Radon inversion problem for holomorphic functions on strictly pseudoconvex domains

Piotr Kot

Abstract

Let $p>0$ and let $\Omega \subset \mathbb{C}^{d}$ be a bounded, strictly pseudoconvex domain with boundary of class C^{2}. We consider a family of directions in the form of a continuous function $\gamma: \partial \Omega \times[0,1] \ni(z, t) \rightarrow \gamma(z, t) \in \bar{\Omega}$ satisfying some natural properties. Then for a given lower semicontinuous, strictly positive function H on $\partial \Omega$ we construct a holomorphic function $f \in \mathbb{O}(\Omega)$ such that $H(z)=\int_{0}^{1}|f(\gamma(z, t))|^{p} d t$ for η-almost all $z \in \partial \Omega$ where η is a given probability measure on $\partial \Omega$.

1 Introduction

In this paper we intend to investigate the so-called Radon inversion problem, i.e. the problem of reconstructing a function on the basis of known integrals of this function over some subset of submanifolds of its domain.

For a given domain $\Omega \subset \mathbb{C}^{n}$ and $p>0$ we consider a family of holomorphic functions on Ω, integrable along the family of real directions in the form of a continuous function $\gamma: \partial \Omega \times[0,1) \ni(z, t) \rightarrow \gamma(z, t) \in \Omega$. In particular we can define the Radon operator by

$$
\mathfrak{R}: \mathrm{O}(\Omega) \times \partial \Omega \ni(f, \xi) \rightarrow \mathfrak{R}(f, \xi)=\int_{0}^{1}|f \circ \gamma(\xi, t)|^{p} d t
$$

and formulate the Radon inversion problem in the following way:

[^0]Let us assume that H is a lower semicontinuous function on $\partial \Omega$. Is it possible to construct a function $f \in \mathbb{O}(\Omega)$ such that $\mathfrak{R}(f, \xi)=H(\xi)$ for $\xi \in \partial \Omega$?

Let us observe that the above problem is similar to the construction of the inner function (see [1, 13, 14, 15]). It is known that a non-constant holomorphic function $f \in \mathbb{O}(\Omega)$ with non-tangential limit in all boundary points equal to 1 , does not exist. In fact, all the inner functions constructed in the papers [1, 13, 14, 15] have non-tangential limits well defined only in almost all boundary points (in terms of a proper surface measure). In the Radon inversion problem the role of the non-tangential limit is played bythe value $\mathfrak{R}(f, \xi)$ which is well defined in all boundary points ξ.

We will solve the probability version of the Radon inversion problem. In particular (see Theorem 4.1) for a given probability measure η on $\partial \Omega$, we construct a holomorphic function f such that $\mathfrak{R}(f, \xi)=H(\xi)$ for η-almost all $\xi \in \partial \Omega$. However, the full version still remains an open problem.

As an application we give a description of so called exceptional sets (Theorem 4.8)

$$
\begin{equation*}
E_{\Omega}^{p}(f):=\{\xi \in \partial \Omega: \mathfrak{R}(f, \xi)=\infty\} . \tag{1.1}
\end{equation*}
$$

For more information about exceptional sets we refer the reader to e.g. [2, 3, 4, 5, 6, 9, 10, 11].

We also solve the Dirichlet problem for plurisubharmonic and real analytic functions (Theorem 4.4).

1.1 Geometric notions.

In this paper we assume, in general, that $\Omega \subset \mathbb{C}^{d}$ is a bounded, strictly convex domain with boundary of class C^{2} and a defining function ρ. Only the last section will be devoted to strictly pseudoconvex domains. We consider the natural scalar product $\langle 0,0\rangle$. As usual, by $B(\xi ; r)$ we denote the open ball with center ξ and radius r, i.e. $B(\xi ; r):=\left\{z \in \mathbb{C}^{d}:\|\xi-z\|<r\right\}$. Note that there exists $\pi_{d}>0$ such that $\mathfrak{L}^{2 d}(B(\xi, r))=\pi_{d} r^{2 d}$ for $\xi \in \mathbb{C}^{d}$ and $r>0$, where $\mathfrak{L}^{2 d}$ is the $2 d$-dimensional Lebesgue measure. Assume that $0 \in \Omega \subset B(0, R)$ for some $R>0$.

A subset $A \subset \mathbb{C}^{d}$ is called α-separated if $\left\|z_{1}-z_{2}\right\|>\alpha$ for all distinct elements z_{1} and z_{2} of A. It is clear that for $\alpha>0$ each α-separated subset of $\partial \Omega$ is finite.

If $g: \mathbb{C}^{d} \rightarrow \mathbb{C}$ is a function of class C^{2} then we denote $g_{\xi}=\left(\frac{\partial g}{\partial z_{1}}(\xi), \ldots, \frac{\partial g}{\partial z_{d}}(\tilde{\xi})\right)$ and

$$
H_{g}(P, w):=\frac{1}{2} \sum_{j, k=1}^{d} \frac{\partial^{2} g}{\partial z_{j} \partial z_{k}}(P) w_{j} w_{k}+\frac{1}{2} \sum_{j, k=1}^{d} \frac{\partial^{2} g}{\partial \bar{z}_{j} \partial \bar{z}_{k}}(P) \bar{w}_{j} \bar{w}_{k}+\sum_{j, k=1}^{d} \frac{\partial^{2} g}{\partial z_{j} \partial \bar{z}_{k}}(P) w_{j} \bar{w}_{k} .
$$

Definition 1.1. Let X be a compact subset of $\partial \Omega$. We say that a continuous function $\gamma: X \times[0,1] \ni(z, t) \rightarrow \gamma(z, t) \in \bar{\Omega}$ defines a set of real directions on Ω if γ has the following properties:

1. $\gamma(X \times[0,1)) \subset \Omega$.
2. $\gamma(X \times\{1\}) \subset \partial \Omega$.
3. $\frac{\partial \gamma}{\partial t}(\circ, \circ)$ is a continuous function on $X \times[0,1]$.
4. There exist constants $c_{1}, c_{2}>0$ such that $c_{1}\|z-\xi\| \leq\|\gamma(z, 1)-\gamma(\xi, 1)\| \leq$ $c_{2}\|z-\xi\|$ for $z, \xi \in X$.
5. $\gamma(\xi, \circ)$ is tangential to $\partial \Omega$ at $\gamma(\xi, 1)$ i.e. $\operatorname{Re}\left\langle\frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle>0$ for $\xi \in X$.

2 Preliminary calculations

We need the following result.
Lemma 2.1. There exist constants $c_{1}, c_{2}>0$ such that for $z, \xi \in \partial \Omega$ one has:

$$
\begin{equation*}
c_{1}\|z-\xi\|^{2} \leq \operatorname{Re}\left\langle\xi-z, \overline{\rho_{\bar{\zeta}}}\right\rangle \leq c_{2}\|z-\xi\|^{2} . \tag{2.1}
\end{equation*}
$$

Proof. It suffices to use the same arguments as in the proof [12, Lemma 2.1].
In order to control the values of the functions constructed we need some information about α-separated sets.

Lemma 2.2. Suppose that $A=\left\{\xi_{1}, . ., \xi_{s}\right\}$ is a $2 \alpha t$-separated subset of $\partial \Omega$. For $z \in \partial \Omega$ let

$$
A_{k}(z):=\{\xi \in A: \alpha k t \leq\|z-\xi\| \leq \alpha(k+1) t\} .
$$

Then the set $A_{k}(z)$ has at most $(k+2)^{2 d}$ elements. The set A_{0} has at most 1 element and $s \leq \max \left\{1,\left(\frac{2 R}{\alpha t}\right)^{2 d}\right\}$.

Proof. Putting $\rho(z, \xi)=\|z-\xi\|$, it suffices to use the same arguments as in the proof [12, Lemma 2.2].

Lemma 2.3. If $A \subset \partial \Omega$ is α t-separated, then for each $\beta>\alpha$ there exists an integer $K=K(\alpha, \beta)$ such that A can be partitioned into K disjoint βt-separated sets.

Proof. see [12, Lemma 2.3]

3 Basic results for strictly convex domains

Let $p>0$. Assume that Ω is a bounded strictly convex domain, X is a compact subset of $\partial \Omega$ and $\gamma: X \times[0,1] \rightarrow \bar{\Omega}$ defines a set of real directions on Ω.

In particular there exist constants $c_{2} \geq c_{1}>0$ such that

$$
\begin{equation*}
c_{1}\|z-w\| \leq\|\gamma(z, 1)-\gamma(w, 1)\| \leq c_{2}\|z-w\| \tag{3.1}
\end{equation*}
$$

for $z, w \in X$. Due to Lemma 2.1 there exist constants $c_{3}, c_{4}>0$ such that for $z, \xi \in \partial \Omega$

$$
\begin{equation*}
-c_{3}\|z-\xi\|^{2} \leq \operatorname{Re}\left\langle z-\xi, \overline{\rho_{\bar{\zeta}}}\right\rangle \leq-c_{4}\|z-\xi\|^{2} . \tag{3.2}
\end{equation*}
$$

Lemma 3.1. Denoting

$$
F_{m, \xi}(z):=\left(m \operatorname{Re}\left\langle\frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle\right)^{\frac{1}{p}} \exp \left(\frac{m}{p}\left\langle z-\gamma(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle\right)
$$

where $q=\sup _{\xi \in X}\left\{1, \operatorname{Re}\left\langle\frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle\right\}$, if $0<b_{1}<1<b_{2}$ then there exist $\alpha, \beta_{1}, \beta_{2}, N_{0}, r_{0}>0$ such that for $m \geq N_{0}, z, \xi \in X$ one has the following properties:

1. if $\|z-\xi\| \leq r_{0}$ then $b_{1} e^{-m \beta_{1}\|z-\xi\|^{2}}-e^{-m \alpha} \leq \int_{0}^{1}\left|F_{m, \xi} \circ \gamma(z, t)\right|^{p} d t \leq$ $b_{2} e^{-m \beta_{2}\|z-\xi\|^{2}}+e^{-m \alpha}$;
2. if $\left(0 \leq t \leq 1-r_{0}\right) \vee\left(\|z-\xi\| \geq r_{0}\right)$ then $\left|F_{m, \xi} \circ \gamma(z, t)\right|^{p} \leq e^{-m \alpha}$.

Proof. There exists a constant $1>r_{0}>0$ such that

$$
\begin{equation*}
0<\frac{1}{b_{2}} \operatorname{Re}\left\langle\frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle \leq \operatorname{Re}\left\langle\frac{\partial \gamma}{\partial t}(z, t), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle \leq \frac{1}{b_{1}} \operatorname{Re}\left\langle\frac{\partial \gamma}{\partial t}(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle \tag{3.3}
\end{equation*}
$$

for $t \in\left[1-r_{0}, 1\right]$ and $z, \xi \in X$ so that $\|z-\xi\| \leq r_{0}$. Moreover there exists $\alpha>0$ such that

$$
\operatorname{Re}\left\langle\gamma(z, t)-\gamma(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle \leq-2 \alpha
$$

for $(z, \xi, t) \in\left\{(x, y, s) \in X \times X \times[0,1]:\|x-y\| \geq r_{0} \vee s \leq 1-r_{0}\right\}$.
Let N_{0} be such that

$$
e^{-m \alpha} \geq m q e^{-2 m \alpha}
$$

for $m \geq N_{0}$. In particular $\left|F_{m, \xi^{\mp}} \circ \gamma(z, t)\right|^{p} \leq m q e^{-2 m \alpha} \leq e^{-m \alpha}$ for $m \geq N_{0}$ and $\left(0 \leq t \leq 1-r_{0}\right) \vee\left(\|z-\xi\| \geq r_{0}\right)$.

Now assume that $\|z-\xi\|<r_{0}$. Due to (3.1), (3.2) and (3.3) we may estimate for $\beta_{1}:=c_{2}^{2} c_{3}, \beta_{2}:=c_{1}^{2} c_{4}$ and $m \geq N_{0}$:

$$
\begin{aligned}
\int_{0}^{1}\left|F_{m, \xi} \circ \gamma(z, t)\right|^{p} d t & \geq \int_{1-r_{0}}^{1}\left|F_{m, \xi} \circ \gamma(z, t)\right|^{p} d t \\
& \geq b_{1} e^{m\left\langle\gamma(z, 1)-\gamma(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle}-b_{1} e^{m\left\langle\gamma\left(z, 1-r_{0}\right)-\gamma(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle} \\
& \geq b_{1} e^{-m c_{3}\|\gamma(z, 1)-\gamma(\xi, 1)\|^{2}}-e^{-m \alpha} \geq b_{1} e^{-m \beta_{1}\|z-\xi\|^{2}}-e^{-m \alpha}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1}\left|F_{m, \xi} \circ \gamma(z, t)\right|^{p} d t & \leq \int_{1-r_{0}}^{1}\left|F_{m, \xi} \circ \gamma(z, t)\right|^{p} d t+e^{-m \alpha} \\
& \left.\leq b_{2} e^{m\langle\gamma(z, 1)-\gamma(\xi, 1), \bar{p} \gamma(\xi, 1)}\right\rangle
\end{aligned}+e^{-m \alpha} \leq b_{2} e^{-m \beta_{2}\|z-\xi\|^{2}}+e^{-m \alpha} . ~ l
$$

Lemma 3.2. Assume that Ω is a bounded domain, X is a compact subset of $\bar{\Omega}$ and $\gamma: X \times[0,1] \rightarrow \bar{\Omega}$ is a continuous function such that $\gamma(X \times[0,1)) \subset \Omega$. Let f be a continuous complex function on $\bar{\Omega}$ and $\varepsilon, \delta \in(0,1)$. If $\left\{g_{m}\right\}_{m \in \mathbb{N}}$ is a sequence of
continuous complex functions on $\bar{\Omega}$ such that $\lim _{m \rightarrow \infty} g_{m}(z)=0$ for $z \in \Omega$, then there exists $m_{0} \in \mathbb{N}$ such that

$$
\begin{aligned}
& \int_{0}^{1}\left|\left(f+g_{m}\right) \circ \gamma(z, t)\right|^{p} d t \geq-\varepsilon+\int_{0}^{1}|f \circ \gamma(z, t)|^{p} d t+\delta^{p} \int_{0}^{1}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t \\
& \int_{0}^{1} \underbrace{\left|\left(f+g_{m}\right) \circ \gamma(z, t)\right|^{p}}_{L_{m}(z, t)} d t \leq \varepsilon+\int_{0}^{1}|f \circ \gamma(z, t)|^{p} d t+\delta^{-p} \int_{0}^{1}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t
\end{aligned}
$$

for $m>m_{0}, z \in X$.
Proof. Let $M:=\sup _{z \in \bar{\Omega}}|f(z)|$ and $r \in\left(\frac{1}{2}, 1\right)$ be such that $\frac{(1-r) 2 M^{p}}{(1-\delta)^{p}} \leq \frac{\varepsilon}{4}$. We may consider a continuous function $\Psi: X \times \overline{\mathbb{D}} \ni(z, \lambda) \rightarrow \int_{0}^{r}|f \circ \gamma(z, t)+\lambda|^{p} d t$. There exists $\alpha \in\left(0, \sqrt[p]{\frac{\varepsilon}{4}}\right)$ such that $|\Psi(z, 0)-\Psi(z, \lambda)| \leq \frac{\varepsilon}{4}$ for $z \in X$, and $|\lambda| \leq \alpha$. As $\lim _{m \rightarrow \infty} g_{m}(z)=0$ for $z \in \Omega$, there exists m_{0} such that $\left|g_{m} \circ \gamma(z, t)\right| \leq \alpha$ for $m>m_{0}, 0 \leq t \leq r$ and $z \in X$. In particular for $m>m_{0}$ and $z \in X$ we can estimate:

$$
\begin{aligned}
\int_{0}^{r} L_{m}(z, t) d t & \geq-\frac{\varepsilon}{4}+\int_{0}^{r}|f \circ \gamma(z, t)|^{p} d t \\
& \geq-\frac{\varepsilon}{2}+\int_{0}^{r}|f \circ \gamma(z, t)|^{p} d t+\delta^{p} \int_{0}^{r}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{r} L_{m}(z, t) d t & \leq \frac{\varepsilon}{4}+\int_{0}^{r}|f \circ \gamma(z, t)|^{p} d t \\
& \leq \frac{\varepsilon}{2}+\int_{0}^{r}|f \circ \gamma(z, t)|^{p} d t+\delta^{-p} \int_{0}^{r}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t
\end{aligned}
$$

If $t \in A_{1, m, z}:=\left\{t \in[r, 1]:\left|\left(f+g_{m}\right) \circ \gamma(z, t)\right| \leq \delta\left|g_{m} \circ \gamma(z, t)\right|\right\}$ then $\left|g_{m} \circ \gamma(z, t)\right| \leq \frac{|f \circ \gamma(z, t)|}{1-\delta} \leq \frac{M}{1-\delta}$. In particular we may estimate

$$
\begin{aligned}
\int_{r}^{1} L_{m}(z, t) d t \geq & \int_{[r, 1] \backslash A_{1, m, z}} \delta^{p}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t \geq \int_{r}^{1}|f \circ \gamma(z, t)|^{p} d t+ \\
& +\delta^{p} \int_{r}^{1}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t-\int_{r}^{1} M^{p} d t-\int_{r}^{1} \frac{M^{p} \delta^{p}}{(1-\delta)^{p}} d t \\
\geq & -\frac{\varepsilon}{2}+\int_{r}^{1}|f \circ \gamma(z, t)|^{p} d t+\delta^{p} \int_{r}^{1}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t .
\end{aligned}
$$

If $t \in A_{2, m, z}:=\left\{t \in[r, 1]:|f \circ \gamma(z, t)|+\left|g_{m} \circ \gamma(z, t)\right| \geq \delta^{-1}\left|g_{m} \circ \gamma(z, t)\right|\right\}$ then $\left|g_{m} \circ \gamma(z, t)\right| \leq \frac{|f \circ \gamma(z, t)|}{\delta^{-1}-1} \leq \frac{\delta M}{1-\delta}$. In particular

$$
\begin{aligned}
\int_{r}^{1} L_{m}(z, t) d t \leq & \int_{[r, 1] \backslash A_{2, m, z}} \delta^{-p}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t+\int_{r}^{1} \frac{M^{p}}{(1-\delta)^{p}} d t \\
\leq & \int_{r}^{1}|f \circ \gamma(z, t)|^{p} d t+\delta^{-p} \int_{r}^{1}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t+ \\
& -\int_{r}^{1} M^{p} d t-\int_{r}^{1} \frac{2 M^{p}}{(1-\delta)^{p}} d t \\
& \leq-\frac{\varepsilon}{2}+\int_{r}^{1}|f \circ \gamma(z, t)|^{p} d t+\delta^{-p} \int_{r}^{1}\left|g_{m} \circ \gamma(z, t)\right|^{p} d t .
\end{aligned}
$$

Lemma 3.3. There exist constants $C>c>0$ such that if T is a compact subset of $\bar{\Omega} \backslash X$, $\varepsilon \in(0,1)$ and H is a continuous strictly positive function on X, then we can choose $N_{1}>0$ such that for $m \geq N_{1}$ and each $\frac{C}{\sqrt{m}}$-separated subset A of X, the holomorphic function $g_{m, A}:=\sum_{\xi \in A}(H(\xi))^{\frac{1}{p}} F_{m, \xi}$ satisfies

1. $\left|g_{m, A}(w)\right| \leq \varepsilon$ for $w \in T$;
2. $\int_{0}^{1}\left|g_{m, A}(\gamma(z, t))\right|^{p} d t<2 H(z)$ for all $z \in X$;
3. $\int_{0}^{1}\left|g_{m, A}(\gamma(z, t))\right|^{p} d t>\frac{H(z)}{2}$ for each $z \in X$ such that $\|z-\xi\| \leq \frac{c}{\sqrt{m}}$ for some $\xi \in A$.

Proof. Let us denote $a=\min \left\{1, \frac{1}{p}\right\}$. We may assume that $\|H\|_{\infty}=1$. Let $0<$ $\delta<b_{1}<1<b_{2}$ be such that

$$
\begin{align*}
(1+\delta)^{a}\left(b_{2}+\delta\right)^{a}+3 \delta^{a} & <2^{a} \tag{3.4}\\
(1-\delta)^{a}\left(b_{1} e^{-\frac{1}{16}}-\delta\right)^{a}-3 \delta^{a} & >2^{-a} \tag{3.5}
\end{align*}
$$

Now we can choose $\alpha, \beta_{1}, \beta_{2}, N_{0}, r_{0}>0$ from Lemma 3.1. Let $c=\frac{1}{4 \sqrt{\beta_{1}}}$. There exists $C>0$ such that $C>c$ and for $k \in \mathbb{N} \backslash\{0\}$ we have

$$
b_{2}^{a}(k+2)^{2 d} e^{-\frac{a c^{2} \beta_{2} k^{2}}{4}} \leq 2^{-k} .
$$

Due to Lemma 2.2 we have $\# A \leq\left(\frac{4 R \sqrt{m}}{C}\right)^{2 d}$.
Let $t:=\sup _{w \in T, \xi \in X} \frac{1}{p}\left\langle w-\gamma(\xi, 1), \overline{\rho_{\gamma(\xi, 1)}}\right\rangle$. As $t<0$, for $w \in T$, sufficiently large N_{1} and $m \geq N_{1}$, we may estimate

$$
\left|g_{m, A}(w)\right| \leq \sum_{\xi \in A}(m q)^{\frac{1}{p}} e^{m t} \leq\left(\frac{4 R \sqrt{m}}{C}\right)^{2 d}(m q)^{\frac{1}{p}} e^{m t} \leq \varepsilon
$$

and conclude that property (1) holds.
For $z \in X$ let us denote

$$
A_{k}(z):=\left\{\xi \in A: \frac{C k}{2 \sqrt{m}} \leq\|z-\xi\| \leq \frac{C(k+1)}{2 \sqrt{m}}\right\} .
$$

Let now $s>0$ be so small that $\|\eta-\xi\| \leq s \Longrightarrow(1-\delta) H(\eta) \leq H(\xi) \leq$ $(1+\delta) H(\eta)$. We may assume that N_{1} is large enough that $s \geq \frac{C}{2 \sqrt{N_{1}}}+\frac{c}{\sqrt{N_{1}}}$ and $e^{-a N_{1} \alpha} \leq \delta$. Observe that we may estimate

$$
b_{2}^{a} \sum_{k: C(k+1) \geq 2 s \sqrt{m}}(k+2)^{2 d} e^{-\frac{a C^{2} \beta_{2} k^{2}}{4}} \leq \sum_{k \geq\left[\frac{2 s \sqrt{m}}{C}-1\right]} 2^{-k} \leq 2^{-\frac{2 s \sqrt{m}}{C}+1}
$$

Now if $z \in X$ and $A_{0}(z)=\varnothing$, then, due to (3.4), Lemma 2.2 and Lemma 3.1, we may estimate, for N_{1} large enough and $m \geq N_{1}$

$$
\begin{aligned}
\left(\int_{0}^{1}\left|g_{m, A}(\gamma(z, t))\right|^{p} d t\right)^{a} \leq & \sum_{k=1}^{\infty} \sum_{\xi \in A_{k}(z)}\left(H(\xi) \int_{0}^{1}\left|F_{m, \xi}(\gamma(z, t))\right|^{p} d t\right)^{a} \\
\leq & \sum_{k=1}^{\infty} \sum_{\xi \in A_{k}(z)} H(\xi)^{a}\left(b_{2}^{a} e^{-\frac{a C^{2} \beta_{2} k^{2}}{4}}+e^{-a m \alpha}\right) \\
\leq & (1+\delta)^{a} H(z)^{a} \sum_{k=1}^{\left[\frac{2 s \sqrt{m}}{c}\right]} b_{2}^{a}(k+2)^{2 d} e^{-\frac{a C^{2} \beta_{2} k^{2}}{4}}+ \\
& +2^{-\frac{2 s \sqrt{m}}{c}+1}+\left(\frac{4 R \sqrt{m}}{C}\right)^{2 d} e^{-a m \alpha} \\
\leq & \delta^{a}(1+\delta)^{a} H(z)^{a}+\delta^{a} H(z)^{a} \leq 3 \delta^{a} H(z)^{a} .
\end{aligned}
$$

Due to Lemma 2.2, if $A_{0}(z) \neq \varnothing$ then $A_{0}(z)=\left\{\xi_{0}\right\}$ for some $\xi_{0} \in \partial \Omega$ where $\|z-\xi\| \leq \frac{C}{2 \sqrt{m}} \leq s$. In particular

$$
\begin{aligned}
\left(\int_{0}^{1}\left|g_{m, A}(\gamma(z, t))\right|^{p} d t\right)^{a} & \leq\left(H\left(\xi_{0}\right) \int_{0}^{1}\left|F_{m, \xi_{0}}(\gamma(z, t))\right|^{p} d t\right)^{a}+3 \delta^{a} H(z)^{a} \\
& \leq H\left(\xi_{0}\right)^{a}\left(b_{2}+e^{-m \alpha}\right)^{a}+3 \delta^{a} H(z)^{a} \\
& \leq H(z)^{a}(1+\delta)^{a}\left(b_{2}+\delta\right)^{a}+3 \delta^{a} H(z)^{a}<2^{a} H(z)^{a}
\end{aligned}
$$

for $z \in X, N_{1}$ large enough and $m \geq N_{1}$, which gives property (2).
Now let $\xi_{1} \in A$ be such that $\left\|z-\xi_{1}\right\| \leq \frac{c}{\sqrt{m}} \leq s$. Due to Lemma 3.1 and (3.5) we may estimate, for N_{1} large enough and $m \geq N_{1}$

$$
\begin{aligned}
\left(\int_{0}^{1}\left|g_{m, A}(\gamma(z, t))\right|^{p} d t\right)^{a} & \geq\left(H\left(\xi_{0}\right) \int_{0}^{1}\left|F_{m, \xi_{1}}(\gamma(z, t))\right|^{p} d t\right)^{a}-3 \delta^{a} H(z)^{a} \\
& \geq H\left(\xi_{1}\right)^{a}\left(b_{1} e^{-\frac{1}{16}}-e^{-m \alpha}\right)^{a}-3 \delta^{a} H(z)^{a} \\
& \geq H(z)^{a}(1-\delta)^{a}\left(b_{1} e^{-\frac{1}{16}}-\delta\right)^{a}-3 \delta^{a} H(z)^{a}>\frac{H(z)^{a}}{2^{a}}
\end{aligned}
$$

which gives property (3).
Now we are ready to prove the following result:
Theorem 3.4. There exists a natural number K such that, if $\varepsilon \in(0,1), T$ is a compact subset of $\bar{\Omega} \backslash X$ and H is a continuous, strictly positive function on X, then there exist holomorphic entire functions f_{1}, \ldots, f_{K} such that $\left\|f_{j}\right\|_{T} \leq \varepsilon$, and one has for $z \in X$ the following inequality

$$
\frac{H(z)}{4}<\max _{j=1, \ldots, K} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t<H(z) .
$$

Proof. Let $C>c>0$ be the constants from Lemma 3.3. Due to Lemma 2.3 there exists a natural number K such that each $\frac{c}{\sqrt{m}}$-separated subset of X can be partitioned into K disjoint $\frac{C}{\sqrt{m}}$-separated sets. Let A be a maximal $\frac{c}{\sqrt{m}}$-separated subset of X. It can be partitioned into A_{1}, \ldots, A_{K} disjoint $\frac{C}{\sqrt{m}}$-separated sets. Now due to Lemma 3.3 there exists m and holomorphic, entire functions $f_{j}:=g_{m, A_{j}}$ such that $\left\|f_{j}\right\|_{T} \leq \varepsilon$ and

1. $\int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t<H(z)$ for all $z \in X$;
2. $\int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t>\frac{H(z)}{4}$ for each $z \in X$ such that $\|z-\xi\| \leq \frac{c}{\sqrt{m}}$ for some $\xi \in A_{j}$.

As A is a maximal $\frac{c}{\sqrt{m}}$-separated subset of X there exists, for $z \in X, j_{0} \in\{1, \ldots, K\}$ and $\xi_{j_{0}} \in A_{j_{0}}$ such that $\left\|z-\xi_{j_{0}}\right\| \leq \frac{c}{\sqrt{m}}$. In particular

$$
\frac{H(z)}{4}<\int_{0}^{1}\left|f_{j_{0}}(\gamma(z, t))\right|^{p} d t \leq \max _{j=1, \ldots, K} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t<H(z)
$$

4 Consequences of Theorem 3.4 for strictly pseudoconvex domains

In this section we assume that Ω is a bounded, strictly pseudoconvex domain with boundary of class C^{2}, X is a compact subset of $\partial \Omega$ and $\gamma: X \times[0,1] \rightarrow \bar{\Omega}$ defines a set of real directions on Ω.

As a first application of Theorem 3.4 we give the following result.
Theorem 4.1. It is possible to choose a neighbourhood W of $\bar{\Omega}$ and a natural number K such that, if $\varepsilon \in(0,1), T$ is a compact subset of $\bar{\Omega} \backslash X$ and H is a continuous, strictly positive function on X, then there exist holomorphic functions f_{1}, \ldots, f_{K} on W such that $\left\|f_{j}\right\|_{T} \leq \varepsilon$, and one has for $z \in X$ the following inequality

$$
\frac{H(z)}{4}<\max _{j=1, \ldots, K} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t<H(z)
$$

Proof. By Fornaess' embedding theorem [7], there exists a neighbourhood W of $\bar{\Omega}$, a strictly convex, bounded domain $\widetilde{\Omega} \subset \mathbb{C}^{N}$ with boundary of class C^{2} and a holomorphic mapping $\psi: U \rightarrow \mathbb{C}^{N}$, such that ψ maps W biholomorphically onto some complex submanifold $\psi(W)$ of \mathbb{C}^{N}, such that

1. $\psi(\Omega) \subset \widetilde{\Omega}$;
2. $\psi(\partial \Omega) \subset \partial \widetilde{\Omega}$;
3. $\psi(W \backslash \bar{\Omega}) \subset \mathbb{C}^{N} \backslash \overline{\widetilde{\Omega}}$;
4. $\psi(W)$ intersects $\partial \widetilde{\Omega}$ transversally.

Let $\widetilde{X}=\psi(X)$. Observe that

$$
\widetilde{\gamma}: \widetilde{X} \times[0,1] \ni(z, t) \rightarrow \psi\left(\gamma\left(\psi^{-1}(z), t\right)\right) \in \overline{\widetilde{\Omega}}
$$

defines a set of real directions on $\widetilde{\Omega}$. Let K be the natural number from Theorem 3.4 used for the domain $\widetilde{\Omega}$. Now due to Theorem 3.4 there exist entire holomorphic functions $\widetilde{f}_{1}, \ldots, \widetilde{f}_{K}$ on \mathbb{C}^{N} such that $\left\|\widetilde{f}_{j}\right\|_{\psi(T)} \leq \varepsilon$, and we have for $z \in \widetilde{X}$ the following inequality

$$
\frac{H\left(\psi^{-1}(z)\right)}{4}<\max _{j=1, \ldots, K} \int_{0}^{1}\left|\widetilde{f}_{j}(\widetilde{\gamma}(z, t))\right|^{p} d t<H\left(\psi^{-1}(z)\right)
$$

In particular the functions $f_{j}=\widetilde{f}_{j} \circ \psi$ have the required properties.
¿From this moment on we assume that K and W are as in Theorem 4.1.
Lemma 4.2. Let g_{1}, \ldots, g_{K} be continuous complex functions on $\bar{\Omega}, T$ be a compact subset of $\bar{\Omega} \backslash X, \varepsilon>0$ and u be a strictly positive, continuous function on X. Then there exist functions f_{1}, \ldots, f_{K} holomorphic on W such that

1. $\left|f_{j}(z)\right| \leq \varepsilon$ for $z \in T$;
2. $u(z)-\varepsilon<\sum_{j=1}^{K} \int_{0}^{1}\left|\left(f_{j}+g_{j}\right)(\gamma(z, t))\right|^{p} d t-\sum_{j=1}^{K} \int_{0}^{1}\left|g_{j}(\gamma(z, t))\right|^{p} d t<u(z)$ for $z \in X$.

Proof. Let $\theta=1-\frac{1}{4 K}, 1-\delta^{2 p}=\frac{1-\theta}{4}$ and $g(z)=\sum_{j=1}^{K} \int_{0}^{1}\left|g_{j}(\gamma(z, t))\right|^{p} d t$. Let us define a sequence of continuous functions H_{j} such that, for $z \in \partial \Omega$, we have

$$
0=H_{0}(z)<\ldots<H_{j}(z)<H_{j+1}(z)<\ldots<\lim _{j \rightarrow \infty} H_{j}(z)=g(z)+u(z)
$$

Now we construct sequences $\left\{f_{j, k}\right\}_{k \in \mathbb{N}}^{j=1, \ldots, K}$ of holomorphic functions on W such that, if $v_{m}(z):=\sum_{j=1}^{K} \int_{0}^{1}\left|\left(g_{j}+\sum_{k=1}^{m} f_{j, k}\right)(\gamma(z, t))\right|^{p} d t$ then
(a) $\left|f_{j, k}(z)\right| \leq \frac{\varepsilon}{2^{k}}$ for $z \in T$;
(b) $0<H_{m}(z)-v_{m}(z)<2 \sum_{k=1}^{m}\left(\frac{1+\theta}{2}\right)^{m-k}\left(H_{k}(z)-H_{k-1}(z)\right)$ for $z \in X$ and $m \in \mathbb{N}$.

If $m=1$ then it is sufficient to select $f_{1,1}=f_{2,1}=\ldots=f_{K, 1}=0$. Now assume that we have constructed holomorphic functions $\left\{f_{j, k}\right\}_{k=1, \ldots, \ldots-1}^{j=1, \ldots, K}$ on W such that (a)-(b) hold. Let us denote

$$
\begin{aligned}
2 \varepsilon_{m} & =\frac{1-\theta_{0}}{4} \inf _{z \in \partial \Omega}\left(H_{m-1}(z)-v_{m-1}(z)\right) \\
G_{m}(z) & =H_{m}(z)-\varepsilon_{m}-v_{m-1}(z) .
\end{aligned}
$$

Due to Lemma 3.2 and Theorem 4.1 there exist $f_{1, m}, \ldots, f_{K, m}$, holomorphic functions on W, such that property (a) holds and:

- $0<G_{m}(z)-\sum_{j=1}^{K} \delta^{-p} \int_{0}^{1}\left|f_{j, m}(\gamma(z, t))\right|^{p} d t<\theta G_{m}(z)$;
- $v_{m}(z) \geq-\varepsilon_{m}+v_{m-1}(z)+\sum_{j=1}^{K} \delta^{p} \int_{0}^{1}\left|f_{j, m}(\gamma(z, t))\right|^{p} d t ;$
- $v_{m}(z) \leq \varepsilon_{m}+v_{m-1}(z)+\sum_{j=1}^{K} \delta^{-p} \int_{0}^{1}\left|f_{j, m}(\gamma(z, t))\right|^{p} d t$.

Now we may estimate

$$
H_{m}(z)>\varepsilon_{m}+v_{m-1}(z)+\delta^{-p} \sum_{j=1}^{K} \int_{0}^{1}\left|f_{j, m}(\gamma(z, t))\right|^{p} d t \geq v_{m}(z)
$$

Moreover

$$
\begin{aligned}
H_{m}(z) & <\varepsilon_{m}+v_{m-1}(z)+\delta^{-p} \sum_{j=1}^{K} \int_{0}^{1}\left|f_{j, m}(\gamma(z, t))\right|^{p} d t+\theta G_{m}(z) \\
& \leq v_{m}(z)+2 \varepsilon_{m}+\left(\left(\delta^{-p}-\delta^{p}\right) \delta^{p}+\theta\right) G_{m}(z) \\
& \leq v_{m}(z)+\frac{1-\theta}{4}\left(H_{m-1}(z)-v_{m-1}(z)\right)+\left(\frac{1-\theta}{4}+\theta\right) G_{m}(z)
\end{aligned}
$$

In particular

$$
\begin{aligned}
H_{m}(z)-v_{m}(z) & <\frac{1+\theta}{2}\left(H_{m-1}(z)-v_{m-1}(z)\right)+\frac{1+3 \theta}{4}\left(H_{m}(z)-H_{m-1}(z)\right) \\
& \leq 2 \sum_{k=1}^{m}\left(\frac{1+\theta}{2}\right)^{m-k}\left(H_{k}(z)-H_{k-1}(z)\right)
\end{aligned}
$$

Let $M:=\sup _{z \in \partial \Omega}(u(z)+g(z))$. There exists m_{0} such that $m\left(\frac{1+\theta}{2}\right)^{m} M<\frac{\varepsilon}{4}$ and $H_{m}(z)-H_{m-1}(z)<\varepsilon_{0}:=\frac{\varepsilon(1-\theta)}{8}$ for $m \geq m_{0}$ and $z \in X$. In particular for $z \in X$ we may estimate

$$
\begin{aligned}
\sum_{k=1}^{2 m}\left(\frac{1+\theta}{2}\right)^{m-k}\left(H_{k}(z)-H_{k-1}(z)\right) & \leq m\left(\frac{1+\theta}{2}\right)^{m} M+\sum_{k=m_{0}}^{2 m}\left(\frac{1+\theta}{2}\right)^{2 m-k} \varepsilon_{0} \\
& \leq \frac{\varepsilon}{4}+\frac{\varepsilon}{4} \leq \frac{\varepsilon}{2}
\end{aligned}
$$

Now we may conclude that there exists $m \in \mathbb{N}$ sufficiently large, such that, for $z \in X$, we have

$$
v_{m}(z)>H_{m}(z)-\sum_{k=1}^{m}\left(\frac{1+\theta}{2}\right)^{m-k}\left(H_{k}(z)-H_{k-1}(z)\right) \geq u(z)+g(z)-\varepsilon .
$$

Observe that the functions $f_{j}=\sum_{k=1}^{m} f_{j, k}$ have the properties (1)-(2).
Now we can prove our second application.
Theorem 4.3. Let $\varepsilon>0, u$ be a lower semi-continuous, strictly positive function on X and T be a compact subset of $\bar{\Omega} \backslash X$. Then there exist holomorphic functions f_{1}, \ldots, f_{K} on Ω such that $\left\|f_{j}\right\|_{T} \leq \varepsilon$ and $\sum_{j=1}^{K} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t=u(z)$ for $z \in X$.

Proof. Let $\left\{T_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of compact sets such that T_{j} is contained in the interior of T_{j+1} for each j and $\bigcup_{j \in \mathbb{N}} T_{j}=\Omega$.

There exists a sequence H_{m} of continuous functions on $\partial \Omega$ such that $0=$ $H_{0}(z)<H_{1}(z)<H_{2}(z)<\ldots<\lim _{j \rightarrow \infty} H_{j}(z)=u(z)$.

Due to Lemma 4.2 there exists a sequence $\left\{f_{j, k}\right\}_{k \in \mathbb{N}}^{j=1, \ldots, K}$ of holomorphic functions on W such that

1. $\left|f_{j, k}(z)\right| \leq 2^{-k_{\varepsilon}}$ for $z \in T_{k} \cup T$;
2. $H_{m}(z)-2^{-m}<\sum_{j=1}^{K} \int_{0}^{1}\left|\sum_{k=1}^{m} f_{j, k}(\gamma(z, t))\right|^{p} d t<H_{m}(z)$ for $z \in X$.

Now it suffices to define $f_{j}=\sum_{k=1}^{\infty} f_{j, k}$ and to observe that the functions f_{1}, \ldots, f_{K} have the required properties.

Now we can solve the Dirichlet problem for plurisubharmonic functions.
Theorem 4.4. Let Ω be a bounded, strictly pseudoconvex domain with boundary of class C^{2} such that $[0,1) \bar{\Omega} \subset \Omega$. Assume that $[0,1] z$ is transversal to $\partial \Omega$ at $z \in \partial \Omega$. Let u be a continuous, strictly positive function on $\partial \Omega$. Then there exist holomorphic functions f_{1}, \ldots, f_{K} such that $v(z)=\sum_{j=1}^{K} \int_{0}^{1}\left|f_{j}(t z)\right|^{2} d t$ is a plurisubharmonic, real analytic function on Ω and continuous on $\bar{\Omega}$. Moreover $u(z)=v(z)$ for $z \in \partial \Omega$.

Proof. Observe that $\gamma: \partial \Omega \times[0,1] \ni(z, t) \rightarrow z t \in \bar{\Omega}$ is a set of real directions on Ω. Let us define a sequence of continuous functions H_{j} such that $0=H_{0}(z)$ and $H_{j}(z)-H_{j-1}(z)=2^{-j} u(z)$. Observe that $\lim _{j \rightarrow \infty} H_{j}(z)=u(z)$. Let $\left\{T_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of compact subsets of Ω such that T_{j} is contained in the interior of T_{j+1} for each j.

Let $\theta=1-\frac{1}{4 K}$ and $1-\delta^{4}=\frac{1-\theta}{4}$. Now we construct sequences $\left\{f_{j, k}\right\}_{k \in \mathbb{N}}^{j=1, \ldots, K}$ of holomorphic functions on W such that
(a) $\left|f_{j, k}(z)\right| \leq 2^{-k}$ for $z \in T_{k}$.
(b) $0<H_{m}(z)-v_{m}(z)<m\left(\frac{1+\theta}{2}\right)^{m-1} u(z)$ for $z \in \partial \Omega$ and $m \in \mathbb{N}$.
(c) $\left|v_{m+1}(z)-v_{m}(z)\right| \leq m\left(\frac{1+\theta}{2}\right)^{m-2} \sup _{w \in \partial \Omega} u(w)$ for $z \in \bar{\Omega}$ and $m \in \mathbb{N}$.
where $v_{m}(z):=\sum_{j=1}^{K} \int_{0}^{1}\left|\sum_{k=1}^{m} f_{j, k}(t z)\right|^{2} d t$ and $v_{0}=0$. If $m=1$ then it is sufficient to choose $f_{1,1}=f_{2,1}=\ldots=f_{K, 1}=0$. Now assume that we have constructed holomorphic functions $\left\{f_{j, k}\right\}_{k=1, \ldots, m-1}^{j=1, \ldots, K}$ on W such that (a)-(c) holds. Let us denote

$$
\begin{aligned}
2 \varepsilon_{m} & =\frac{1-\theta}{4} \inf _{z \in \partial \Omega}\left(H_{m-1}(z)-v_{m-1}(z)\right) \\
G_{m}(z) & =H_{m}(z)-\varepsilon_{m}-v_{m-1}(z) .
\end{aligned}
$$

As $[0,1) \bar{\Omega} \subset \Omega$, due to Lemma 3.2 and Theorem 4.1, there exist $f_{1, m}, \ldots, f_{K, m}$, holomorphic functions on W, such that property (a) holds and:

- $0<G_{m}(z)-\sum_{j=1}^{K} \delta^{-2} \int_{0}^{1}\left|f_{j, m}(t z)\right|^{2} d t<\theta G_{m}(z)$ for $z \in \partial \Omega$;
- $v_{m}(z) \geq-\varepsilon_{m}+v_{m-1}(z)+\sum_{j=1}^{K} \delta^{2} \int_{0}^{1}\left|f_{j, m}(t z)\right|^{2} d t$ for $z \in \bar{\Omega}$;
- $v_{m}(z) \leq \varepsilon_{m}+v_{m-1}(z)+\sum_{j=1}^{K} \delta^{-2} \int_{0}^{1}\left|f_{j, m}(t z)\right|^{2} d t$ for $z \in \bar{\Omega}$.

Now we may estimate, for $z \in \partial \Omega$,

$$
H_{m}(z)>\varepsilon_{m}+v_{m-1}(z)+\delta^{-2} \sum_{j=1}^{K} \int_{0}^{1}\left|f_{j, m}(t z)\right|^{2} d t \geq v_{m}(z)
$$

Moreover for $z \in \partial \Omega$ we have

$$
\begin{aligned}
H_{m}(z) & <\varepsilon_{m}+v_{m-1}(z)+\delta^{-2} \sum_{j=1}^{K} \int_{0}^{1}\left|f_{j, m}(t z)\right|^{2} d t+\theta G_{m}(z) \\
& \leq v_{m}(z)+2 \varepsilon_{m}+\left(\left(\delta^{-2}-\delta^{2}\right) \delta^{2}+\theta\right) G_{m}(z) \\
& \leq v_{m}(z)+\frac{1-\theta}{4}\left(H_{m-1}(z)-v_{m-1}(z)\right)+\left(\frac{1-\theta}{4}+\theta\right) G_{m}(z)
\end{aligned}
$$

In particular we obtain property (b):

$$
\begin{aligned}
H_{m}(z)-v_{m}(z) & <\frac{1+\theta}{2}\left(H_{m-1}(z)-v_{m-1}(z)\right)+\frac{1+3 \theta}{4}\left(H_{m}(z)-H_{m-1}(z)\right) \\
& \leq(m-1)\left(\frac{1+\theta}{2}\right)^{m-1} u(z)+\frac{1+\theta}{2} \frac{u(z)}{2^{m}} \leq m\left(\frac{1+\theta}{2}\right)^{m-1} u(z) .
\end{aligned}
$$

Moreover for $z \in \bar{\Omega}$ we have

$$
\left|v_{m+1}(z)-v_{m}(z)\right| \leq h_{m}(z):=\varepsilon_{m}+\delta^{-p} \int_{0}^{1}\left|f_{j, m}(t z)\right|^{2} d t
$$

Due to (b) we may estimate, for $z \in \partial \Omega$,

$$
\begin{aligned}
h_{m}(z) & \leq \varepsilon_{m}+G_{m}(z) \leq H_{m}(z)-v_{m-1}(z) \leq\left(H_{m}-H_{m-1}+H_{m-1}-v_{m-1}\right)(z) \\
& \leq 2^{-m} u(z)+(m-1)\left(\frac{1+\theta}{2}\right)^{m-2} u(z) \leq m\left(\frac{1+\theta}{2}\right)^{m-2} u(z) .
\end{aligned}
$$

As h_{m} is a continuous and plurisubharmonic function, for $z \in \bar{\Omega}$ we obtain property (c):

$$
\left|v_{m+1}(z)-v_{m}(z)\right| \leq h_{m}(z) \leq m\left(\frac{1+\theta}{2}\right)^{m-2} \sup _{w \in \partial \Omega} u(w)
$$

Let us now define holomorphic functions $f_{j}=\sum_{k=1}^{\infty} f_{j, k}$ on Ω. Observe that $v_{m} \rightarrow$ $v:=\sum_{j=1}^{K} \int_{0}^{1}\left|\sum_{k=1}^{\infty} f_{j, k}(t z)\right|^{2} d t$ uniformly on $\bar{\Omega}$. In particular v is a continuous function on $\bar{\Omega}$, plurisubharmonic and real analytic on Ω. Moreover $u(z)=v(z)$ for $z \in \partial \Omega$.

Before we give the construction of a holomorphic function with given integrals on almost all real directions, we need some additional results.

Lemma 4.5. Let $\varepsilon \in(0,1), \eta$ be a probability measure on X. Let U be an open subset of X such that $\eta(U)>0$. Moreover let T be a compact subset of $\bar{\Omega} \backslash X, g$ be a complex continuous function on $\bar{\Omega}$ and H be a continuous, strictly positive function on X. Then there exists a holomorphic function f on W and an open subset V of U such that

1. $\|f\|_{T} \leq \varepsilon ;$
2. $-\varepsilon<\int_{0}^{1}|(f+g)(\gamma(z, t))|^{p} d t-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t<H(z)$ for $z \in X$;
3. $\frac{H(z)}{5}<\int_{0}^{1}|(f+g)(\gamma(z, t))|^{p} d t-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t$ for $z \in V$;
4. $\bar{V} \subset U$ and $\eta(\bar{V})=\eta(V)>\frac{\eta(U)}{K+1}$.

Proof. Let $M:=\sup _{z \in \partial \Omega} H(z)$. There exists $a, \widetilde{\epsilon} \in(0,1)$ such that for $z \in X$ we have $H(z)>a H(z)+2 \widetilde{\epsilon}>\frac{a H(z)}{4}-2 \widetilde{\epsilon}>\frac{H(z)}{5}$ and $-\varepsilon \leq-2 \widetilde{\epsilon}$. Let $\delta \in(0,1)$ be such that $\left(1-\delta^{p}\right) M<\widetilde{\epsilon}$ and $\left(\delta^{-p}-1\right) M<\widetilde{\epsilon}$.

Due to Theorem 4.1 and Lemma 3.2 there exist f_{1}, \ldots, f_{K}, holomorphic functions on W, such that

1. $\left\|f_{j}\right\|_{T} \leq \varepsilon$;
2. $\frac{a H(z)}{4}<\max _{j=1, \ldots, K} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t<a H(z)$;
3. $\int_{0}^{1}\left|\left(f_{j}+g\right)(\gamma(z, t))\right|^{p} d t \geq-\widetilde{\epsilon}+\int_{0}^{1}|g(\gamma(z, t))|^{p} d t+\delta^{p} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t$;
4. $\int_{0}^{1}\left|\left(f_{j}+g\right)(\gamma(z, t))\right|^{p} d t \leq \widetilde{\epsilon}+\int_{0}^{1}|g(\gamma(z, t))|^{p} d t+\delta^{-p} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t$.

There exists $j_{0} \in\{1, \ldots, K\}$ and an open subset V_{0} of U such that $\int_{0}^{1}\left|f_{j_{0}}(\gamma(z, t))\right|^{p} d t=\max _{j=1, \ldots, K} \int_{0}^{1}\left|f_{j}(\gamma(z, t))\right|^{p} d t$ for $z \in V_{0}$ and $\eta\left(V_{0}\right) \geq \frac{1}{K}$. Let $f=f_{j_{0}}$. Now for $z \in V_{0}$ we obtain

$$
\begin{aligned}
\frac{a H(z)}{4}< & \int_{0}^{1}|f(\gamma(z, t))|^{p} d t \leq \int_{0}^{1}|(f+g)(\gamma(z, t))|^{p} d t \\
& +\widetilde{\epsilon}-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t+\left(1-\delta^{p}\right) M
\end{aligned}
$$

In particular

$$
\frac{H(z)}{5}<\frac{a H(z)}{4}-2 \widetilde{\epsilon} \leq \int_{0}^{1}|(f+g)(\gamma(z, t))|^{p} d t-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t
$$

In a similar way we obtain for $z \in X$

$$
-\varepsilon \leq-2 \widetilde{\epsilon} \leq \int_{0}^{1}|(f+g)(\gamma(z, t))|^{p} d t-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t
$$

Moreover for $z \in X$ we have

$$
\begin{aligned}
a H(z)> & \int_{0}^{1}|f(\gamma(z, t))|^{p} d t \geq \int_{0}^{1}|(f+g)(\gamma(z, t))|^{p} d t \\
& -\widetilde{\epsilon}-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t-\left(\delta^{-p}-1\right) M .
\end{aligned}
$$

In particular

$$
H(z)>a H(z)+2 \widetilde{\epsilon} \geq \int_{0}^{1}|(f+g)(\gamma(z, t))|^{p} d t-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t
$$

There exists a set S closed in X and such that $S \subset V_{0}, \eta(S)>\frac{\eta(U)}{K+1}$. Let us denote $S^{r}:=\left\{z \in X: \inf _{w \in U}\|z-w\|<r\right\}$. Now there exists $r_{0}>0$ such that $\overline{S^{r}} \subset V_{0}$ for $0<r<r_{0}$. As $\left(0, r_{0}\right)$ is an uncountable set there exists $r_{1} \in\left(0, r_{0}\right)$ such that $\mu\left(\partial S^{r_{1}}\right)=0$. Now it is sufficient to choose $V=S^{r_{1}}$. In particular $\mu(\bar{V})=\mu(\bar{V})>\frac{\eta(U)}{K+1}$.
Lemma 4.6. Let $\varepsilon, a \in(0,1), \eta$ be a probability measure on X and T be a compact subset of $\bar{\Omega} \backslash X$. If H is a continuous strictly positive function on X and g is a complex continuous function on $\bar{\Omega}$ then there exists an open subset V of X and a holomorphic function f on W such that:

1. $|f(z)| \leq \varepsilon$ for $z \in T$;
2. $-\varepsilon<\int_{0}^{1}|(g+f)(\gamma(z, t))|^{p} d t-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t<H(z)$ for $z \in \partial \Omega$;
3. $\int_{0}^{1}|(g+f)(\gamma(z, t))|^{p} d t>a H(z)+\int_{0}^{1}|g(\gamma(z, t))|^{p} d t$ for $z \in V$;
4. $\eta(\bar{V})=\eta(V)>1-\varepsilon$.

Proof. First we prove that for $m \in \mathbb{N}$ and U an open subset of X, there exists an open subset V of $\partial \Omega$ and a holomorphic function f on W such that:
(a) $|f(z)| \leq \varepsilon$ for $z \in T$;
(b) $-\varepsilon<\int_{0}^{1}|(g+f)(\gamma(z, t))|^{p} d t-\int_{0}^{1}|g(\gamma(z, t))|^{p} d t<H(z)$ for $z \in X$;
(c) $\int_{0}^{1}|(g+f)(\gamma(z, t))|^{p} d t>\left(1-\frac{4^{m}}{5^{m}}\right) H(z)+\int_{0}^{1}|g(\gamma(z, t))|^{p} d t$ for $z \in V$;
(d) $\bar{V} \subset U$ and $\eta(\bar{V})=\eta(V)>\frac{\mu(U)}{(K+1)^{m}}$.

Due to Lemma 4.5 there exist $\left\{f_{m}\right\}_{m \in \mathbb{N}}$, a sequence of holomorphic functions on W, and a sequence $\left\{V_{m}\right\}_{m \in \mathbb{N}}$ of open subsets of X such that for $m \in \mathbb{N} \backslash\{0\}$

- $\left|f_{m}(z)\right| \leq \frac{\varepsilon}{2^{m}}$ for $z \in T$;
- $-\frac{\varepsilon}{2^{m}}<v_{m+1}(z)-v_{m}(z)<H_{m}(z)$ for $z \in X ;$
- $v_{m+1}(z)-v_{m}(z)>\frac{1}{5} H_{m}(z)$ for $z \in V_{m} ;$
- $\bar{V}_{m+1} \subset V_{m} \subset V_{0}=U$ and $\eta\left(\bar{V}_{m}\right)=\eta\left(V_{m}\right)>\frac{\eta\left(V_{m-1}\right)}{K+1}$,
where $v_{m}(z)=\int_{0}^{1}\left|\left(g+\sum_{k=1}^{m-1} f_{k}\right)(\gamma(z, t))\right|^{p} d t, H_{1}=H$ and $H_{m+1}(z)=H_{m}(z)-$ $v_{m+1}(z)+v_{m}(z)$.

Let $f=\sum_{k=1}^{m} f_{k}$ and $V=V_{m}$. It is sufficient to prove the properties (b)-(c).

Observe that

$$
H_{m}-H_{1}=\sum_{k=1}^{m-1}\left(H_{k+1}-H_{k}\right)=-\sum_{k=1}^{m-1}\left(v_{k+1}-v_{k}\right)=-v_{m}+v_{1}
$$

In particular $-\varepsilon<v_{m+1}(z)-v_{1}(z)<H_{1}(z)=H(z)$. Now it is sufficient to prove that for $z \in V_{m}$ we have

$$
\begin{equation*}
v_{m+1}(z)-v_{1}(z)>\left(1-\frac{4^{m}}{5^{m}}\right) H(z) \tag{4.1}
\end{equation*}
$$

For $m=1$ inequality (4.1) is true. Now we assume that (4.1) holds for some $m \in \mathbb{N}$. We then obtain for $z \in V_{m+1}$

$$
\begin{aligned}
v_{m+2}(z)-v_{1}(z) & =v_{m+2}(z)-v_{m+1}(z)+v_{m+1}(z)-v_{1}(z) \\
& >\frac{H_{m+1}(z)}{5}+v_{m+1}(z)-v_{1}(z)> \\
& >\frac{H(z)}{5}+\frac{4}{5}\left(1-\frac{4^{m}}{5^{m}}\right) H(z)=\left(1-\frac{4^{m+1}}{5^{m+1}}\right) H(z)
\end{aligned}
$$

which proves (4.1) and gives the construction of an open subset V of $\partial \Omega$ and a holomorphic function f on W such that (a)-(d) holds.

Let $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ be a sequence of strictly positive numbers and m be a natural number sufficiently large so that $\left(1-\frac{4^{m}}{5^{m}}\right) H(z)-\sum_{k=1}^{\infty} \varepsilon_{k}>a H(z)$ for $z \in X$ and $\sum_{k=1}^{\infty} \varepsilon_{k}<\varepsilon$. Now using (a)-(d) we can construct a sequence $\left\{V_{k}\right\}_{k \in \mathbb{N}}$ of open subsets of X and a sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ of holomorphic functions on W such that
(e) $\left|f_{k}(z)\right| \leq \varepsilon_{k}$ for $z \in T$;
(f) $-\varepsilon_{k}<\omega_{k+1}(z)-\omega_{k}(z)<H_{k}(z)$ for $z \in X ;$
(g) $\omega_{k+1}(z)>\left(1-\frac{4^{m}}{5^{m}}\right) H_{k}(z)+\omega_{k}(z)$ for $z \in V_{k}$;
(h) $\bar{V}_{k} \subset E \backslash \bigcup_{j=1}^{k-1} \bar{V}_{j}$ and $\eta\left(\bar{V}_{k}\right)=\eta\left(V_{k}\right)>\frac{1-\sum_{j=1}^{k-1} \eta\left(V_{j}\right)}{(K+1)^{m}}$,
where $\omega_{k}(z)=\int_{0}^{1}\left|\left(g+\sum_{j=1}^{k} f_{j}\right)(\gamma(z, t))\right|^{p} d t, H_{1}=H$ and $H_{m+1}(z)=H_{m}(z)-$ $\omega_{m+1}(z)+\omega_{m}(z)$. Observe that $H_{m}-H_{1}=-\omega_{m}+\omega_{1}$.

As $\sum_{j=1}^{\infty} \eta\left(V_{j}\right) \leq 1$ it holds that $\lim _{k \rightarrow \infty} \frac{1-\sum_{j=1}^{k-1} \eta\left(V_{j}\right)}{(K+1)^{m}}=0$. In particular there exists $n \in \mathbb{N}$ sufficiently large so that $1-\varepsilon<\sum_{j=1}^{n} \eta\left(V_{j}\right)$. Let us now define $V=\bigcup_{j=1}^{n} V_{j}$ and $f=\sum_{j=1}^{n} f_{j}$.

First we prove the properties (1),(4): $\eta(V)=\sum_{j=1}^{n} \eta\left(V_{j}\right)>1-\varepsilon$ and $|f(z)| \leq$ $\sum_{j=1}^{n} \varepsilon_{j}<\varepsilon$ for $z \in T$.

As $\omega_{1}=H_{n}-H+\omega_{n}$, property (2) is also obvious: $-\varepsilon<-\sum_{j=1}^{n} \varepsilon_{j}<$ $\omega_{n+1}(z)-\omega_{1}(z)<H(z)$ for $z \in X$.

Now let $z \in V$. There exists $k \in\{1, \ldots, n\}$ such that $z \in V_{k}$. As $H_{k}=H-\omega_{k}+$ ω_{1}, we obtain property (3):

$$
\begin{aligned}
\omega_{n+1}(z)-\omega_{1}(z) & =\sum_{j=k+1}^{n}\left(\omega_{j+1}(z)-\omega_{j}(z)\right)+\omega_{k}(z)-\omega_{1}(z)+\omega_{k+1}(z)-\omega_{k}(z) \\
& >-\sum_{j=k+1}^{\infty} \varepsilon_{j}+\omega_{k}(z)-\omega_{1}(z)+\left(1-\frac{4^{m}}{5^{m}}\right) H_{k}(z) \\
& \geq-\sum_{j=k+1}^{\infty} \varepsilon_{j}+\frac{4^{m}}{5^{m}}\left(\omega_{k}(z)-\omega_{1}(z)\right)+\left(1-\frac{4^{m}}{5^{m}}\right) H(z) \\
& \geq-\sum_{j=1}^{\infty} \varepsilon_{j}+\left(1-\frac{4^{m}}{5^{m}}\right) H(z) \geq a H(z) .
\end{aligned}
$$

Now we are ready to prove the following result.
Theorem 4.7. Let $\varepsilon>0, \eta$ be a probability measure on X and T be a compact subset of $\bar{\Omega} \backslash X$. If H is a lower semicontinuous, strictly positive function on X, then there exists a function f holomorphic on Ω and continuous on $\bar{\Omega} \backslash X$, such that $\|f\|_{T}<\varepsilon$, $\int_{0}^{1}|(f \circ \gamma)(z, t)|^{p} d t \leq H(z)$ for $z \in X$ and

$$
\eta\left(\left\{z \in X: \int_{0}^{1}|(f \circ \gamma)(z, t)|^{p} d t=H(z)\right\}\right)=1
$$

Proof. There exists a sequence of continuous, strictly positive functions $\left\{G_{k}\right\}_{k \in \mathbb{N}}$ such that $0<G_{j}(z)<G_{j+1}(z)<\ldots \lim _{j \rightarrow \infty} G_{j}(z)=H(z)$. Let $\left\{T_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of compact subsets of $\bar{\Omega}$ such that $T_{k} \subset T_{k+1}$, the interior of T_{k} is contained in the interior of T_{k+1} and $\bigcup_{k=1}^{\infty} T_{k}=\bar{\Omega} \backslash X$. Let $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ be a sequence of strictly positive numbers such that $\sum_{k=1}^{\infty} \varepsilon_{k}<1$. Due to Lemma 4.6 there exists a sequence $\left\{V_{k}\right\}_{k \in \mathbb{N}}$ of open subsets of X and a sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ of holomorphic functions on W such that
(a) $\left|f_{k}(z)\right| \leq \varepsilon_{k} \varepsilon$ for $z \in T_{k} \cup T$;
(b) $\omega_{k+1}(z)-\omega_{k}(z)<H_{k}(z)$ for $z \in X$;
(c) $\omega_{k+1}(z)-\omega_{k}(z)>\left(1-\varepsilon_{k}\right) H_{k}(z)$ for $z \in V_{k}$;
(d) $\eta\left(\bar{V}_{k}\right)=\eta\left(V_{k}\right)>1-\varepsilon_{k}$,
where $\omega_{1}=0, \omega_{m}(z)=\int_{0}^{1}\left|\left(\sum_{j=1}^{m-1} f_{j}\right)(\gamma(z, t))\right|^{p} d t, H_{1}=G_{1}$ and $H_{m+1}(z)=$ $G_{m+1}(z)-\omega_{m+1}(z)+\omega_{m}(z)$.

Observe that for $z \in X$ we have

$$
\omega_{k+2}(z)<H_{k+1}(z)+\omega_{k+1}(z)=G_{k+1}(z)-\omega_{k}(z) \leq G_{k+1}(z)
$$

Moreover for $z \in V_{k+1}$ we may estimate

$$
\begin{aligned}
\omega_{k+2}(z) & >\omega_{k+1}(z)+\left(1-\varepsilon_{k+1}\right) H_{k+1}(z) \geq \varepsilon_{k+1} \omega_{k+1}(z)+\left(1-\varepsilon_{k+1}\right) G_{k+1}(z) \\
& \geq\left(1-2 \varepsilon_{k+1}\right) G_{k+1}(z) .
\end{aligned}
$$

Let $U_{k}:=\bigcap_{m=k}^{\infty} V_{m}$ and $U=\bigcup_{k=1}^{\infty} U_{k}$. Observe that $\eta\left(U_{k}\right) \geq 1-\sum_{m=k}^{\infty} \varepsilon_{m}$ and $\eta(U)=\lim _{m \rightarrow \infty} \eta\left(U_{m}\right)=1$. If $z \in U$ then there exists $k \in \mathbb{N}$ such that $z \in U_{k}$. In particular $z \in V_{m+1}$ for $m \geq k$ and

$$
G(z)=\lim _{m \rightarrow \infty}\left(1-2 \varepsilon_{m+1}\right) G_{m+1}(z) \leq \lim _{m \rightarrow \infty} \omega_{m+1}(z) \leq \lim _{m \rightarrow \infty} G_{m}(z)=G(z)
$$

Now we can define the function $f=\sum_{k=1}^{\infty} f_{k}$ which is holomorphic on Ω and continuous on $\bar{\Omega} \backslash X$, and observe that $\omega_{\infty}(z) \leq G(z)$ for $z \in X$ and $\omega_{\infty}(z)=$ $G(z)$ for η-almost all $z \in X$, i.e. f has the required properties.

As an application of Theorem 4.7 we prove the following description of exceptional sets (see 1.1) $E_{\Omega}^{p}(f)$.

Theorem 4.8. Let $\varepsilon>0$, T be a compact subset of $\bar{\Omega} \backslash X$ and η be a probability measure on X. If $E \subset X$ is a set of type G_{δ} then there exists a holomorphic function f such that (see 1.1) $\|f\|_{T} \leq \varepsilon, E_{\Omega}^{p}(f) \subset E, \eta\left(E \backslash E_{\Omega}^{p}(f)\right)=0$ and $\int_{(X \backslash E) \times[0,1]}|f \circ \gamma|^{p} d \mathfrak{L}^{2 N}<\infty$.

Proof. Let σ be a natural measure on $\partial \Omega$. Due to [8, Theorem 2.6, Proposition 2.5] there exist sequences $\left\{D_{i}\right\}_{i \in \mathbb{N}},\left\{T_{i}\right\}_{i \in \mathbb{N}}$ of compact subsets in X such that:

1. $\bigcup_{i \in \mathbb{N}} D_{i}=X \backslash E$ and $D_{j} \subset D_{j+1}$ for $j \in \mathbb{N}$;
2. $T_{j} \cap D_{j}=\varnothing$ for $j \in \mathbb{N}$;
3. $E=\bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} T_{i}$;
4. $\sigma\left(X \backslash\left(E \cup D_{j}\right) \leq 2^{-j}\right.$.

There exists a sequence of continuous functions $\left\{u_{m}\right\}_{m \in \mathbb{N}}$ such that $0 \leq u_{m}(z) \leq$ $1, u_{m}(z)=0$ if and only if $z \in D_{m}$, and $u_{m}(z)=1$ if and only if $z \in T_{m}$. Let $H(z)=1+\sum_{m=1}^{\infty} u_{m}(z)$. Observe that H is a strictly positive lower semicontinuous function on X and $\int_{X \backslash E} H d \sigma<\infty$. Now due to Theorem 4.7 there exists a function f, holomorphic on Ω and continuous on $\bar{\Omega} \backslash X$, such that $\|f\|_{T} \leq \varepsilon$, $\int_{0}^{1}|(f \circ \gamma)(z, t)|^{p} d t \leq H(z)$ for $z \in X$ and

$$
\eta\left(\left\{z \in X: \int_{0}^{1}|(f \circ \gamma)(z, t)|^{p} d t=H(z)\right\}\right)=1
$$

We may estimate

$$
\int_{(X \backslash E) \times[0,1]}|f \circ \gamma|^{p} d \mathfrak{L}^{2 N}=\int_{X \backslash E} \int_{0}^{1}|(f \circ \gamma)(z, t)|^{p} d t d \sigma(z) \leq \int_{X \backslash E} H d \sigma<\infty .
$$

Observe that $E_{\Omega}^{p}(f) \subset X$ since f is a continuous function on $\bar{\Omega} \backslash X$. If $z \in X \backslash E$ then there exists m_{0} such that $z \in D_{m}$ for $m \geq m_{0}$ and $H(z) \leq 1+\sum_{m=1}^{m_{0}} 1<$ ∞. In particular $E_{\Omega}^{p}(f) \subset E$. Moreover if $z \in E$ then $H(z)=\infty$ and therefore $\eta\left(E \backslash E_{\Omega}^{p}(f)\right)=0$.

References

[1] A.B. Aleksandrov: Existence of inner function in the unit ball. Math. Sb. 117, 147-163 (1982).
[2] J. Globevnik, E. L. Stout, Highly noncontinuable functions on convex domains, Bull. Sci. Math. 104 (1980), 417-439.
[3] J. Globevink, Holomorphic functions which are highly nonintegrable at the boundary, Israel J. Math. 115 (2000), 195-203.
[4] P. Jakbczak, Description of exceptional sets in the circles for functions from the Bergman space, Czechoslovak Journal of Mathematics no. 47, (1997), 633649.
[5] P. Jakbczak, Highly non-integrable functions in the unit ball. Israel J. Math 97 (1997), 175-181.
[6] P. Jakbczak, Exceptional sets of slices for functions from the Bergman Space in the ball, Canad. Math. Bull. 44(2), (2001), 150-159
[7] J. E. Fornaess, Strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569.
[8] P. Kot, Maximum sets of semicontinuous functions. Potential Anal. 23, No.4, 323-356 (2005).
[9] P. Kot, Exceptional sets in Hartogs domains, Canad. Math. Bull. 48 (4) 2005, 580-586.
[10] P. Kot, Exceptional sets in convex domains, J. Convex Anal. 12 (2005), no. 2, 351-364.
[11] P. Kot, Exceptional sets with a weight in a unit ball, Bull. Belg. Math. Soc. Simon Stevin 13, no. 1 (2006), 43-53.
[12] P. Kot: Homogeneous polynomials on strictly convex domains, Proc. Amer. Math. Soc. 135 (2007) 3895-3903.
[13] P. Kot: A Holomorphic Function with Given Almost All Boundary Values on a Domain with Holomorphic Support Function, Journal of Convex Analysis 14, no. 4, 693-704 (2007).
[14] E. L $\phi \mathrm{w}, \mathrm{A}$ Construction of Inner Functions on the Unit Ball in \mathbb{C}^{p}, Invent. math. 67 (1982), 223-229.
[15] E. L ϕ w, Inner Functions and Boundary Values in $H^{\infty}(\Omega)$ and $A(\Omega)$ in Smoothly Bounded Pseudoconvex Domains, Math. Z. 185 (1984), 191-210.

Politechnika Krakowska, Instytut Matematyki ul. Warszawska 24, 31-155 Kraków, Poland
email: pkot@pk.edu.pl

[^0]: Received by the editors February 2009 - In revised form in May 2009.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : 32A05, 32A35.
 Key words and phrases : Radon inversion problem, Dirichlet problem, exceptional sets.

