continuous functions H_{j} such that, for $z \in \partial\Omega$, we have

$$0 = H_0(z) < \dots < H_j(z) < H_{j+1}(z) < \dots < \lim_{j \to \infty} H_j(z) = g(z) + u(z).$$

Now we construct sequences $\{f_{j,k}\}_{k\in\mathbb{N}}^{j=1,\dots,K}$ of holomorphic functions on W such that, if $v_m(z) := \sum_{j=1}^K \int_0^1 |(g_j + \sum_{k=1}^m f_{j,k}) (\gamma(z,t))|^p dt$ then

(a) $|f_{j,k}(z)| \leq \frac{\varepsilon}{2^k}$ for $z \in T$;

(b)
$$0 < H_m(z) - v_m(z) < 2\sum_{k=1}^m \left(\frac{1+\theta}{2}\right)^{m-k} (H_k(z) - H_{k-1}(z))$$
 for $z \in X$ and $m \in \mathbb{N}$.

If m = 1 then it is sufficient to select $f_{1,1} = f_{2,1} = \dots = f_{K,1} = 0$. Now assume that we have constructed holomorphic functions $\{f_{j,k}\}_{k=1,\dots,m-1}^{j=1,\dots,K}$ on W such that (a)-(b) hold. Let us denote

$$2\varepsilon_m = \frac{1-\theta_0}{4} \inf_{z \in \partial\Omega} (H_{m-1}(z) - v_{m-1}(z))$$

$$G_m(z) = H_m(z) - \varepsilon_m - v_{m-1}(z).$$

Due to Lemma 3.2 and Theorem 4.1 there exist $f_{1,m}$, ..., $f_{K,m}$, holomorphic functions on W, such that property (a) holds and:

•
$$0 < G_m(z) - \sum_{j=1}^K \delta^{-p} \int_0^1 |f_{j,m}(\gamma(z,t))|^p dt < \theta G_m(z);$$

• $v_m(z) \ge -\varepsilon_m + v_{m-1}(z) + \sum_{j=1}^K \delta^p \int_0^1 |f_{j,m}(\gamma(z,t))|^p dt;$
• $v_m(z) \le \varepsilon_m + v_{m-1}(z) + \sum_{j=1}^K \delta^{-p} \int_0^1 |f_{j,m}(\gamma(z,t))|^p dt.$

Now we may estimate

$$H_m(z) > \varepsilon_m + v_{m-1}(z) + \delta^{-p} \sum_{j=1}^K \int_0^1 |f_{j,m}(\gamma(z,t))|^p dt \ge v_m(z).$$

Moreover

$$H_m(z) < \varepsilon_m + v_{m-1}(z) + \delta^{-p} \sum_{j=1}^K \int_0^1 \left| f_{j,m}(\gamma(z,t)) \right|^p dt + \theta G_m(z)$$

$$\leq v_m(z) + 2\varepsilon_m + \left((\delta^{-p} - \delta^p) \delta^p + \theta \right) G_m(z)$$

$$\leq v_m(z) + \frac{1-\theta}{4} (H_{m-1}(z) - v_{m-1}(z)) + \left(\frac{1-\theta}{4} + \theta \right) G_m(z).$$

In particular

$$\begin{aligned} H_m(z) - v_m(z) &< \frac{1+\theta}{2} (H_{m-1}(z) - v_{m-1}(z)) + \frac{1+3\theta}{4} (H_m(z) - H_{m-1}(z)) \\ &\leq 2 \sum_{k=1}^m \left(\frac{1+\theta}{2}\right)^{m-k} (H_k(z) - H_{k-1}(z)). \end{aligned}$$

Let $M := \sup_{z \in \partial \Omega} (u(z) + g(z))$. There exists m_0 such that $m \left(\frac{1+\theta}{2}\right)^m M < \frac{\varepsilon}{4}$ and $H_m(z) - H_{m-1}(z) < \varepsilon_0 := \frac{\varepsilon(1-\theta)}{8}$ for $m \ge m_0$ and $z \in X$. In particular for $z \in X$ we may estimate

$$\sum_{k=1}^{2m} \left(\frac{1+\theta}{2}\right)^{m-k} \left(H_k(z) - H_{k-1}(z)\right) \leq m \left(\frac{1+\theta}{2}\right)^m M + \sum_{k=m_0}^{2m} \left(\frac{1+\theta}{2}\right)^{2m-k} \varepsilon_0$$
$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} \leq \frac{\varepsilon}{2}.$$

Now we may conclude that there exists $m \in \mathbb{N}$ sufficiently large, such that, for $z \in X$, we have

$$v_m(z) > H_m(z) - \sum_{k=1}^m \left(\frac{1+\theta}{2}\right)^{m-k} (H_k(z) - H_{k-1}(z)) \ge u(z) + g(z) - \varepsilon.$$

Observe that the functions $f_j = \sum_{k=1}^m f_{j,k}$ have the properties (1)-(2).

Now we can prove our second application.

Theorem 4.3. Let $\varepsilon > 0$, u be a lower semi-continuous, strictly positive function on X and T be a compact subset of $\overline{\Omega} \setminus X$. Then there exist holomorphic functions $f_1, ..., f_K$ on Ω such that $\|f_j\|_T \leq \varepsilon$ and $\sum_{j=1}^K \int_0^1 |f_j(\gamma(z,t))|^p dt = u(z)$ for $z \in X$.

Proof. Let $\{T_j\}_{j \in \mathbb{N}}$ be a sequence of compact sets such that T_j is contained in the interior of T_{j+1} for each j and $\bigcup_{j \in \mathbb{N}} T_j = \Omega$.

There exists a sequence H_m of continuous functions on $\partial \Omega$ such that $0 = H_0(z) < H_1(z) < H_2(z) < ... < \lim_{j \to \infty} H_j(z) = u(z)$.

Due to Lemma 4.2 there exists a sequence $\{f_{j,k}\}_{k\in\mathbb{N}}^{j=1,\dots,K}$ of holomorphic functions on *W* such that

- 1. $|f_{j,k}(z)| \leq 2^{-k} \varepsilon$ for $z \in T_k \cup T$;
- 2. $H_m(z) 2^{-m} < \sum_{j=1}^K \int_0^1 \left| \sum_{k=1}^m f_{j,k}(\gamma(z,t)) \right|^p dt < H_m(z) \text{ for } z \in X.$

Now it suffices to define $f_j = \sum_{k=1}^{\infty} f_{j,k}$ and to observe that the functions $f_1, ..., f_K$ have the required properties.

Now we can solve the Dirichlet problem for plurisubharmonic functions.

Theorem 4.4. Let Ω be a bounded, strictly pseudoconvex domain with boundary of class C^2 such that $[0,1)\overline{\Omega} \subset \Omega$. Assume that [0,1]z is transversal to $\partial\Omega$ at $z \in \partial\Omega$. Let u be a continuous, strictly positive function on $\partial\Omega$. Then there exist holomorphic functions $f_1, ..., f_K$ such that $v(z) = \sum_{j=1}^K \int_0^1 |f_j(tz)|^2 dt$ is a plurisubharmonic, real analytic function on Ω and continuous on $\overline{\Omega}$. Moreover u(z) = v(z) for $z \in \partial\Omega$.

Proof. Observe that $\gamma : \partial \Omega \times [0,1] \ni (z,t) \to zt \in \overline{\Omega}$ is a set of real directions on Ω . Let us define a sequence of continuous functions H_j such that $0 = H_0(z)$ and $H_j(z) - H_{j-1}(z) = 2^{-j}u(z)$. Observe that $\lim_{j\to\infty} H_j(z) = u(z)$. Let $\{T_j\}_{j\in\mathbb{N}}$ be a sequence of compact subsets of Ω such that T_j is contained in the interior of T_{j+1} for each j.

Let $\theta = 1 - \frac{1}{4K}$ and $1 - \delta^4 = \frac{1-\theta}{4}$. Now we construct sequences $\{f_{j,k}\}_{k \in \mathbb{N}}^{j=1,...,K}$ of holomorphic functions on W such that

(a) $|f_{j,k}(z)| \leq 2^{-k}$ for $z \in T_k$.

(b) $0 < H_m(z) - v_m(z) < m \left(\frac{1+\theta}{2}\right)^{m-1} u(z)$ for $z \in \partial \Omega$ and $m \in \mathbb{N}$.

(c)
$$|v_{m+1}(z) - v_m(z)| \le m \left(\frac{1+\theta}{2}\right)^{m-2} \sup_{w \in \partial\Omega} u(w) \text{ for } z \in \overline{\Omega} \text{ and } m \in \mathbb{N}.$$

where $v_m(z) := \sum_{j=1}^K \int_0^1 |\sum_{k=1}^m f_{j,k}(tz)|^2 dt$ and $v_0 = 0$. If m = 1 then it is sufficient to choose $f_{1,1} = f_{2,1} = \dots = f_{K,1} = 0$. Now assume that we have constructed holomorphic functions $\{f_{j,k}\}_{k=1,\dots,m-1}^{j=1,\dots,K}$ on W such that (a)-(c) holds. Let us denote

$$2\varepsilon_m = \frac{1-\theta}{4} \inf_{z \in \partial\Omega} (H_{m-1}(z) - v_{m-1}(z))$$

$$G_m(z) = H_m(z) - \varepsilon_m - v_{m-1}(z).$$

As $[0,1)\overline{\Omega} \subset \Omega$, due to Lemma 3.2 and Theorem 4.1, there exist $f_{1,m}, ..., f_{K,m}$, holomorphic functions on W, such that property (a) holds and:

•
$$0 < G_m(z) - \sum_{j=1}^K \delta^{-2} \int_0^1 \left| f_{j,m}(tz) \right|^2 dt < \theta G_m(z) \text{ for } z \in \partial\Omega;$$

• $v_m(z) \ge -\varepsilon_m + v_{m-1}(z) + \sum_{j=1}^K \delta^2 \int_0^1 \left| f_{j,m}(tz) \right|^2 dt \text{ for } z \in \overline{\Omega};$
• $v_m(z) \le \varepsilon_m + v_{m-1}(z) + \sum_{j=1}^K \delta^{-2} \int_0^1 \left| f_{j,m}(tz) \right|^2 dt \text{ for } z \in \overline{\Omega}.$

Now we may estimate, for $z \in \partial \Omega$,

$$H_m(z) > \varepsilon_m + v_{m-1}(z) + \delta^{-2} \sum_{j=1}^K \int_0^1 |f_{j,m}(tz)|^2 dt \ge v_m(z).$$

Moreover for $z \in \partial \Omega$ we have

$$\begin{aligned} H_m(z) &< \varepsilon_m + v_{m-1}(z) + \delta^{-2} \sum_{j=1}^K \int_0^1 |f_{j,m}(tz)|^2 dt + \theta G_m(z) \\ &\leq v_m(z) + 2\varepsilon_m + ((\delta^{-2} - \delta^2)\delta^2 + \theta)G_m(z) \\ &\leq v_m(z) + \frac{1-\theta}{4}(H_{m-1}(z) - v_{m-1}(z)) + \left(\frac{1-\theta}{4} + \theta\right)G_m(z). \end{aligned}$$

In particular we obtain property (b):

$$\begin{aligned} H_m(z) - v_m(z) &< \frac{1+\theta}{2} (H_{m-1}(z) - v_{m-1}(z)) + \frac{1+3\theta}{4} (H_m(z) - H_{m-1}(z)) \\ &\leq (m-1) \left(\frac{1+\theta}{2}\right)^{m-1} u(z) + \frac{1+\theta}{2} \frac{u(z)}{2^m} \leq m \left(\frac{1+\theta}{2}\right)^{m-1} u(z). \end{aligned}$$

Moreover for $z \in \overline{\Omega}$ we have

$$|v_{m+1}(z) - v_m(z)| \le h_m(z) := \varepsilon_m + \delta^{-p} \int_0^1 |f_{j,m}(tz)|^2 dt.$$

Due to (b) we may estimate, for $z \in \partial \Omega$,

$$h_m(z) \leq \varepsilon_m + G_m(z) \leq H_m(z) - v_{m-1}(z) \leq (H_m - H_{m-1} + H_{m-1} - v_{m-1})(z)$$

$$\leq 2^{-m} u(z) + (m-1) \left(\frac{1+\theta}{2}\right)^{m-2} u(z) \leq m \left(\frac{1+\theta}{2}\right)^{m-2} u(z).$$

As h_m is a continuous and plurisubharmonic function, for $z \in \overline{\Omega}$ we obtain property (c):

$$|v_{m+1}(z) - v_m(z)| \le h_m(z) \le m \left(\frac{1+\theta}{2}\right)^{m-2} \sup_{w \in \partial\Omega} u(w).$$

Let us now define holomorphic functions $f_j = \sum_{k=1}^{\infty} f_{j,k}$ on Ω . Observe that $v_m \to v := \sum_{j=1}^{K} \int_{0}^{1} |\sum_{k=1}^{\infty} f_{j,k}(tz)|^2 dt$ uniformly on $\overline{\Omega}$. In particular v is a continuous function on $\overline{\Omega}$, plurisubharmonic and real analytic on Ω . Moreover u(z) = v(z) for $z \in \partial \Omega$.

Before we give the construction of a holomorphic function with given integrals on almost all real directions, we need some additional results. **Lemma 4.5.** Let $\varepsilon \in (0,1)$, η be a probability measure on X. Let U be an open subset of X such that $\eta(U) > 0$. Moreover let T be a compact subset of $\overline{\Omega} \setminus X$, g be a complex continuous function on $\overline{\Omega}$ and H be a continuous, strictly positive function on X. Then there exists a holomorphic function f on W and an open subset V of U such that

$$\begin{array}{l} 1. \ \|f\|_{T} \leq \varepsilon; \\ 2. \ -\varepsilon < \int_{0}^{1} |(f+g)(\gamma(z,t))|^{p} \, dt - \int_{0}^{1} |g(\gamma(z,t))|^{p} \, dt < H(z) \, for \, z \in X; \\ 3. \ \frac{H(z)}{5} < \int_{0}^{1} |(f+g)(\gamma(z,t))|^{p} \, dt - \int_{0}^{1} |g(\gamma(z,t))|^{p} \, dt \, for \, z \in V; \\ 4. \ \overline{V} \subset U \, and \, \eta(\overline{V}) = \eta(V) > \frac{\eta(U)}{K+1}. \end{array}$$

Proof. Let $M := \sup_{z \in \partial \Omega} H(z)$. There exists $a, \tilde{\epsilon} \in (0, 1)$ such that for $z \in X$ we have $H(z) > aH(z) + 2\tilde{\epsilon} > \frac{aH(z)}{4} - 2\tilde{\epsilon} > \frac{H(z)}{5}$ and $-\epsilon \le -2\tilde{\epsilon}$. Let $\delta \in (0, 1)$ be such that $(1 - \delta^p)M < \tilde{\epsilon}$ and $(\delta^{-p} - 1)M < \tilde{\epsilon}$.

Due to Theorem 4.1 and Lemma 3.2 there exist $f_1, ..., f_K$, holomorphic functions on W, such that

1.
$$||f_j||_T \leq \varepsilon;$$

2. $\frac{aH(z)}{4} < \max_{j=1,\dots,K} \int_0^1 |f_j(\gamma(z,t))|^p dt < aH(z);$
3. $\int_0^1 |(f_j + g)(\gamma(z,t))|^p dt \geq -\widetilde{\epsilon} + \int_0^1 |g(\gamma(z,t))|^p dt + \delta^p \int_0^1 |f_j(\gamma(z,t))|^p dt;$
4. $\int_0^1 |(f_j + g)(\gamma(z,t))|^p dt \leq \widetilde{\epsilon} + \int_0^1 |g(\gamma(z,t))|^p dt + \delta^{-p} \int_0^1 |f_j(\gamma(z,t))|^p dt.$

There exists $j_0 \in \{1, ..., K\}$ and an open subset V_0 of U such that $\int_0^1 |f_{j_0}(\gamma(z,t))|^p dt = \max_{j=1,...,K} \int_0^1 |f_j(\gamma(z,t))|^p dt$ for $z \in V_0$ and $\eta(V_0) \ge \frac{1}{K}$. Let $f = f_{j_0}$. Now for $z \in V_0$ we obtain

$$\frac{aH(z)}{4} < \int_0^1 |f(\gamma(z,t))|^p dt \le \int_0^1 |(f+g)(\gamma(z,t))|^p dt + \tilde{\epsilon} - \int_0^1 |g(\gamma(z,t))|^p dt + (1-\delta^p)M.$$

In particular

$$\frac{H(z)}{5} < \frac{aH(z)}{4} - 2\widetilde{\epsilon} \le \int_0^1 \left| (f+g)(\gamma(z,t)) \right|^p dt - \int_0^1 \left| g(\gamma(z,t)) \right|^p dt.$$

In a similar way we obtain for $z \in X$

$$-\varepsilon \le -2\widetilde{\epsilon} \le \int_0^1 |(f+g)(\gamma(z,t))|^p dt - \int_0^1 |g(\gamma(z,t))|^p dt$$

Moreover for $z \in X$ we have

$$aH(z) > \int_0^1 |f(\gamma(z,t))|^p dt \ge \int_0^1 |(f+g)(\gamma(z,t))|^p dt -\tilde{\epsilon} - \int_0^1 |g(\gamma(z,t))|^p dt - (\delta^{-p} - 1)M.$$

In particular

$$H(z) > aH(z) + 2\widetilde{\epsilon} \ge \int_0^1 \left| (f+g)(\gamma(z,t)) \right|^p dt - \int_0^1 \left| g(\gamma(z,t)) \right|^p dt.$$

There exists a set S closed in X and such that $S \subset V_0$, $\eta(S) > \frac{\eta(U)}{K+1}$. Let us denote $S^r := \{z \in X : \inf_{w \in U} ||z - w|| < r\}$. Now there exists $r_0 > 0$ such that $\overline{S^r} \subset V_0$ for $0 < r < r_0$. As $(0, r_0)$ is an uncountable set there exists $r_1 \in (0, r_0)$ such that $\mu(\partial S^{r_1}) = 0$. Now it is sufficient to choose $V = S^{r_1}$. In particular $\mu(\overline{V}) = \mu(\overline{V}) > \frac{\eta(U)}{K+1}.$

Lemma 4.6. Let ε , $a \in (0,1)$, η be a probability measure on X and T be a compact subset of $\overline{\Omega} \setminus X$. If H is a continuous strictly positive function on X and g is a complex continuous function on Ω then there exists an open subset V of X and a holomorphic function f on W such that:

1.
$$|f(z)| \le \varepsilon$$
 for $z \in T$;
2. $-\varepsilon < \int_0^1 |(g+f)(\gamma(z,t))|^p dt - \int_0^1 |g(\gamma(z,t))|^p dt < H(z)$ for $z \in \partial\Omega$;
3. $\int_0^1 |(g+f)(\gamma(z,t))|^p dt > aH(z) + \int_0^1 |g(\gamma(z,t))|^p dt$ for $z \in V$;
4. $\eta(\overline{V}) = \eta(V) > 1 - \varepsilon$.

Proof. First we prove that for $m \in \mathbb{N}$ and U an open subset of X, there exists an open subset *V* of $\partial \Omega$ and a holomorphic function *f* on *W* such that:

(a)
$$|f(z)| \le \varepsilon$$
 for $z \in T$;
(b) $-\varepsilon < \int_0^1 |(g+f)(\gamma(z,t))|^p dt - \int_0^1 |g(\gamma(z,t))|^p dt < H(z)$ for $z \in X$;
(c) $\int_0^1 |(g+f)(\gamma(z,t))|^p dt > (1 - \frac{4^m}{5^m}) H(z) + \int_0^1 |g(\gamma(z,t))|^p dt$ for $z \in V$;
(d) $\overline{V} \subset U$ and $\eta(\overline{V}) = \eta(V) > \frac{\mu(U)}{(K+1)^m}$.

Due to Lemma 4.5 there exist $\{f_m\}_{m \in \mathbb{N}'}$ a sequence of holomorphic functions on *W*, and a sequence $\{V_m\}_{m \in \mathbb{N}}$ of open subsets of *X* such that for $m \in \mathbb{N} \setminus \{0\}$

- $|f_m(z)| \leq \frac{\varepsilon}{2^m}$ for $z \in T$;
- $-\frac{\varepsilon}{2^m} < v_{m+1}(z) v_m(z) < H_m(z)$ for $z \in X$;
- $v_{m+1}(z) v_m(z) > \frac{1}{5}H_m(z)$ for $z \in V_m$;

•
$$\overline{V}_{m+1} \subset V_m \subset V_0 = U$$
 and $\eta(\overline{V}_m) = \eta(V_m) > \frac{\eta(V_{m-1})}{K+1}$,

where $v_m(z) = \int_0^1 \left| \left(g + \sum_{k=1}^{m-1} f_k \right) (\gamma(z,t)) \right|^p dt$, $H_1 = H$ and $H_{m+1}(z) = H_m(z) - H_m(z)$ $v_{m+1}(z) + v_m(z).$

Let $f = \sum_{k=1}^{m} f_k$ and $V = V_m$. It is sufficient to prove the properties (b)-(c).

Observe that

$$H_m - H_1 = \sum_{k=1}^{m-1} (H_{k+1} - H_k) = -\sum_{k=1}^{m-1} (v_{k+1} - v_k) = -v_m + v_1$$

In particular $-\varepsilon < v_{m+1}(z) - v_1(z) < H_1(z) = H(z)$. Now it is sufficient to prove that for $z \in V_m$ we have

$$v_{m+1}(z) - v_1(z) > \left(1 - \frac{4^m}{5^m}\right) H(z).$$
 (4.1)

For m = 1 inequality (4.1) is true. Now we assume that (4.1) holds for some $m \in \mathbb{N}$. We then obtain for $z \in V_{m+1}$

$$\begin{aligned} v_{m+2}(z) - v_1(z) &= v_{m+2}(z) - v_{m+1}(z) + v_{m+1}(z) - v_1(z) \\ &> \frac{H_{m+1}(z)}{5} + v_{m+1}(z) - v_1(z) > \\ &> \frac{H(z)}{5} + \frac{4}{5} \left(1 - \frac{4^m}{5^m}\right) H(z) = \left(1 - \frac{4^{m+1}}{5^{m+1}}\right) H(z) \end{aligned}$$

which proves (4.1) and gives the construction of an open subset V of $\partial \Omega$ and a holomorphic function *f* on *W* such that (a)-(d) holds.

Let $\{\varepsilon_k\}_{k=1}^{\infty}$ be a sequence of strictly positive numbers and *m* be a natural number sufficiently large so that $\left(1 - \frac{4^m}{5^m}\right) H(z) - \sum_{k=1}^{\infty} \varepsilon_k > aH(z)$ for $z \in X$ and $\sum_{k=1}^{\infty} \varepsilon_k < \varepsilon$. Now using (a)-(d) we can construct a sequence $\{V_k\}_{k \in \mathbb{N}}$ of open subsets of *X* and a sequence $\{f_k\}_{k \in \mathbb{N}}$ of holomorphic functions on *W* such that

(e) $|f_k(z)| \leq \varepsilon_k$ for $z \in T$;

(f)
$$-\varepsilon_k < \omega_{k+1}(z) - \omega_k(z) < H_k(z)$$
 for $z \in X$;

(g) $\omega_{k+1}(z) > \left(1 - \frac{4^m}{5^m}\right) H_k(z) + \omega_k(z) \text{ for } z \in V_k;$

(h)
$$\overline{V}_k \subset E \setminus \bigcup_{j=1}^{k-1} \overline{V}_j$$
 and $\eta(\overline{V}_k) = \eta(V_k) > \frac{1 - \sum_{j=1}^{k-1} \eta(V_j)}{(K+1)^m}$,

where $\omega_k(z) = \int_0^1 \left| \left(g + \sum_{j=1}^k f_j \right) (\gamma(z, t)) \right|^p dt$, $H_1 = H$ and $H_{m+1}(z) = H_m(z) - H_m(z)$

 $\omega_{m+1}(z) + \omega_m(z)$. Observe that $H_m - H_1 = -\omega_m + \omega_1$. As $\sum_{j=1}^{\infty} \eta(V_j) \leq 1$ it holds that $\lim_{k\to\infty} \frac{1 - \sum_{j=1}^{k-1} \eta(V_j)}{(K+1)^m} = 0$. In particular there exists $n \in \mathbb{N}$ sufficiently large so that $1 - \varepsilon < \sum_{j=1}^{n} \eta(V_j)$. Let us now define $V = \bigcup_{i=1}^{n} V_i$ and $f = \sum_{i=1}^{n} f_i$.

First we prove the properties (1),(4): $\eta(V) = \sum_{j=1}^{n} \eta(V_j) > 1 - \varepsilon$ and $|f(z)| \le \varepsilon$ $\sum_{i=1}^{n} \varepsilon_i < \varepsilon$ for $z \in T$.

As $\omega_1 = H_n - H + \omega_n$, property (2) is also obvious: $-\varepsilon < -\sum_{j=1}^n \varepsilon_j < -\sum_{j=1}^n \varepsilon_j$ $\omega_{n+1}(z) - \omega_1(z) < H(z)$ for $z \in X$.

Now let $z \in V$. There exists $k \in \{1, ..., n\}$ such that $z \in V_k$. As $H_k = H - \omega_k + \omega_1$, we obtain property (3):

$$\begin{split} \omega_{n+1}(z) - \omega_1(z) &= \sum_{j=k+1}^n \left(\omega_{j+1}(z) - \omega_j(z) \right) + \omega_k(z) - \omega_1(z) + \omega_{k+1}(z) - \omega_k(z) \\ &> -\sum_{j=k+1}^\infty \varepsilon_j + \omega_k(z) - \omega_1(z) + \left(1 - \frac{4^m}{5^m} \right) H_k(z) \\ &\ge -\sum_{j=k+1}^\infty \varepsilon_j + \frac{4^m}{5^m} \left(\omega_k(z) - \omega_1(z) \right) + \left(1 - \frac{4^m}{5^m} \right) H(z) \\ &\ge -\sum_{j=1}^\infty \varepsilon_j + \left(1 - \frac{4^m}{5^m} \right) H(z) \ge a H(z). \end{split}$$

Now we are ready to prove the following result.

Theorem 4.7. Let $\varepsilon > 0$, η be a probability measure on X and T be a compact subset of $\overline{\Omega} \setminus X$. If H is a lower semicontinuous, strictly positive function on X, then there exists a function f holomorphic on Ω and continuous on $\overline{\Omega} \setminus X$, such that $||f||_T < \varepsilon$, $\int_0^1 |(f \circ \gamma)(z,t)|^p dt \le H(z)$ for $z \in X$ and

$$\eta\left(\left\{z\in X: \int_0^1 |(f\circ\gamma)(z,t)|^p \, dt = H(z)\right\}\right) = 1.$$

Proof. There exists a sequence of continuous, strictly positive functions $\{G_k\}_{k\in\mathbb{N}}$ such that $0 < G_j(z) < G_{j+1}(z) < ... \lim_{j\to\infty} G_j(z) = H(z)$. Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of compact subsets of $\overline{\Omega}$ such that $T_k \subset T_{k+1}$, the interior of T_k is contained in the interior of T_{k+1} and $\bigcup_{k=1}^{\infty} T_k = \overline{\Omega} \setminus X$. Let $\{\varepsilon_k\}_{k=1}^{\infty}$ be a sequence of strictly positive numbers such that $\sum_{k=1}^{\infty} \varepsilon_k < 1$. Due to Lemma 4.6 there exists a sequence $\{V_k\}_{k\in\mathbb{N}}$ of open subsets of X and a sequence $\{f_k\}_{k\in\mathbb{N}}$ of holomorphic functions on W such that

- (a) $|f_k(z)| \leq \varepsilon_k \varepsilon$ for $z \in T_k \cup T$;
- **(b)** $\omega_{k+1}(z) \omega_k(z) < H_k(z)$ for $z \in X$;
- (c) $\omega_{k+1}(z) \omega_k(z) > (1 \varepsilon_k)H_k(z)$ for $z \in V_k$;
- (d) $\eta(\overline{V}_k) = \eta(V_k) > 1 \varepsilon_k$,

where $\omega_1 = 0$, $\omega_m(z) = \int_0^1 \left| \left(\sum_{j=1}^{m-1} f_j \right) (\gamma(z,t)) \right|^p dt$, $H_1 = G_1$ and $H_{m+1}(z) = G_{m+1}(z) - \omega_{m+1}(z) + \omega_m(z)$.

Observe that for $z \in X$ we have

$$\omega_{k+2}(z) < H_{k+1}(z) + \omega_{k+1}(z) = G_{k+1}(z) - \omega_k(z) \le G_{k+1}(z).$$

Moreover for $z \in V_{k+1}$ we may estimate

$$\begin{aligned}
\omega_{k+2}(z) &> \omega_{k+1}(z) + (1 - \varepsilon_{k+1})H_{k+1}(z) \ge \varepsilon_{k+1}\omega_{k+1}(z) + (1 - \varepsilon_{k+1})G_{k+1}(z) \\
&\ge (1 - 2\varepsilon_{k+1})G_{k+1}(z).
\end{aligned}$$

Let $U_k := \bigcap_{m=k}^{\infty} V_m$ and $U = \bigcup_{k=1}^{\infty} U_k$. Observe that $\eta(U_k) \ge 1 - \sum_{m=k}^{\infty} \varepsilon_m$ and $\eta(U) = \lim_{m\to\infty} \eta(U_m) = 1$. If $z \in U$ then there exists $k \in \mathbb{N}$ such that $z \in U_k$. In particular $z \in V_{m+1}$ for $m \ge k$ and

$$G(z) = \lim_{m \to \infty} (1 - 2\varepsilon_{m+1}) G_{m+1}(z) \le \lim_{m \to \infty} \omega_{m+1}(z) \le \lim_{m \to \infty} G_m(z) = G(z).$$

Now we can define the function $f = \sum_{k=1}^{\infty} f_k$ which is holomorphic on Ω and continuous on $\overline{\Omega} \setminus X$, and observe that $\omega_{\infty}(z) \leq G(z)$ for $z \in X$ and $\omega_{\infty}(z) = G(z)$ for η -almost all $z \in X$, i.e. f has the required properties.

As an application of Theorem 4.7 we prove the following description of exceptional sets (see 1.1) $E_{\Omega}^{p}(f)$.

Theorem 4.8. Let $\varepsilon > 0$, T be a compact subset of $\overline{\Omega} \setminus X$ and η be a probability measure on X. If $E \subset X$ is a set of type G_{δ} then there exists a holomorphic function f such that (see 1.1) $||f||_T \leq \varepsilon$, $E_{\Omega}^p(f) \subset E$, $\eta(E \setminus E_{\Omega}^p(f)) = 0$ and $\int_{(X \setminus E) \times [0,1]} |f \circ \gamma|^p d\mathfrak{L}^{2N} < \infty$.

Proof. Let σ be a natural measure on $\partial\Omega$. Due to [8, Theorem 2.6, Proposition 2.5] there exist sequences $\{D_i\}_{i \in \mathbb{N}}$, $\{T_i\}_{i \in \mathbb{N}}$ of compact subsets in X such that:

1. $\bigcup_{i \in \mathbb{N}} D_i = X \setminus E$ and $D_j \subset D_{j+1}$ for $j \in \mathbb{N}$;

2.
$$T_j \cap D_j = \emptyset$$
 for $j \in \mathbb{N}$;

3.
$$E = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} T_i;$$

4.
$$\sigma(X \setminus (E \cup D_i) \leq 2^{-j}$$
.

There exists a sequence of continuous functions $\{u_m\}_{m\in\mathbb{N}}$ such that $0 \le u_m(z) \le 1$, $u_m(z) = 0$ if and only if $z \in D_m$, and $u_m(z) = 1$ if and only if $z \in T_m$. Let $H(z) = 1 + \sum_{m=1}^{\infty} u_m(z)$. Observe that H is a strictly positive lower semicontinuous function on X and $\int_{X\setminus E} H d\sigma < \infty$. Now due to Theorem 4.7 there exists a function f, holomorphic on Ω and continuous on $\overline{\Omega} \setminus X$, such that $||f||_T \le \varepsilon$, $\int_0^1 |(f \circ \gamma)(z, t)|^p dt \le H(z)$ for $z \in X$ and

$$\eta\left(\left\{z\in X: \int_0^1 |(f\circ\gamma)(z,t)|^p \, dt = H(z)\right\}\right) = 1.$$

We may estimate

$$\int_{(X\setminus E)\times[0,1]} |f\circ\gamma|^p \, d\mathfrak{L}^{2N} = \int_{X\setminus E} \int_0^1 |(f\circ\gamma)(z,t)|^p \, dt d\sigma(z) \leq \int_{X\setminus E} H d\sigma < \infty.$$

Observe that $E_{\Omega}^{p}(f) \subset X$ since f is a continuous function on $\overline{\Omega} \setminus X$. If $z \in X \setminus E$ then there exists m_0 such that $z \in D_m$ for $m \ge m_0$ and $H(z) \le 1 + \sum_{m=1}^{m_0} 1 < \infty$. In particular $E_{\Omega}^{p}(f) \subset E$. Moreover if $z \in E$ then $H(z) = \infty$ and therefore $\eta(E \setminus E_{\Omega}^{p}(f)) = 0$.

References

- [1] A.B. Aleksandrov: Existence of inner function in the unit ball. Math. Sb. 117, 147-163 (1982).
- [2] J. Globevnik, E. L. Stout, Highly noncontinuable functions on convex domains, Bull. Sci. Math. 104 (1980), 417-439.
- [3] J. Globevink, Holomorphic functions which are highly nonintegrable at the boundary, Israel J. Math. 115 (2000), 195-203.
- [4] P. Jakbczak, Description of exceptional sets in the circles for functions from the Bergman space, Czechoslovak Journal of Mathematics no. 47, (1997), 633-649.
- [5] P. Jakbczak, Highly non-integrable functions in the unit ball. Israel J. Math 97 (1997), 175-181.
- [6] P. Jakbczak, Exceptional sets of slices for functions from the Bergman Space in the ball, Canad. Math. Bull. 44(2), (2001), 150-159
- [7] J. E. Fornaess, Strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569.
- [8] P. Kot, Maximum sets of semicontinuous functions. Potential Anal. 23, No.4, 323-356 (2005).
- [9] P. Kot, Exceptional sets in Hartogs domains, Canad. Math. Bull. 48 (4) 2005, 580-586.
- [10] P. Kot, Exceptional sets in convex domains, J. Convex Anal. 12 (2005), no. 2, 351-364.
- [11] P. Kot, Exceptional sets with a weight in a unit ball, Bull. Belg. Math. Soc. Simon Stevin 13, no. 1 (2006), 43-53.
- [12] P. Kot: Homogeneous polynomials on strictly convex domains, Proc. Amer. Math. Soc. 135 (2007) 3895-3903.
- [13] P. Kot: A Holomorphic Function with Given Almost All Boundary Values on a Domain with Holomorphic Support Function, Journal of Convex Analysis 14, no. 4, 693-704 (2007).
- [14] E. L ϕ w, A Construction of Inner Functions on the Unit Ball in \mathbb{C}^p , Invent. math. 67 (1982), 223-229.
- [15] E. L ϕ w, Inner Functions and Boundary Values in $H^{\infty}(\Omega)$ and $A(\Omega)$ in Smoothly Bounded Pseudoconvex Domains, Math. Z. 185 (1984), 191-210.

Politechnika Krakowska, Instytut Matematyki ul. Warszawska 24, 31-155 Kraków, Poland email: pkot@pk.edu.pl