On the global solvability of the Cauchy problem for damped Kirchhoff equations

Renato Manfrin

Abstract

We study the Cauchy problem for the damped Kirchhoff equation in the phase space $H^{r} \times H^{r-1}$, with $r \geq 3 / 2$. We prove global solvability and decay of solutions when the initial data belong to an open, dense subset B of the phase space such that $B+B=H^{r} \times H^{r-1}$.

1 Introduction

We consider here the Cauchy problem for the damped Kirchhoff equation:

$$
\begin{gather*}
u_{t t}-m\left(\int|\nabla u|^{2} d x\right) \Delta u+2 \gamma u_{t}=0, \quad x \in \mathbb{R}^{n}, \quad t \geq 0 \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \mathbb{R}^{n}, \tag{1.2}
\end{gather*}
$$

where

$$
\left\{\begin{array}{l}
m \in C^{1}[0, \infty) \tag{1.3}\\
m(r) \geq \delta>0, \quad \forall r \in[0, \infty) \\
\gamma>0
\end{array}\right.
$$

Global solvability and asymptotic behavior of solutions were studied by Yamada [9] and Yamazaki [11] for small initial data. Roughly speaking, in these papers the authors assumed that $\left\|u_{0}\right\|_{H^{r}}+\left\|u_{1}\right\|_{H^{r-1}} \leq \varepsilon$, for some $r \geq 3 / 2$, with $\varepsilon>0$ a constant depending only on $m(\cdot)$ and γ. Without smallness assumptions, equation

Received by the editors November 2008.
Communicated by P. Godin.
2000 Mathematics Subject Classification : Primary 35L70, 35B40; Secondary 35L15.
Key words and phrases : Damped Kirchhoff equation; global existence; decay estimates.
(1.1) was investigated by Nishihara [6] for the initial boundary value problem with Dirichlet condition. Namely, considering equation (1.1) in $\Omega \times[0, \infty)$, with $\Omega \subset \mathbb{R}^{n}$ a bounded analytic domain, Nishihara [6] proved global existence and decay of solutions when the initial data belong to some (quasi-analytic) function space lying between the analytic class and $\bigcap_{s>1} G_{s}$, where G_{s} is the Gevrey class of order s (see also [5] for more details).

The main interest of the present paper is to investigate global existence and decay of solutions of the Cauchy problem (1.1)-(1.2) in the phase space $H^{r} \times$ H^{r-1}, with $r \geq \frac{3}{2}$, when no smallness condition is assumed on the initial data. To this purpose, we will consider special classes of initial data defined as follows:

Definition 1.1. Given $u_{0}, u_{1} \in L^{2}$, we say that $\left(u_{0}, u_{1}\right) \in \tilde{B}_{\Delta}^{1}$ if $\forall N \geq 0$ there exist positive numbers $\tilde{\rho}_{j}=\tilde{\rho}_{j}(N)$, for $j \geq 1$, such that $\tilde{\rho}_{j} \rightarrow \infty$ as $j \rightarrow \infty$ and, denoting with $\hat{u}_{i}(i=0,1)$ the Fourier transform of u_{i},

$$
\begin{equation*}
\sup _{j} e^{N \tilde{\rho}_{j}} \int_{|\xi|>\tilde{\rho}_{j}}\left[|\xi|^{3}\left|\hat{u}_{0}(\tilde{\xi})\right|^{2}+|\xi|\left|\hat{u}_{1}(\tilde{\xi})\right|^{2}\right] d \xi<\infty . \tag{1.4}
\end{equation*}
$$

Besides, for $k \geq 1$, we say that $\left(u_{0}, u_{1}\right) \in B_{\Delta}^{k}$ if there exist $\eta>0$ and a sequence of positive numbers $\left\{\rho_{j}\right\}_{j \geq 1^{\prime}} \rho_{j} \rightarrow \infty$, such that

$$
\begin{equation*}
\sup _{j} \int_{|\xi|>\rho_{j}}\left[|\xi|^{k+2}\left|\hat{u}_{0}(\xi)\right|^{2}+|\xi|^{k}\left|\hat{u}_{1}(\xi)\right|^{2}\right] \frac{e^{\eta \rho_{j}^{k} /|\xi|^{k-1}}}{\rho_{j}^{k}} d \xi<\infty . \tag{1.5}
\end{equation*}
$$

Given $r \geq 0$, we set

$$
\begin{equation*}
E_{r}(u ; t) \stackrel{\text { def }}{=}|u(\cdot, t)|_{\frac{r}{2}+1}^{2}+\left|u_{t}(\cdot, t)\right|_{\frac{r}{2}}^{2}, \tag{1.6}
\end{equation*}
$$

where, for $h \geq 0,|\cdot|_{h}$ is the semi-norm

$$
|f(\cdot)|_{h} \stackrel{\text { def }}{=}\left\||\xi|^{h} \hat{f}(\cdot)\right\|_{L^{2}} .
$$

Theorem 1.2 (Global Solvability). Given $k \geq 1$ integer, assume that $m \in C^{k}$ and $\left(u_{0}, u_{1}\right) \in \tilde{B}_{\Delta}^{1}\left(\right.$ resp. $\left.B_{\Delta}^{k}\right)$ if $k=1$ (resp. $\left.k>1\right)$. Then (1.1)-(1.2) has a unique global solution $u \in C^{j}\left([0, \infty) ; H^{1+\frac{k}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ which satisfies

$$
\begin{equation*}
\sup _{t \geq 0}\left(t E_{r}(u ; t)+\int_{0}^{t} E_{r}(u ; \tau) d \tau\right)<\infty \tag{1.7}
\end{equation*}
$$

for $0 \leq r \leq k$.
Here will prove in details Theorem 1.2 only for $k=1,2$. For $k \geq 3$ we will sketch the proof in $\S 7$, using some results obtained in [4]. The solutions of (1.1)(1.2) satisfy stronger decay properties than (1.7). Namely, assuming (1.3), we have:

Theorem 1.3 (Decay Estimates). Let $u \in C^{j}\left([0, \infty) ; H^{1+\frac{k}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2), k \geq$ 1 integer, be a global solution of (1.1)-(1.2). Suppose further that

$$
\begin{equation*}
\sup _{t \geq 0}|u(t)|_{2}<\infty \quad \text { if } \quad k \geq 2 ; \quad \sup _{t \geq 0} t E_{1}(u ; t)<\infty \quad \text { if } k=1 . \tag{1.8}
\end{equation*}
$$

Then, for $0 \leq r \leq k / 2$, u satisfies

$$
\begin{equation*}
\sup _{t>0}\left\{t \theta^{r}\left(|u|_{r+1}^{2}+\left|u_{t}\right|_{r}^{2}\right)+\int_{0}^{t} \theta^{r}\left(|u|_{r+1}^{2}+\tau\left|u_{t}\right|_{r}^{2}\right) d \tau\right\}<\infty, \tag{1.9}
\end{equation*}
$$

where $\theta=t$ if $k \geq 2 ; \theta=t^{\sigma}$, with σ any real number in $[0,1)$, if $k=1$.
For arbitrary data $\left(\tilde{u}_{0}, \tilde{u}_{1}\right)$ in the phase space $H^{r} \times H^{r-1}, r \geq \frac{3}{2}$, the problem of global solvability remains open. However, using Theorem 1.3 and a stability argument developed by Nishihara in [7], it is easy to prove the following:

Corollary 1.4 (Stability). Let u be a fixed solution of (1.1)-(1.2) satisfying the assumptions of Theorem 1.3 for some integer $k \geq 1$. Given $\left(\tilde{u}_{0}, \tilde{u}_{1}\right) \in H^{1+\frac{k}{2}} \times H^{\frac{k}{2}}$, if $\tilde{u}_{0}-u_{0}$ and $\tilde{u}_{1}-u_{1}$ are sufficiently small in the sense that

$$
\begin{equation*}
\left|\tilde{u}_{0}-u_{0}\right|_{\frac{k}{2}+1}+\left|\tilde{u}_{1}-u_{1}\right|_{\frac{k}{2}} \leq \varepsilon \text { for some } \varepsilon>0 \tag{1.10}
\end{equation*}
$$

then there exists a unique $\tilde{u} \in C^{j}\left([0, \infty) ; H^{1+\frac{k}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ solution of (1.1) such that $\tilde{u}(x, 0)=\tilde{u}_{0}(x), \tilde{u}_{t}(x, 0)=\tilde{u}_{1}(x)$. Moreover, \tilde{u} satisfies (1.9).

We will not give the proof of this stability result, because it is a straightforward consequence of Theorem 1.3, the argument of [7], known results of local/global solvability and continuous dependence upon initial data proved in [1], [9], [10]. We only observe that, by Theorem 1.2 and Corollary 1.4, global solvability and decay of solutions are assured for initial data $\left(u_{0}, u_{1}\right)$ in an open, dense subset of $H^{\frac{3}{2}} \times H^{\frac{1}{2}}$, say B, such that

$$
\begin{equation*}
B+B=H^{\frac{3}{2}} \times H^{\frac{1}{2}} \tag{1.11}
\end{equation*}
$$

This fact will be clear from the remarks below.

1.1 Some properties of $\tilde{B}_{\Delta}^{1}, B_{\Delta}^{k}(k \geq 1)$

It is clear that $\tilde{B}_{\Delta}^{1} \subset B_{\Delta}^{1} \subset H^{\frac{3}{2}} \times H^{\frac{1}{2}}$, with strict inclusions. It is also easy to prove that

1) $\tilde{B}_{\Delta}^{1}+\tilde{B}_{\Delta}^{1}=H^{\frac{3}{2}} \times H^{\frac{1}{2}}$,
2) $\mathcal{A}_{L^{2}} \times \mathcal{A}_{L^{2}} \not \subset \tilde{B}_{\Delta}^{1}$,
where $\mathcal{A}_{L^{2}}=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right): \int e^{\rho|\xi|}|\hat{f}|^{2} d \xi<\infty\right.$ for some $\left.\rho>0\right\}$. For $k \geq 1$ we have $B_{\Delta}^{k} \subset H^{1+\frac{k}{2}} \times H^{\frac{k}{2}}$. Moreover, see [3], the following properties hold:
3) $B_{\Delta}^{k}+B_{\Delta}^{k}=H^{1+\frac{k}{2}} \times H^{\frac{k}{2}}$,
4) $B_{\Delta}^{k} \cap\left(H^{1+\frac{k^{\prime}}{2}} \times H^{\frac{k^{\prime}}{2}}\right) \subset B_{\Delta}^{k^{\prime}}$ for all $k^{\prime}>k$,
5) $\mathcal{A}_{L^{2}} \times \mathcal{A}_{L^{2}} \subset B_{\Delta}^{k}$,
with strict inclusions in 4) and 5). Using a result of Paley and Wiener [8], it is also possible to show (see [2]) that $\tilde{B}_{\Delta}^{1}, B_{\Delta}^{k}$ do not contain compactly supported functions. Let us show, for instance, that $\tilde{B}_{\Delta}^{1}+\tilde{B}_{\Delta}^{1}=H^{\frac{3}{2}} \times H^{\frac{1}{2}}$:

Proof. Given $\left(u_{0}, u_{1}\right) \in H^{\frac{3}{2}} \times H^{\frac{1}{2}}$, we set $\rho_{1}=1$ and then, for $j \geq 1$, we inductively select $\rho_{j+1} \geq \rho_{j}+1$ such that

$$
\begin{equation*}
e^{j \rho_{j}} \int_{|\xi|>\rho_{j+1}}\left[|\xi|^{3}\left|\hat{u}_{0}(\xi)\right|^{2}+|\xi|\left|\hat{u}_{1}(\xi)\right|^{2}\right] d \xi \leq 1 \tag{1.12}
\end{equation*}
$$

Then, considering the characteristic function

$$
\chi(\xi) \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } \rho_{2 j} \leq|\xi| \leq \rho_{2 j+1} \tag{1.13}\\ 0 & \text { otherwise }\end{cases}
$$

we define $v_{i}(x), w_{i}(x)$ by setting

$$
\begin{equation*}
\hat{v}_{i}(\xi)=\chi(\xi) \hat{u}_{i}(\xi), \quad \hat{w}_{i}(\xi)=(1-\chi(\xi)) \hat{u}_{i}(\xi) \tag{1.14}
\end{equation*}
$$

for $i=0,1$. Hence, $\left(v_{0}, v_{1}\right)+\left(w_{0}, w_{1}\right)=\left(u_{0}, u_{1}\right)$. Then, using (1.12)-(1.13), it is easy to see that $\left(v_{0}, v_{1}\right)$ satisfies condition (1.4) of Definition 1.1 for all $N \geq 0$ if we define $\tilde{\rho}_{j}(N) \stackrel{\text { def }}{=} \rho_{2 j+1}$ for $j \geq 1 ;\left(w_{0}, w_{1}\right)$ satisfies condition (1.4), for all $N \geq 0$, taking the sequence $\tilde{\rho}_{j}(N) \stackrel{\text { def }}{=} \rho_{2 j}$ for $j \geq 1$.

1.2 Main notation

We close this section introducing some notations which will be used in what follows.

- For $z \in \mathbb{C}$, we indicate with $\operatorname{Re}(z)$ the real part of z.
- We use $\|\cdot\|$ and $(\cdot, \cdot)_{L^{2}}$ as L^{2} norm and L^{2} scalar product over \mathbb{R}^{n}, i.e.

$$
\begin{equation*}
\|f\|=\left(\int_{\mathbb{R}^{n}}|f|^{2} d x\right)^{\frac{1}{2}}, \quad(f, g)_{L^{2}}=\int_{\mathbb{R}^{n}} f \bar{g} d x \tag{1.15}
\end{equation*}
$$

- Given $f(x, t): \mathbb{R}_{x}^{n} \times[0, T) \rightarrow \mathbb{C}$, we indicate with $\hat{f}(\xi, t): \mathbb{R}_{\xi}^{n} \times[0, T) \rightarrow \mathbb{C}$ the partial Fourier transform in space variables:

$$
\begin{equation*}
\hat{f}(\xi, t)=(2 \pi)^{-n / 2} \int e^{-i x \cdot \xi} f(x, t) d x \tag{1.16}
\end{equation*}
$$

- Finally, we often denote by C (or $\left.C_{1}, C_{2}, \ldots\right)$ various positive constants independent of $t \geq 0$, but possibly depending on $\gamma, m(\cdot), m^{(i)}(\cdot)(1 \leq i \leq k)$ and some norms of the initial data of problem (1.1)-(1.2).

2 A-priori estimates for $\|u\|,\left\|u_{t}\right\|,\|\nabla u\|$.

We recall here some known a-priori estimates for $\|u(t)\|,\left\|u_{t}(t)\right\|$ and $\|\nabla u(t)\|$, when u is a sufficiently regular solution of (1.1) in $\mathbb{R}^{n} \times[0, T)$, with $T>0$.

As usual, we introduce the Hamiltonian function

$$
\begin{equation*}
\mathcal{H}(t) \stackrel{\text { def }}{=} \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{1}{2} M\left(\|\nabla u(t)\|^{2}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
M(r) \stackrel{\text { def }}{=} \int_{0}^{r} m(v) d v \tag{2.2}
\end{equation*}
$$

For simplicity, we also set

$$
\begin{equation*}
s(t) \stackrel{\text { def }}{=}\|\nabla u(t)\|^{2} \tag{2.3}
\end{equation*}
$$

Besides, assuming that $m \in C^{k}$, for some $k \geq 1$, we introduce the constants

$$
\begin{equation*}
\mu_{i} \stackrel{\text { def }}{=} \max _{[0,2 \mathcal{H}(0) / \delta]}\left|m^{(i)}(r)\right|, \tag{2.4}
\end{equation*}
$$

for $i=0, \ldots, k$.
Definition 2.1. We say that u is a strong solution if $u \in C^{j}\left([0, T) ; H^{2-j}\left(\mathbb{R}^{n}\right)\right)$ for $j=0,1,2$. When $T=+\infty$, we say that u is a global strong solution.

Lemma 2.2. Let u be a strong solution of (1.1) in $\mathbb{R}^{n} \times[0, T)$ for some $T>0$. Then, for all $t \in[0, T)$ we have
(i) $\mathcal{H}(t)+2 \gamma \int_{0}^{t}\left\|u_{t}\right\|^{2} d \tau=\mathcal{H}(0)$.
(ii) $\frac{\gamma}{2}\|u\|^{2}+\int_{0}^{t} m\left(\|\nabla u\|^{2}\right)\|\nabla u\|^{2} d \tau \leq \frac{3}{2} \frac{\mathcal{H}(0)}{\gamma}+\left[\operatorname{Re}\left(u_{t}, u\right)_{L^{2}}+\gamma\|u\|^{2}\right]_{t=0}$,
(iii) $\int_{0}^{t} \mathcal{H}(\tau) d \tau \leq C\left(\mathcal{H}(0)+\|u(0)\|^{2}\right)$,
(iv) $t \mathcal{H}(t)+2 \gamma \int_{0}^{t} \tau\left\|u_{t}\right\|^{2} d \tau \leq C\left(\mathcal{H}(0)+\|u(0)\|^{2}\right)$.
where $C=C\left(\delta, \gamma, \mu_{0}\right)>0$ is a suitable constant independent of T. In particular, $s(t) \leq 2 \mathcal{H}(0) / \delta$ for all $t \in[0, T)$.
Proof. Since u is a strong solution, $t \rightarrow\left\|u_{t}\right\|^{2}$ and $t \rightarrow\|\nabla u\|^{2}$ are C^{1} functions on $[0, T)$. Then, multiplying (1.1) by \bar{u}_{t}, \bar{u} and integrating over \mathbb{R}^{n}, we find

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left\|u_{t}\right\|^{2}+\frac{1}{2} \frac{d}{d t} M\left(\|\nabla u\|^{2}\right)+2 \gamma\left\|u_{t}\right\|^{2}=0, \tag{2.5}\\
\frac{d}{d t}\left[\operatorname{Re}\left(u_{t}, u\right)_{L^{2}}+\gamma\|u\|^{2}\right]+m\left(\|\nabla u\|^{2}\right)\|\nabla u\|^{2}=\left\|u_{t}\right\|^{2}, \tag{2.6}
\end{gather*}
$$

respectively. Integrating (2.5) over $[0, t)$ we get

$$
\begin{equation*}
\mathcal{H}(t)+2 \gamma \int_{0}^{t}\left\|u_{t}\right\|^{2} d \tau=\mathcal{H}(0) \tag{2.7}
\end{equation*}
$$

Hence we have (i). While, integrating (2.6), we obtain

$$
\begin{align*}
\operatorname{Re}\left(u_{t}, u\right)_{L^{2}}+\gamma\|u\|^{2}+ & \int_{0}^{t} m\left(\|\nabla u\|^{2}\right)\|\nabla u\|^{2} d \tau \\
& =\int_{0}^{t}\left\|u_{t}\right\|^{2} d \tau+\left[\operatorname{Re}\left(u_{t}, u\right)_{L^{2}}+\gamma\|u\|^{2}\right]_{t=0} \tag{2.8}
\end{align*}
$$

Since $\gamma>0$, we have $\left|\left(u_{t}, u\right)\right| \leq \frac{1}{2 \gamma}\left\|u_{t}\right\|^{2}+\frac{\gamma}{2}\|u\|^{2}$. Therefore, using (i), we find

$$
\begin{equation*}
\frac{\gamma}{2}\|u\|^{2}+\int_{0}^{t} m\left(\|\nabla u\|^{2}\right)\|\nabla u\|^{2} d \tau \leq \frac{3}{2} \frac{\mathcal{H}(0)}{\gamma}+\left[\operatorname{Re}\left(u_{t}, u\right)_{L^{2}}+\gamma\|u\|^{2}\right]_{t=0} . \tag{2.9}
\end{equation*}
$$

This completes the proof of (ii). To prove (iii), we observe that (i) gives

$$
\begin{equation*}
\|\nabla u(t)\|^{2} \leq \frac{2 \mathcal{H}(0)}{\delta} \quad \forall t \in[0, T) \tag{2.10}
\end{equation*}
$$

since $m(r) \geq \delta$. This implies that $\delta\|\nabla u\|^{2} \leq M\left(\|\nabla u\|^{2}\right) \leq \mu_{0}\|\nabla u\|^{2}$, where μ_{0} is the constant defined in (2.4) for $i=0$. Hence we find

$$
\begin{equation*}
\mathcal{H}(t) \leq \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{\mu_{0}}{2}\|\nabla u(t)\|^{2} \tag{2.11}
\end{equation*}
$$

for all $t \in[0, T)$. Applying (i) and (ii), it follows that $\int_{0}^{t} \mathcal{H}(\tau) d \tau \leq C(\mathcal{H}(0)+$ $\left.\|u(0)\|^{2}\right)$, for a suitable $C=C\left(\delta, \gamma, \mu_{0}\right) \geq 0$, for all $t \in[0, T)$. Thus (iii) holds. Finally, multiplying (2.5) by t^{j} with $j \geq 1$, we find

$$
\begin{equation*}
\frac{d}{d t}\left(t^{j} \mathcal{H}(t)\right)+2 \gamma t^{j}\left\|u_{t}\right\|^{2}=j t^{j-1} \mathcal{H}(t) . \tag{2.12}
\end{equation*}
$$

Then, setting $j=1$, we immediately deduce that

$$
\begin{equation*}
t \mathcal{H}(t)+2 \gamma \int_{0}^{t} \tau\left\|u_{t}\right\|^{2} d \tau=\int_{0}^{t} \mathcal{H}(\tau) d \tau \tag{2.13}
\end{equation*}
$$

Hence (iv) follows from (iii).
A close inspection of the proof of Lemma 2.2 reveals that (i)-(iv) above also remain valid under slight weaker hypotheses on the regularity of u.

Lemma 2.3. The statements (i), (ii), (iii), (iv) continue to hold for a solution u of (1.1) such that $u \in C^{j}\left([0, T) ; H^{r-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$, for some $r \geq 3 / 2$.

Proof. It is sufficient to prove that (i)-(iv) are valid when $u \in C^{j}\left([0, T) ; H^{\frac{3}{2}-j}\left(\mathbb{R}^{n}\right)\right)$ $(j=0,1,2)$. Then, we consider the Hilbert triple

$$
\begin{equation*}
H^{\frac{1}{2}} \hookrightarrow L^{2} \hookrightarrow H^{-\frac{1}{2}} \tag{2.14}
\end{equation*}
$$

denoting with $\langle\cdot, \cdot\rangle \stackrel{\text { def }}{=}\langle\cdot, \cdot\rangle_{H^{-1 / 2}, H^{1 / 2}}$ the duality between $H^{-\frac{1}{2}}$ and $H^{\frac{1}{2}}$ which extends the scalar product in L^{2}. Then, since $(\cdot, \cdot)_{L^{2}}=\langle\cdot, \cdot\rangle$ on $L^{2} \times H^{\frac{1}{2}}$, it is easy to
verify that the following identities hold: $\left\langle u_{t}, u_{t}\right\rangle=\left\|u_{t}\right\|^{2},-\langle\Delta u, u\rangle=\|\nabla u\|^{2}$ and

$$
\begin{gathered}
\frac{d}{d t}\left\|u_{t}\right\|^{2}=2 \operatorname{Re}\left\langle u_{t t}, u_{t}\right\rangle \\
\frac{d}{d t}\|\nabla u\|^{2}=-2 \operatorname{Re}\left\langle\Delta u, u_{t}\right\rangle \\
\frac{d}{d t}\left(u, u_{t}\right)_{L^{2}}=\left\|u_{t}\right\|^{2}+\left\langle u_{t t}, u\right\rangle \\
\frac{d}{d t}\|u\|^{2}=2 \operatorname{Re}\left(u_{t}, u\right)=2 \operatorname{Re}\left\langle u_{t}, u\right\rangle
\end{gathered}
$$

Therefore, the identities (2.5) and (2.6) continue to hold even if we merely suppose $u \in C^{j}\left([0, T) ; H^{\frac{3}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$. Hence we can derive (i)-(iv) as above.

Remark 2.4. If u satisfies the assumptions of Lemma 2.2 or 2.3, recalling definition (1.6), we have

$$
\begin{equation*}
2 \min \left\{1, \mu_{0}^{-1}\right\} \mathcal{H}(t) \leq E_{0}(u ; t) \leq 2 \max \left\{1, \delta^{-1}\right\} \mathcal{H}(t) \tag{2.15}
\end{equation*}
$$

for all $t \in[0, T)$. Hence $\mathcal{H}(t) \approx E_{0}(u ; t)$.
When u is a global solution of (1.1), it follows from Lemmas 2.2, 2.3 that $\|\nabla u(t)\|,\left\|u_{t}(t)\right\| \rightarrow 0$ as $t \rightarrow \infty$. Applying (ii)-(iv), we can also prove:

Proposition 2.5. Let $u \in C^{j}\left([0, \infty) ; H^{r-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2), r \geq 3 / 2$, be a global solution of equation (1.1). Then $\|u(t)\| \rightarrow 0$ as $t \rightarrow \infty$.

Proof. By Lemmas 2.2, 2.3, we know that $\|\nabla u(t)\| \rightarrow 0$ as $t \rightarrow \infty$. Therefore

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{|\xi| \geq \varepsilon}|\hat{u}(\xi, t)|^{2} d \xi=0 \tag{2.16}
\end{equation*}
$$

for all $\varepsilon>0$. Hence it remains to show that

$$
\begin{equation*}
\int_{|\xi| \leq \rho}|\hat{u}(\xi, t)|^{2} d \xi \rightarrow 0 \quad \text { as } t \rightarrow \infty, \tag{2.17}
\end{equation*}
$$

for some $\rho>0$. To this end, writing

$$
\begin{equation*}
m(0)=a_{0}, \quad b(t)=m\left(\|\nabla u(t)\|^{2}\right)-m(0), \tag{2.18}
\end{equation*}
$$

we note that $\hat{u}(\xi, \cdot)$ satisfies the ordinary problem

$$
\begin{gather*}
\hat{u}_{t t}+\left(a_{0}+b(t)\right)|\xi|^{2} \hat{u}+2 \gamma \hat{u}_{t}=0, \quad t \geq 0, \tag{2.19}\\
\hat{u}(\xi, 0)=\hat{u}_{0}(\xi), \quad \hat{u}_{t}(\xi, 0)=\hat{u}_{1}(\xi), \tag{2.20}
\end{gather*}
$$

with a parameter $\xi \in \mathbb{R}^{n}$. Now, by condition (1.3) and (ii) of Lemma 2.2, we have $a_{0}>0, \gamma>0$ and

$$
\begin{equation*}
\int_{0}^{\infty}|b(t)| d t \leq \mu_{1} \int_{0}^{\infty}\|\nabla u(t)\|^{2} d t<\infty, \tag{2.21}
\end{equation*}
$$

where μ_{1} is defined in (2.4). Then, to prove (2.17), it suffices to apply Lemma 10.1 of Appendix II and the Lebesgue dominated-convergence theorem.

2.1 Application of Lemmas 2.2, 2.3 to the global solvability

As it is well-known (see [1], [9], [11]) when (1.3) holds problem (1.1)-(1.2) is well posed in $H^{r} \times H^{r-1}$, for $r \geq 3 / 2$. More precisely, given $\left(u_{0}, u_{1}\right) \in H^{r} \times H^{r-1}$, with $r \geq 3 / 2$, there exists a unique local solution $u \in C^{j}\left([0, T) ; H^{r-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ for some $T>0$. Besides, if T is maximal, then $T=+\infty$ or

$$
\begin{equation*}
\underset{t \rightarrow T^{-}}{\limsup }\left(\|u(\cdot, t)\|_{H^{r}}+\left\|u_{t}(\cdot, t)\right\|_{H^{r-1}}\right)=+\infty \tag{2.22}
\end{equation*}
$$

Since $\tilde{B}_{\Delta}^{1} \subset H^{\frac{3}{2}} \times H^{\frac{1}{2}}$ and $B_{\Delta}^{k} \subset H^{\frac{k}{2}+1} \times H^{\frac{k}{2}}$ for $k \geq 1$, by Lemmas 2.2, 2.3, to prove the global solvability of problem (1.1)-(1.2) for \tilde{B}_{Δ}^{1} (resp. B_{Δ}^{k}) initial data we only need to show that, independently of $T \in(0, \infty)$,

$$
\begin{equation*}
\sup _{t \in[0, T)} E_{1}(u ; t)<+\infty \quad\left(\text { resp. } \quad \sup _{t \in[0, T)} E_{k}(u, t)<\infty\right) \tag{2.23}
\end{equation*}
$$

3 Global existence and decay for \tilde{B}_{Δ}^{1} data

By Fourier transform in space variables, (1.1) is equivalent to the following infinite system of second order equations:

$$
\begin{equation*}
\hat{u}_{t t}+m\left(\int|\xi|^{2}|\hat{u}(\xi, t)|^{2} d \xi\right)|\xi|^{2} \hat{u}+2 \gamma \hat{u}_{t}=0, \quad t \geq 0 \tag{3.1}
\end{equation*}
$$

depending on $\xi \in \mathbb{R}^{n}$. As remarked in $\S 2.1$, to prove the global solvability when $\left(u_{0}, u_{1}\right) \in \tilde{B}_{\Delta}^{1}$ we need only to show that $E_{1}(u ; t)$ cannot blow-up in finite time. To this end, we begin by considering the quadratic form

$$
\begin{equation*}
q(\xi, t)=e^{2 \tilde{\gamma} t}\left(|\xi|\left|\hat{u}_{t}\right|^{2}+m|\xi|^{3}|\hat{u}|^{2}+\alpha|\xi| \operatorname{Re}\left(\overline{\hat{u}} \hat{u}_{t}\right)\right), \tag{3.2}
\end{equation*}
$$

where $\tilde{\gamma}, \alpha \in \mathbb{R}$ are constants that we shall choose in the following. Deriving $q(\xi, t)$ with respect to t, we easily find the expression

$$
\begin{align*}
\frac{d q}{d t}= & (2 \tilde{\gamma}+\alpha-4 \gamma) e^{2 \tilde{\gamma} t}|\xi|\left|\hat{u}_{t}\right|^{2} \\
& +(2 \tilde{\gamma}-\alpha) e^{2 \tilde{\gamma} t} m|\xi|^{3}|\hat{u}|^{2} \tag{3.3}\\
& +(2 \tilde{\gamma}-2 \gamma) \alpha e^{2 \tilde{\gamma} t}|\xi| \operatorname{Re}\left(\overline{\hat{u}} \hat{u}_{t}\right) \\
& +e^{2 \tilde{\gamma} t} m^{\prime} s^{\prime}|\tilde{\xi}|^{3}|\hat{u}|^{2},
\end{align*}
$$

where $m^{\prime}=m^{\prime}(s(t))$. Then we select $\tilde{\gamma}, \alpha$ such that

$$
\left\{\begin{array}{l}
q \geq \frac{1}{2} e^{2 \tilde{\gamma} t}\left(|\xi||\hat{\zeta}|^{2}+m|\xi|^{3}|\hat{u}|^{2}\right) \tag{3.4}\\
q^{\prime} \leq e^{2 \tilde{\gamma} t} m^{\prime} s^{\prime}|\xi|^{3}|\hat{u}|^{2}
\end{array}\right.
$$

for $|\xi|$ sufficiently large. A simple choice of $\tilde{\gamma}, \alpha$ is the following:

$$
\begin{equation*}
\tilde{\gamma}=\gamma, \quad \alpha=2 \gamma . \tag{3.5}
\end{equation*}
$$

In fact, we obtain the identity $q^{\prime}=e^{2 \gamma t} m^{\prime} s^{\prime}|\xi|^{3}|\hat{u}|^{2}$ for all $\xi \in \mathbb{R}^{n}$. Besides, having $m(r) \geq \delta>0$, the first condition of (3.4) is certainly verified as soon as

$$
\begin{equation*}
|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}} \tag{3.6}
\end{equation*}
$$

Definition 3.1. Let $u \in C^{j}\left([0, T) ; H^{\frac{3}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ be a solution of (1.1) in $\mathbb{R}^{n} \times[0, T)$ for some $T>0$. We define

$$
\begin{equation*}
\tilde{\mathcal{E}}(\xi, t) \stackrel{\text { def }}{=} e^{2 \gamma t}\left(|\xi|\left|\hat{u}_{t}\right|^{2}+m|\xi|^{3}|\hat{u}|^{2}+2 \gamma|\xi| \operatorname{Re}\left(\overline{\hat{u}} \hat{u}_{t}\right)\right) . \tag{3.7}
\end{equation*}
$$

Thus, for $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$, both the conditions of (3.4) are verified with $q=\tilde{\mathcal{E}}$; moreover, in the second one the equality holds.

Proof of Theorem 1.2 for $k=1$

Let $\left(u_{0}, u_{1}\right)$ be a given initial data in \tilde{B}_{Δ}^{1} and let $u \in C^{j}\left([0, T) ; H^{\frac{3}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=$ $0,1,2)$ be the corresponding unique solution of problem (1.1)-(1.2) in $\mathbb{R}^{n} \times[0, T)$, for some $T>0$. Without loss of generality we may suppose T maximal. Taking account of Lemmas 2.2 and 2.3, we may select $N>0$ so large that, independently of T, one has

$$
\begin{equation*}
N \geq \frac{4 \mu_{1}}{\delta^{3 / 2}} \int_{0}^{T}\left[\mathcal{H}(t)+e^{-2 \gamma t}\right] d t \tag{3.8}
\end{equation*}
$$

Besides, by Definition 1.1 of \tilde{B}_{Δ}^{1} and Definition 3.1 of $\tilde{\mathcal{E}}(\tilde{\xi}, t)$, there exists a sequence of positive numbers

$$
\begin{equation*}
\tilde{\rho}_{j}=\tilde{\rho}_{j}(N) \quad \text { for } \quad j \geq 1 \tag{3.9}
\end{equation*}
$$

such that $\tilde{\rho}_{j} \rightarrow+\infty$ and

$$
\begin{equation*}
\sup _{j \geq 1} e^{N \tilde{\rho}_{j}} \int_{|\xi|>\rho_{j}} \tilde{\mathcal{E}}(\tilde{\xi}, 0) d \tilde{\xi}<\infty . \tag{3.10}
\end{equation*}
$$

Now, from (3.4)-(3.6), we have $\tilde{\mathcal{E}}^{\prime}=e^{2 \gamma t} m^{\prime} s^{\prime}|\xi|^{3}|\hat{u}|^{2}$ and

$$
\begin{equation*}
\left|\tilde{\mathcal{E}}^{\prime}(\tilde{\xi}, t)\right| \leq \frac{2 \mu_{1}}{\delta}\left|s^{\prime}(t)\right| \tilde{\mathcal{E}}(\xi, t) \tag{3.11}
\end{equation*}
$$

for $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$. Furthermore, see also (4.7) below, we easily have

$$
\begin{equation*}
\left|s^{\prime}(t)\right| \leq \frac{2 \rho \mathcal{H}(t)}{\sqrt{\delta}}+\frac{2 e^{-2 \gamma t}}{\sqrt{\delta}} \int_{|\xi|>\rho} \tilde{\mathcal{E}}(\xi, t) d \xi \tag{3.12}
\end{equation*}
$$

for all $\rho \geq \frac{2 \gamma}{\sqrt{\delta}}$. Hence, for $t \in[0, T)$, we obtain

$$
\begin{equation*}
\left|\tilde{\mathcal{E}}^{\prime}\right| \leq \frac{4 \rho \mu_{1}}{\delta^{3 / 2}}\left(\mathcal{H}(t)+e^{-2 \gamma t} \frac{\tilde{\mathcal{E}}^{\rho}}{\rho}\right) \tilde{\mathcal{E}} \quad \text { for } \quad \rho,|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}} \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\mathcal{E}}^{\rho}(t) \stackrel{\text { def }}{=} \int_{|\xi|>\rho} \tilde{\mathcal{E}}(\xi, t) d \xi . \tag{3.14}
\end{equation*}
$$

Now, for $\rho \geq \frac{2 \gamma}{\sqrt{\delta}}$, we define

$$
\begin{equation*}
\tilde{T}(\rho) \stackrel{\text { def }}{=} \sup \left\{\tau: 0 \leq \tau<T, \tilde{\mathcal{E}}^{\rho}(t) \leq \rho \quad \forall t \in[0, \tau)\right\} \tag{3.15}
\end{equation*}
$$

It is clear that $\tilde{T}(\rho)>0$ provided ρ is large enough. Moreover, recalling (3.8), we derive the a-priori estimate

$$
\begin{equation*}
\tilde{\mathcal{E}}(\xi, t) \leq \tilde{\mathcal{E}}(\xi, 0) e^{N \rho} \tag{3.16}
\end{equation*}
$$

for all $t \in[0, \tilde{T}(\rho))$ and $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$. From this we obtain

$$
\begin{equation*}
\frac{\tilde{\mathcal{E}}^{\rho}(t)}{\rho} \leq \frac{e^{N \rho}}{\rho} \int_{|\xi|>\rho} \tilde{\mathcal{E}}(\xi, 0) d \xi \quad \text { in } \quad[0, \tilde{T}(\rho)), \tag{3.17}
\end{equation*}
$$

for all $\rho \geq \frac{2 \gamma}{\sqrt{\delta}}$ large enough. Finally, by (3.9)-(3.10), there exists an integer $j_{0} \geq 1$ such that: $\tilde{\rho}_{j} \geq \frac{2 \gamma}{\sqrt{\delta}}$ and

$$
\begin{equation*}
\frac{e^{N \tilde{\rho}_{j}}}{\tilde{\rho}_{j}} \int_{|\xi|>\tilde{\rho}_{j}} \tilde{\mathcal{E}}(\tilde{\xi}, 0) d \xi \leq \frac{1}{2} \tag{3.18}
\end{equation*}
$$

for all $j \geq j_{0}$. This means that, taking $\rho=\tilde{\rho}_{j}$ with $j \geq j_{0}$, we have

$$
\begin{equation*}
\tilde{\mathcal{E}}^{\tilde{\rho}_{j}}(t) \leq \frac{1}{2} \tilde{\rho}_{j}, \quad \forall t \in\left[0, \tilde{T}\left(\tilde{\rho}_{j}\right)\right) \tag{3.19}
\end{equation*}
$$

By the definition (3.15) of $\tilde{T}(\rho)$, it follows that $\tilde{T}\left(\tilde{\rho}_{j}\right)=T$, when $j \geq j_{0}$, and that $E_{1}(u ; t)$ is uniformly bounded in $[0, T)$ because (3.19) implies

$$
\begin{equation*}
E_{1}(u ; t) \leq C \tilde{\rho}_{j}\left(\mathcal{H}(t)+e^{-2 \gamma t}\right) \quad \text { in } \quad[0, T) \tag{3.20}
\end{equation*}
$$

for all $j \geq j_{0}$, with $C=2 \max \left\{1, \delta^{-1}\right\}$. Since we are assuming T maximal, it follows that

$$
\begin{equation*}
T=\infty \tag{3.21}
\end{equation*}
$$

and, consequently, that $u \in C^{j}\left([0, \infty) ; H^{\frac{3}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ is a global solution of (1.1). Finally, using Lemmas 2.2, 2.3, we can easily deduce (1.7) in the case $k=1$. In fact, by (3.19), we have

$$
\begin{equation*}
E_{r}(u ; t) \leq C\left(\tilde{\rho}_{j_{0}}\right)^{r}\left[\mathcal{H}(t)+e^{-2 \gamma t}\right] \tag{3.22}
\end{equation*}
$$

for $0 \leq r \leq 1$, where C is the same constant of (3.20). Thus

$$
\begin{equation*}
t E_{r}(u ; t)+\int_{0}^{t} E_{r}(u ; \tau) d \tau \leq C\left(\tilde{\rho}_{j_{0}}\right)^{r}\left(\frac{1}{\gamma}+t \mathcal{H}+\int_{0}^{t} \mathcal{H} d \tau\right) \tag{3.23}
\end{equation*}
$$

for all $t \geq 0$ and for all $r \in[0,1]$.

4 Second order form for strong solutions

Let u be a strong solution of (1.1) in $\mathbb{R}^{n} \times[0, T)$ for some $T>0$. Assuming (1.3) with $m \in C^{2}[0, \infty)$ and taking account of the results of APPENDIX I on damped linear wave equations, we introduce the following quadratic forms.

For $\xi \in \mathbb{R}^{n}$ and $t \in[0, T)$, we set

$$
\begin{align*}
& \begin{aligned}
& \mathcal{Q}(\xi, t) \stackrel{\text { def }}{=} e^{2 \gamma t}\left(\frac{\sqrt{m}}{2}|\xi|^{4}|\hat{u}|^{2}+\frac{1}{2 \sqrt{m}}|\xi|^{2}\left|\hat{u}_{t}\right|^{2}\right) \\
& \quad+e^{2 \gamma t}\left(\frac{\gamma}{\sqrt{m}}+\frac{m^{\prime} s^{\prime}}{4 m^{3 / 2}}\right)|\xi|^{2} \operatorname{Re}\left(\overline{\hat{u}} \hat{u}_{t}\right), \\
& \mathcal{E}(\xi, t) \stackrel{\text { def }}{=} e^{2 \gamma t}\left(\frac{\sqrt{m}}{2}|\xi|^{4}|\hat{u}|^{2}+\frac{1}{2 \sqrt{m}}|\xi|^{2}\left|\hat{u}_{t}\right|^{2}\right),
\end{aligned}
\end{align*}
$$

where $m=m(s(t))$ and $m^{\prime}=m^{\prime}(s(t))$. Deriving \mathcal{Q} with respect to t, from (3.1) (or (9.8)-(9.9), with obvious substitutions) we easily obtain the identity

$$
\begin{equation*}
\mathcal{Q}^{\prime}=e^{2 \gamma t}\left(\frac{\gamma}{\sqrt{m}}+\frac{m^{\prime} s^{\prime}}{4 m^{3 / 2}}\right)^{\prime}|\xi|^{2} \operatorname{Re}\left(\overline{\hat{u}} \hat{u}_{t}\right) . \tag{4.3}
\end{equation*}
$$

By (i) of Lemma 2.2, $\mathcal{H}(t) \leq \mathcal{H}(0)$ for all $t \in[0, T)$. Moreover, we have:

$$
\begin{equation*}
\int\left|\hat{u}_{t}\right|^{2} d \xi+\delta \int|\xi|^{2}|\hat{u}|^{2} d \xi \leq 2 \mathcal{H}(t) \tag{4.4}
\end{equation*}
$$

Lemma 4.1. Let u be a strong solution of (1.1) in $\mathbb{R}^{n} \times[0, T)$. Then $s(t) \in C^{2}$ and for all $\rho>0$ the following estimates holds:

$$
\begin{align*}
&\left|s^{\prime}(t)\right| \leq \frac{2 \rho \mathcal{H}(t)}{\sqrt{\delta}}+2 e^{-2 \gamma t} \int_{|\xi|>\rho} \frac{\mathcal{E}(\xi, t)}{|\xi|} d \xi \tag{4.5}\\
&\left|s^{\prime \prime}(t)\right| \leq 4 \rho^{2}\left(1+\frac{\mu_{0}}{\delta}+\frac{\gamma}{\rho \sqrt{\delta}}\right) \mathcal{H}(t) \\
&+4 e^{-2 \gamma t} \int_{|\xi|>\rho} \mathcal{E}(\xi, t)\left(\sqrt{\mu_{0}}+\frac{\gamma}{|\xi|}\right) d \xi \tag{4.6}
\end{align*}
$$

Proof. It is immediate that $s(t) \in C^{2}$, when u is a strong solution. Now, for any $\rho>0$, we have:

$$
\begin{align*}
\left|s^{\prime}(t)\right|= & \left.2\left|\int\right| \xi\right|^{2} \operatorname{Re}\left(\overline{\hat{u}} \hat{u}_{t}\right) d \xi \mid \\
\leq & 2 \int_{|\xi| \leq \rho}|\xi|^{2}|\hat{u}|\left|\hat{u}_{t}\right| d \xi+2 \int_{|\xi|>\rho}|\xi|^{2}|\hat{u}|\left|\hat{u}_{t}\right| d \xi \\
\leq & \frac{1}{\sqrt{\delta}} \int_{|\xi| \leq \rho}\left(|\xi|\left|\hat{u}_{t}\right|^{2}+\delta|\xi|^{3}|\hat{u}|^{2}\right) d \xi \tag{4.7}\\
& +2 \int_{|\xi|>\rho}\left(\frac{\sqrt{m}}{2}|\xi|^{3}|\hat{u}|^{2}+\frac{1}{2 \sqrt{m}}|\xi|\left|\hat{u}_{t}\right|^{2}\right) d \xi \\
\leq & \frac{2 \rho \mathcal{H}(t)}{\sqrt{\delta}}+2 e^{-2 \gamma t} \int_{|\xi|>\rho} \frac{\mathcal{E}(\xi, t)}{|\xi|} d \xi .
\end{align*}
$$

To estimate $\left|s^{\prime \prime}(t)\right|$, we observe that (3.1) gives the identity

$$
\begin{equation*}
s^{\prime \prime}(t)=2 \int|\xi|^{2}\left(\left|\hat{u}_{t}\right|^{2}-m(s(t))|\xi|^{2}|\hat{u}|^{2}-2 \gamma \operatorname{Re}\left(\overline{\hat{u}} \hat{u}_{t}\right)\right) d \xi \tag{4.8}
\end{equation*}
$$

Applying the same reasoning as above, we find

$$
\begin{gather*}
\int|\xi|^{2}\left|\hat{u}_{t}\right|^{2} d \xi \leq 2 \rho^{2} \mathcal{H}(t)+2 \sqrt{\mu_{0}} e^{-2 \gamma t} \int_{|\xi|>\rho} \mathcal{E}(\xi, t) d \xi \tag{4.9}\\
m(s(t)) \int|\xi|^{4}|\hat{u}|^{2} d \xi \leq \frac{2 \mu_{0}}{\delta} \rho^{2} \mathcal{H}(t)+2 \sqrt{\mu_{0}} e^{-2 \gamma t} \int_{|\xi|>\rho} \mathcal{E}(\xi, t) d \xi \tag{4.10}
\end{gather*}
$$

Thus, having (4.7) and the inequalities (4.9)-(4.10), we easily get (4.6).
For simplicity of notation, we introduce the quantities:
Definition 4.2. For $t \in[0, T)$, we set

$$
\begin{gather*}
\mathcal{E}^{\rho}(t) \stackrel{\text { def }}{=} \int_{|\xi|>\rho} \mathcal{E}(\xi, t) d \xi, \tag{4.11}\\
J_{\rho}(t) \stackrel{\text { def }}{=} \mathcal{H}(t)+e^{-2 \gamma t} \rho^{-2} \mathcal{E}^{\rho}(t) \quad(\rho>0) . \tag{4.12}
\end{gather*}
$$

Corollary 4.3. Let u be a strong solution of (1.1). Then there exist constants $C_{1}=C_{1}(\delta)$ and $C_{2}=C_{2}\left(\delta, \gamma, \mu_{0}\right)$ such that for $t \in[0, T)$ one has

$$
\begin{align*}
\left|s^{\prime}(t)\right| & \leq C_{1} \rho J_{\rho}(t), \quad \forall \rho>0 \tag{4.13}\\
\left|s^{\prime \prime}(t)\right| & \leq C_{2} \rho^{2} J_{\rho}(t), \quad \forall \rho \geq 1 \tag{4.14}
\end{align*}
$$

Proof. Inequality (4.13) is an immediate consequence of (4.5) and Definition 4.2. To verify (4.14), it is enough to observe that, when $\rho \geq 1$, (4.6) gives

$$
\begin{align*}
\left|s^{\prime \prime}\right| \leq 4 & \rho^{2}\left(1+\frac{\mu_{0}}{\delta}+\frac{\gamma}{\sqrt{\delta}}\right) \mathcal{H} \\
& +4 e^{-2 \gamma t}\left(\sqrt{\mu_{0}}+\gamma\right) \int_{|\xi|>\rho} \mathcal{E} d \xi \tag{4.15}
\end{align*}
$$

Then (4.14) follows from (4.15) and Definition 4.2.
Now we can easily estimate $\mathcal{Q}-\mathcal{E}, \mathcal{Q}^{\prime}$ and \mathcal{E}^{\prime}. In fact, with the same assumptions of the Lemma 4.1 and Corollary 4.3, we have:

Lemma 4.4. There exist positive constants $C_{3}\left(\delta, \mu_{1}\right), C_{4}\left(\delta, \gamma, \mu_{1}, \mu_{2}\right), C_{5}\left(\delta, \gamma, \mu_{1}\right)$ such that for $|\xi|>0$ and $t \in[0, T)$

$$
\begin{gather*}
|(\mathcal{Q}-\mathcal{E})| \leq C_{3} \rho\left(\frac{\gamma}{\rho}+J_{\rho}\right) \frac{\mathcal{E}}{|\xi|}, \quad \forall \rho>0 \tag{4.16}\\
\left|\mathcal{Q}^{\prime}\right| \leq C_{4} \rho^{2} J_{\rho}\left(1+J_{\rho}\right) \frac{\mathcal{E}}{|\xi|}, \quad \forall \rho \geq 1 \tag{4.17}\\
\left|\mathcal{E}^{\prime}\right| \leq C_{5} \rho\left(\frac{\gamma}{\rho}+J_{\rho}\right) \mathcal{E}, \quad \forall \rho>0 \tag{4.18}
\end{gather*}
$$

Proof. From (4.1)-(4.2) and (4.5), for $|\xi|>0$ one has

$$
\begin{align*}
|\mathcal{Q}-\mathcal{E}| & \leq\left|\frac{\gamma}{\sqrt{m}}+\frac{m^{\prime}(s) s^{\prime}}{4 m^{3 / 2}}\right| \frac{\mathcal{E}}{|\tilde{\xi}|} \tag{4.19}\\
& \leq \rho\left(\frac{\gamma}{\rho \sqrt{\delta}}+\frac{\mu_{1}}{2 \delta^{2}} \mathcal{H}+\frac{\mu_{1}}{2 \delta^{3 / 2}} e^{-2 \gamma t} \frac{\mathcal{E}^{\rho}}{\rho^{2}}\right) \frac{\mathcal{E}}{|\xi|}
\end{align*}
$$

for all $\rho>0$. Hence (4.16) is verified. In the same way, we can show that (4.17) holds. In fact, from (4.3) and Corollary 4.3 , for $|\xi|>0$ and $\rho \geq 1$ we have

$$
\begin{align*}
\left|\mathcal{Q}^{\prime}\right| & \leq\left|-\frac{\gamma m^{\prime} s^{\prime}}{2 m^{3 / 2}}+\frac{m^{\prime}(s) s^{\prime \prime}+m^{\prime \prime} s^{\prime 2}}{4 m^{3 / 2}}-\frac{3}{8} \frac{m^{\prime 2} s^{\prime 2}}{m^{5 / 2}}\right| \frac{\mathcal{E}}{|\xi|} \\
& \leq C\left(\rho J_{\rho}+\rho^{2} J_{\rho}+\rho^{2} J_{\rho}^{2}\right) \frac{\mathcal{E}}{|\xi|} \tag{4.20}\\
& \leq C \rho^{2}\left(J_{\rho}+J_{\rho}^{2}\right) \frac{\mathcal{E}}{|\xi|}
\end{align*}
$$

Hence (4.17) is proved. Finally, deriving \mathcal{E} with respect to t, we find

$$
\left.\begin{array}{rl}
\mathcal{E}^{\prime}=2 \gamma & \mathcal{E} \tag{4.21}
\end{array}\right)+e^{2 \gamma t}\left(\frac{m^{\prime} s^{\prime}}{4 \sqrt{m}}|\xi|^{4}|\hat{u}|^{2}-\frac{m^{\prime} s^{\prime}}{4 m^{3 / 2}}|\xi|^{2}\left|\hat{u}_{t}\right|^{2}\right) ~=~\left(2 \gamma e^{2 \gamma t} \frac{1}{\sqrt{m}}|\xi|^{2}\left|\hat{u}_{t}\right|^{2},\right.
$$

Hence we have

$$
\begin{equation*}
\left|\mathcal{E}^{\prime}\right| \leq\left(2 \gamma+\frac{\mu_{1}}{2 \delta}\left|s^{\prime}\right|\right) \mathcal{E} \tag{4.22}
\end{equation*}
$$

Then, using (4.13), we immediately obtain (4.18).

5 Global existence for B_{Δ}^{2} data

We will prove here the first part of Theorem 1.2 for $k=2$; namely, the global existence of the strong solution u, when $m \in C^{2}[0, \infty)$ and $\left(u_{0}, u_{1}\right) \in B_{\Delta}^{2}$.

As observed in §2.1, it is sufficient to show that $E_{2}(u ; t)$ remains bounded in every finite interval $[0, T)$. To begin with, since $\left(u_{0}, u_{1}\right) \in B_{\Delta}^{2}$, there exist $\eta>0$ and a sequence $\left\{\rho_{j}\right\}_{j \geq 1}$ such that $\rho_{j}>0, \lim _{j} \rho_{j}=+\infty$ and

$$
\begin{equation*}
Y \stackrel{\text { def }}{=} \sup _{j} \int_{|\xi|>\rho_{j}}\left(\frac{\sqrt{\mu_{0}}}{2}|\xi|^{4}\left|\hat{u}_{0}(\xi)\right|^{2}+\frac{|\xi|^{2}\left|\hat{u}_{1}(\xi)\right|^{2}}{2 \sqrt{\delta}}\right) \frac{e^{\eta \rho_{j}^{2} /|\xi|}}{\rho_{j}^{2}} d \xi<\infty \tag{5.1}
\end{equation*}
$$

Further, we consider u in the stripe $\mathbb{R}^{n} \times[T-\varepsilon, T)$, where $\varepsilon \in(0, T]$ is a parameter that we will fix in the following. For $T-\varepsilon \leq t<T$, we have

$$
\begin{equation*}
\mathcal{E}(\xi, t)=\mathcal{E}(\xi, T-\varepsilon)-[(\mathcal{Q}-\mathcal{E})(\xi, \tau)]_{T-\varepsilon}^{t}+\int_{T-\varepsilon}^{t} \mathcal{Q}^{\prime}(\xi, \tau) d \tau \tag{5.2}
\end{equation*}
$$

To estimate the right-hand side of (5.2), we apply the following simplified form of the inequalities of Lemma 4.4. For $\rho \geq 1$ and $|\xi|>0$, we have

$$
\begin{align*}
|\mathcal{Q}-\mathcal{E}| & \leq C_{3}\left[\Gamma+\frac{\mathcal{E}^{\rho}}{\rho^{2}}\right] \frac{\rho}{|\xi|} \mathcal{E} \tag{5.3}\\
\left|\mathcal{Q}^{\prime}\right| & \leq C_{4} p_{2}\left(\Gamma+\frac{\mathcal{E}^{\rho}}{\rho^{2}}\right) \frac{\rho^{2}}{|\xi|} \mathcal{E} \tag{5.4}\\
\left|\mathcal{E}^{\prime}\right| & \leq C_{5} \rho\left[\Gamma+\frac{\mathcal{E}^{\rho}}{\rho^{2}}\right] \mathcal{E} \tag{5.5}
\end{align*}
$$

where $p_{2}(r) \stackrel{\text { def }}{=} r+r^{2}$ and

$$
\begin{equation*}
\Gamma \stackrel{\text { def }}{=} \gamma+\mathcal{H}(0) \tag{5.6}
\end{equation*}
$$

Since $\mathcal{H}(0) \geq 0$ and $\gamma>0$, it is clear that $\Gamma>0$ (note also that $\mathcal{H}(0)=0$ implies $u \equiv 0$). Next, we set

$$
\begin{equation*}
\lambda=4 C_{3} \Gamma+1, \tag{5.7}
\end{equation*}
$$

and then we write

$$
\begin{equation*}
\mathcal{E}^{\rho}(t)=\mathcal{E}_{\rho}^{\lambda \rho}(t)+\mathcal{E}^{\lambda \rho}(t), \tag{5.8}
\end{equation*}
$$

where, obviously,

$$
\begin{equation*}
\mathcal{E}_{\rho}^{\lambda \rho}(t) \stackrel{\text { def }}{=} \int_{\rho<|\xi| \leq \lambda \rho} \mathcal{E}(\xi, t) d \xi \tag{5.9}
\end{equation*}
$$

Assuming from now on $\rho \geq 1$, from (5.3) and (5.7), we have

$$
\begin{equation*}
|(\mathcal{Q}-\mathcal{E})(\xi, t)|<\frac{\mathcal{E}(\xi, t)}{2} \quad \text { for } \quad|\xi| \geq \lambda \rho \tag{5.10}
\end{equation*}
$$

and $t \in[T-\varepsilon, T)$ such that the quantities $\mathcal{E}_{\rho}^{\lambda \rho}(t), \mathcal{E}_{\lambda \rho}(t)$ satisfy

$$
\begin{equation*}
\text { (a) } \frac{\mathcal{E}_{\rho}^{\lambda \rho}(t)}{\rho^{2}}<\frac{\Gamma}{2}, \quad \text { (b) } \frac{\mathcal{E}^{\lambda \rho}(t)}{\rho^{2}}<\frac{\Gamma}{2} . \tag{5.11}
\end{equation*}
$$

Now we choose $\varepsilon>0$ and $\tilde{\rho} \geq 1$ such that

$$
\begin{gather*}
2 C_{5} \rho \Gamma \varepsilon+\ln \left(\frac{4 \mathrm{Y}+1}{\Gamma}\right) \leq \frac{\eta \rho}{\lambda} \quad \forall \rho \geq \tilde{\rho} \tag{5.12}\\
2 C_{4} p_{2}(2 \Gamma) \varepsilon \leq \frac{\eta}{2} \tag{5.13}
\end{gather*}
$$

where Y, η are the constants introduced in (5.1). Besides, noting that $\mathcal{E}^{\rho}(T-\varepsilon) \rightarrow$ 0 as $\rho \rightarrow+\infty$, we may also suppose that

$$
\begin{equation*}
\frac{\mathcal{E}_{\rho}^{\lambda \rho}(T-\varepsilon)}{\rho^{2}} \leq \frac{\Gamma}{4}, \quad \frac{\mathcal{E}^{\lambda \rho}(T-\varepsilon)}{\rho^{2}} \leq \frac{\Gamma}{4} \quad \forall \rho \geq \tilde{\rho} . \tag{5.14}
\end{equation*}
$$

Thanks to (5.14), for every $\rho \geq \tilde{\rho}$ conditions (a), (b) of (5.11) are both verified in some maximal right neighborhood of $T-\varepsilon$, say

$$
\begin{equation*}
[T-\varepsilon, \hat{T}), \quad \text { where } \quad \hat{T}=\hat{T}(\rho) \tag{5.15}
\end{equation*}
$$

is maximal and, clearly, $T-\varepsilon<\hat{T}(\rho) \leq T$. In the sequel we will prove that $\hat{T}\left(\rho_{j}\right)=T$, provided ρ_{j} is a sufficiently large element of the sequence $\left\{\rho_{j}\right\}_{j \geq 1}$.

Estimate of $\mathcal{E}_{\rho}^{\lambda \rho}(t)$

Since \mathcal{E}^{\prime} satisfies inequality (5.5), taking $\varrho(T-\varepsilon) \geq 1$ according to Lemma 9.2 of Appendix I, i.e. such that

$$
\begin{equation*}
\mathcal{E}(\xi, T-\varepsilon) \leq 2 \mathcal{E}(\xi, 0) \text { for }|\xi| \geq \varrho(T-\varepsilon), \tag{5.16}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathcal{E}(\xi, t) \leq 2 \mathcal{E}(\xi, 0) \exp \left\{C_{5} \rho \int_{T-\varepsilon}^{t}\left[\Gamma+\frac{\mathcal{E}^{\rho}}{\rho^{2}}\right] d \tau\right\} \tag{5.17}
\end{equation*}
$$

for all $|\xi| \geq \varrho(T-\varepsilon)$ and $t \in[T-\varepsilon, T)$. Besides, by definition, $\frac{\mathcal{E}^{\rho}(t)}{\rho^{2}}<\Gamma$ in the interval $[T-\varepsilon, \hat{T}(\rho))$ when $\rho \geq \tilde{\rho}$. Hence we find

$$
\begin{equation*}
\int_{T-\varepsilon}^{t}\left[\Gamma+\frac{\mathcal{E}^{\rho}}{\rho^{2}}\right] d \tau \leq 2 \Gamma \varepsilon \tag{5.18}
\end{equation*}
$$

for $t \in[T-\varepsilon, \hat{T}(\rho))$, provided $\rho \geq \tilde{\rho}$. Thus, for $\rho=\rho_{j}$ with $\rho_{j} \geq \max \{\tilde{\rho}$, $\varrho(T-\varepsilon)\}$, from (5.12), (5.17)-(5.18) and the definition of Y, we have

$$
\begin{align*}
\frac{\mathcal{E}_{\rho_{j}}^{\lambda \rho_{j}}(t)}{\rho_{j}^{2}} & \leq \int_{\rho_{j}<|\xi| \leq \lambda \rho_{j}} \frac{2 \mathcal{E}(\xi, 0)}{\rho_{j}^{2}} \exp \left\{2 C_{5} \rho_{j} \Gamma \varepsilon\right\} d \xi \\
& \leq \frac{\Gamma}{4 \mathrm{Y}+1} \int_{\rho_{j}<|\xi| \leq \lambda \rho_{j}} \frac{2 \mathcal{E}(\xi, 0)}{\rho_{j}^{2}} \exp \left\{\frac{\eta \rho_{j}^{2}}{|\xi|}\right\} d \xi \tag{5.19}\\
& \leq \Gamma \frac{2 \mathrm{Y}}{4 \mathrm{Y}+1}<\frac{\Gamma}{2}
\end{align*}
$$

for all $t \in\left[T-\varepsilon, \hat{T}\left(\rho_{j}\right)\right)$. This means that, for $\rho=\rho_{j}$ with $\rho_{j} \geq \max \{\tilde{\rho}, \varrho(T-\varepsilon)\}$, condition (a) in (5.11) is always verified as long as condition (b) holds and, in conclusion, it only remains to prove that for $\rho=\rho_{j}$, with j large enough, (5.11) (b) holds for all $t \in[T-\varepsilon, T)$.

Estimate of $\mathcal{E}^{\lambda \rho}(t)$

From (5.2)-(5.4) and (5.10), for every fixed $\rho \geq \tilde{\rho}$ and for all $t \in[T-\varepsilon, \hat{T}(\rho))$ we have the inequality

$$
\begin{equation*}
\mathcal{E}(\xi, t) \leq 3 \mathcal{E}(\xi, T-\varepsilon)+2 C_{4} \frac{p_{2}(2 \Gamma) \rho^{2}}{|\xi|} \int_{T-\varepsilon}^{t} \mathcal{E}(\xi, \tau) d \tau \tag{5.20}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$ such that $|\xi| \geq \lambda \rho$. Now, using (5.13), (5.16) and applying Gronwall's lemma to (5.20), for $\rho \geq \max \{\tilde{\rho}, \varrho(T-\varepsilon)\}$ and $t \in[T-\varepsilon, \hat{T}(\rho))$ we find

$$
\begin{align*}
\mathcal{E}(\xi, t) & \leq 3 \mathcal{E}(\xi, T-\varepsilon) \exp \left\{\frac{\eta \rho^{2}}{2|\xi|} \frac{t-T+\varepsilon}{\varepsilon}\right\} \\
& \leq 6 \mathcal{E}(\xi, 0) \exp \left\{\frac{\eta \rho^{2}}{2|\xi|} \frac{t-T+\varepsilon}{\varepsilon}\right\} \tag{5.21}\\
& \leq 6 \mathcal{E}(\xi, 0) \exp \left\{\frac{\eta \rho^{2}}{2|\xi|}\right\},
\end{align*}
$$

when $|\xi| \geq \lambda \rho$. Thus, in order to verify that (5.11) (b) holds for all $t \in[T-\varepsilon, T)$, whenever $\rho=\rho_{j}$ with j large enough, it will be sufficient to observe that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{|\xi|>\lambda \rho_{j}} \mathcal{E}(\xi, 0) \frac{e^{\eta \rho_{j}^{2} / 2|\xi|}}{\rho_{j}^{2}} d \xi=0 \tag{5.22}
\end{equation*}
$$

To this end, we demonstrate the following:
Lemma 5.1. Assume that (5.1) holds. Then, for all $\eta^{\prime}<\eta$ we have

$$
\begin{equation*}
\lim _{j} \int_{|\xi|>\rho_{j}} \mathcal{E}(\xi, 0) \frac{e^{\eta^{\prime} \rho_{j}^{2} /|\xi|}}{\rho_{j}^{2}} d \xi=0 \tag{5.23}
\end{equation*}
$$

Proof. Given $\Lambda>0$, for all $j \geq 1$ we define the sets

$$
\begin{align*}
A_{j} & =\left\{\xi:|\xi|>\rho_{j}, \rho_{j}^{2} \geq \Lambda|\xi|\right\} \tag{5.24}\\
B_{j} & =\left\{\xi:|\xi|>\rho_{j}, \rho_{j}^{2}<\Lambda|\xi|\right\}
\end{align*}
$$

Integrating, we find

$$
\begin{array}{rl}
\int_{|\xi|>\rho_{j}} & \mathcal{E}(\xi, 0) \frac{e^{\eta^{\prime} \rho_{j}^{2} /|\xi|}}{\rho_{j}^{2}} d \xi \\
& =\int_{A_{j}} \mathcal{E}(\xi, 0) \frac{e^{\eta^{\prime} \rho_{j}^{2} /|\xi|}}{\rho_{j}^{2}} d \xi+\int_{B_{j}} \mathcal{E}(\xi, 0) \frac{e^{\eta^{\prime} \rho_{j}^{2} /|\xi|}}{\rho_{j}^{2}} d \xi \tag{5.25}\\
& \leq e^{-\Lambda\left(\eta-\eta^{\prime}\right)} \int_{A_{j}} \mathcal{E}(\xi, 0) \frac{e^{\eta \rho_{j}^{2} /|\xi|}}{\rho_{j}^{2}} d \xi+\int_{B_{j}} \mathcal{E}(\xi, 0) \frac{e^{\Lambda \eta^{\prime}}}{\rho_{j}^{2}} d \xi \\
& \leq e^{-\Lambda\left(\eta-\eta^{\prime}\right)} \mathrm{Y}+\int_{|\xi|>\rho_{j}} \mathcal{E}(\xi, 0) \frac{e^{\Lambda \eta^{\prime}}}{\rho_{j}^{2}} d \xi
\end{array}
$$

Since $\eta>\eta^{\prime}$, the term $e^{-\Lambda\left(\eta-\eta^{\prime}\right)} \mathrm{Y}$ can be made arbitrarily small taking $\Lambda>$ 0 sufficiently large. Besides, the last integral in (5.25) tends to 0 as $\rho_{j} \rightarrow+\infty$, because $B_{\Delta}^{2} \subset H^{2} \times H^{1}$. From these facts we immediately have (5.23).

Conclusion

It follows that $\hat{T}\left(\rho_{j}\right)=T$ for all integer j large enough, i.e. both the conditions of (5.11) are verified in $[T-\varepsilon, T)$. In particular, fixed j_{0} sufficiently large, by (5.8) we have $\mathcal{E}^{\rho_{j_{0}}}(t) \leq \rho_{j_{0}}^{2} \Gamma$ in $[T-\varepsilon, T)$. Finally, using also the a-priori estimate (4.4), we obtain

$$
\begin{equation*}
E_{2}(u ; t) \leq C \rho_{j_{0}}^{2}\left(\mathcal{H}(t)+e^{-2 \gamma t} \Gamma\right) \tag{5.26}
\end{equation*}
$$

for $t \in[T-\varepsilon, T)$, with $C=2 \max \left\{1, \delta^{-1}, \mu_{0}^{\frac{1}{2}}\right\}$. Thus $E_{2}(u ; t)$ is uniformly bounded in $[0, T)$. Since T is an arbitrary positive number, this in turn implies the global existence of the solution of (1.1)-(1.2).

6 boundedness and decay for B_{Δ}^{2} data

Here we shall prove that the global solution obtained in $\S 5$ satisfies (1.7). As in the previous section we consider the case $k=2$. We may, therefore, suppose that:
(a) condition (5.1) holds for fixed $\eta>0$ and $\left\{\rho_{j}\right\}_{j \geq 1}$;
(b) u is the unique global strong solution of (1.1)-(1.2).

Given $\mathcal{T} \geq 0$, that we will fix in (6.4)-(6.5) below, we consider the solution in $\mathbb{R} \times[\mathcal{T}, \infty)$. Then, for $t \geq \mathcal{T}$, we have the identity

$$
\begin{equation*}
\mathcal{E}(\xi, t)=\mathcal{E}(\xi, \mathcal{T})-[(\mathcal{Q}-\mathcal{E})(\xi, \tau)]_{\mathcal{T}}^{t}+\int_{\mathcal{T}}^{t} \mathcal{Q}^{\prime}(\xi, \tau) d \tau \tag{6.1}
\end{equation*}
$$

To estimate the terms $\mathcal{Q}-\mathcal{E}$ and \mathcal{Q}^{\prime} in formula (6.1), we apply the inequalities of Lemma 4.4. Precisely, for $\rho \geq 1$ and $|\xi|>0$ we have:

$$
\begin{align*}
|\mathcal{Q}-\mathcal{E}| & \leq C_{3}\left[\frac{\gamma}{\rho}+\mathcal{H}(t)+e^{-2 \gamma t} \frac{\mathcal{E}^{\rho}}{\rho^{2}}\right] \frac{\rho}{|\xi|} \mathcal{E} \tag{6.2}\\
\left|\mathcal{Q}^{\prime}\right| & \leq C_{4} p_{2}\left(\mathcal{H}(t)+e^{-2 \gamma t} \frac{\mathcal{E}^{\rho}}{\rho^{2}}\right) \frac{\rho^{2}}{|\xi|} \mathcal{E} \tag{6.3}
\end{align*}
$$

where, as above, $p_{2}(r) \stackrel{\text { def }}{=} r+r^{2}$. Since $\gamma>0$, by using (iii) and (iv) of Lemma 2.2, we can select $\mathcal{T} \geq 0$ so large that

$$
\begin{gather*}
C_{3} \mathcal{H}(t) \leq \frac{1}{8} \quad \text { for } \quad t \geq \mathcal{T} \tag{6.4}\\
2 C_{4} \int_{\mathcal{T}}^{\infty} p_{2}\left(\mathcal{H}(t)+\frac{e^{-2 \gamma t}}{4 C_{3}}\right) d t \leq \frac{\eta}{2} \tag{6.5}
\end{gather*}
$$

Besides, we can take $\bar{\rho} \geq 1$ such that

$$
\left\{\begin{array}{l}
C_{3} \frac{\gamma}{\rho} \leq \frac{1}{8} \tag{6.6}\\
C_{3} \frac{\mathcal{E}^{\rho}(\mathcal{T})}{\rho^{2}} \leq \frac{1}{8}
\end{array} \quad \text { for } \quad \forall \rho \geq \bar{\rho}\right.
$$

Therefore, by (6.2), for every fixed $\rho \geq \bar{\rho}$ we have

$$
\begin{equation*}
|(\mathcal{Q}-\mathcal{E})(\xi, t)| \leq \frac{1}{2} \mathcal{E}(\xi, t) \quad \text { for all } \quad|\xi| \geq \rho \tag{6.7}
\end{equation*}
$$

whenever $t \geq \mathcal{T}$ and

$$
\begin{equation*}
C_{3} \frac{\mathcal{E}^{\rho}(t)}{\rho^{2}}<\frac{1}{4} \tag{6.8}
\end{equation*}
$$

Then, for $\rho \geq \bar{\rho}$, we define

$$
\begin{equation*}
\hat{\mathcal{T}}(\rho) \stackrel{\text { def }}{=} \sup \{\tau \geq \mathcal{T}:(6.8) \text { holds for all } t \in[\mathcal{T}, \tau)\} \tag{6.9}
\end{equation*}
$$

Since $\mathcal{T}, \bar{\rho}$ verify (6.4)-(6.6), it is clear that $\hat{\mathcal{T}}(\rho)>\mathcal{T}$ for all $\rho \geq \bar{\rho}$. In the following, we shall prove that $\hat{\mathcal{T}}\left(\rho_{j}\right)=\infty$ if ρ_{j} is any sufficiently large element of the sequence $\left\{\rho_{j}\right\}_{j \geq 1}$, i.e. (6.8) is verified for all $t \in[\mathcal{T}, \infty)$ when $\rho=\rho_{j}$ with ρ_{j} large enough. Now, by (6.1) and (6.7), for every fixed $\rho \geq \bar{\rho}$ we have

$$
\begin{equation*}
\mathcal{E}(\xi, t) \leq 3 \mathcal{E}(\xi, \mathcal{T})+2 \int_{\mathcal{T}}^{t} \mathcal{Q}^{\prime}(\xi, \tau) d \tau \tag{6.10}
\end{equation*}
$$

for all $|\xi| \geq \rho$ and $t \in[\mathcal{T}, \hat{\mathcal{T}}(\rho))$. From this, using the estimate (6.3), condition (6.5) and applying Gronwall's lemma, we easily get

$$
\begin{equation*}
\mathcal{E}(\xi, t) \leq 3 \mathcal{E}(\xi, \mathcal{T}) e^{\eta \rho^{2} / 2|\xi|} \tag{6.11}
\end{equation*}
$$

for $|\xi| \geq \rho$ and $t \in[\mathcal{T}, \hat{\mathcal{T}}(\rho))$. Then, taking $\varrho(\mathcal{T})$ according to Lemma 9.2, i.e. such that $\mathcal{E}(\xi, \mathcal{T}) \leq 2 \mathcal{E}(\xi, 0)$ for $|\xi| \geq \varrho(\mathcal{T})$, from (6.11) we derive further the inequality

$$
\begin{equation*}
\mathcal{E}(\xi, t) \leq 6 \mathcal{E}(\xi, 0) e^{\eta \rho^{2} / 2|\xi|} \tag{6.12}
\end{equation*}
$$

for $\rho \geq \max \{\bar{\rho}, \varrho(\mathcal{T})\},|\xi| \geq \rho$ and $t \in[\mathcal{T}, \hat{\mathcal{T}}(\rho))$. This means that for $\rho \geq$ $\max \{\bar{\rho}, \varrho(\mathcal{T})\}$ we can estimate $\mathcal{E}^{\rho}(t) / \rho^{2}$ as follows:

$$
\begin{equation*}
\frac{\mathcal{E}^{\rho}(t)}{\rho^{2}} \leq 6 \int_{|\xi|>\rho} \mathcal{E}(\xi, 0) \frac{e^{\eta \rho^{2} / 2|\xi|}}{\rho^{2}} d \xi \tag{6.13}
\end{equation*}
$$

for all $t \in[\mathcal{T}, \hat{\mathcal{T}}(\rho))$. Thus, in order to conclude that $\hat{\mathcal{T}}\left(\rho_{j}\right)=+\infty$ if j is large enough, it is sufficient to apply Lemma 5.1. In particular, there exists an integer $j_{1} \geq 1$ large such that

$$
\begin{equation*}
\mathcal{E}^{\rho_{j_{1}}(t) \leq \frac{\rho_{j_{1}}^{2}}{4 C_{3}} \quad \forall t \in[\mathcal{T}, \infty)} \tag{6.14}
\end{equation*}
$$

Now we can easily derive the decay estimate (1.7) for $E_{r}(u ; t)$, when $0 \leq r \leq 2$. In fact, from (4.4) and (6.14), we readily have the estimate

$$
\begin{equation*}
E_{r}(u ; t) \leq C\left(\rho_{j_{1}}\right)^{r}\left(\mathcal{H}(t)+\frac{e^{-2 \gamma t}}{4 C_{3}}\right) \tag{6.15}
\end{equation*}
$$

for $t \in[\mathcal{T}, \infty)$, with $C=2 \max \left\{1, \delta^{-1}, \mu_{0}^{\frac{1}{2}}\right\}$. Having $\gamma>0$, combining (6.15) with (iii) and (iv) of Lemma 2.2, (1.7) follows.

7 Sketch of the proof of theorem 1.2 for $k \geq 2$

Having proved in details Theorem 1.2 for $k=1,2$, we now sketch the idea of the proof for a generic integer $k \geq 2$. To do this we apply the results of [4]. We divide the proof in three steps.

7.1 Quadratic forms for the linearized equation

Let us consider the infinite system of linear oscillating equations with dissipative term

$$
\begin{equation*}
w_{t t}+a(t)|\xi|^{2} w+2 \gamma w_{t}=0 \quad \text { for } \quad t \in[0, T), \quad \xi \in \mathbb{R}^{n} \tag{7.1}
\end{equation*}
$$

where $0<T \leq \infty, a(t) \in C^{k}[0, T), a(t) \geq \delta>0$ and $\gamma>0$. Setting

$$
\begin{equation*}
z(\xi, t)=e^{\gamma t} w(\xi, t), \tag{7.2}
\end{equation*}
$$

it follows that, for $|\xi|>0$,

$$
\begin{equation*}
z_{t t}+a_{*}(|\xi|, t)|\xi|^{2} z=0 \tag{7.3}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{*}(|\xi|, t)=a(t)-\gamma^{2}|\xi|^{-2} . \tag{7.4}
\end{equation*}
$$

Since our arguments require that $a_{*} \geq c>0$, from now on we will assume

$$
\begin{equation*}
|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}} \tag{7.5}
\end{equation*}
$$

thus $a_{*}(|\xi|, t) \geq \frac{3}{4} \delta$. Then, for $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$ and $z(\xi, t)$ a complex-valued solution of (7.3), we consider the quadratic form:

$$
\begin{align*}
\mathcal{Q}_{k}^{*}\left(z, z_{t}\right) & \stackrel{\text { def }}{=} \sum_{0 \leq i \leq\left[\frac{k}{2}\right]-1} \alpha_{i}^{*}(t)|\xi|^{-2 i}\left(a_{*}(t)|\xi|^{2}|z|^{2}+\left|z_{t}\right|^{2}\right) \tag{7.6}\\
& +\sum_{0 \leq i \leq\left[\frac{k}{2}\right]-1} \beta_{i}^{*}(t)|\xi|^{-2 i} \operatorname{Re}\left(\bar{z} z_{t}\right)+\sum_{0 \leq i<\frac{k}{2}-1} \gamma_{i}^{*}(t)|\xi|^{-2 i-2}\left|z_{t}\right|^{2}
\end{align*}
$$

where $\alpha_{i}^{*}, \beta_{i}^{*}, \gamma_{i}^{*}$ are real-valued functions on $[0, T)$ satisfying the system

$$
\gamma_{-1}^{*} \equiv 0, \quad\left\{\begin{array}{l}
\left(a_{*} \alpha_{i}^{*}\right)^{\prime}-a_{*} \beta_{i}^{*}=0 \tag{7.7}\\
\alpha_{i}^{* \prime}+\beta_{i}^{*}=-\gamma_{i-1}^{*} \\
\beta_{i}^{* \prime}-2 a_{*} \gamma_{i}^{*}=0
\end{array} \quad(0 \leq i \leq[k / 2]-1)\right.
$$

By the result of [4], system (7.7) is solvable and $\alpha_{i}^{*}, \beta_{i}^{*}, \gamma_{i}^{*}$ are polynomials in

$$
\begin{equation*}
\omega_{*} \stackrel{\text { def }}{=} \frac{1}{2 \sqrt{a_{*}}} \tag{7.8}
\end{equation*}
$$

and its derivatives of orders not greater than, respectively, $2 i, 2 i+1,2 i+2$. More precisely, computing the solutions system (7.7), we may select the coefficients of integration such that $\omega_{*}^{-1} \alpha_{i}^{*}, \beta_{i}^{*}, \omega_{*}^{-1} \gamma_{i}^{*}$ are homogeneous in the sense that

$$
\begin{equation*}
\omega_{*}^{-1} \alpha_{i}^{*}=\sum c_{\eta_{0}, \ldots \eta_{2 i}}\left(\omega_{*}\right)^{\eta_{0}}\left(\omega_{*}^{(1)}\right)^{\eta_{1}} \cdots\left(\omega_{*}^{(2 i)}\right)^{\eta_{2 i}} \tag{7.9}
\end{equation*}
$$

for $0 \leq i \leq\left[\frac{k}{2}\right]-1$, with $c_{\eta_{0}, \ldots, \eta_{2 i}} \in \mathbb{R}$ and $\eta_{0}, \ldots, \eta_{2 i} \geq 0$ integers such that

$$
\sum_{0 \leq h \leq 2 i} \eta_{h}=2 i \text { and } \sum_{0 \leq h \leq 2 i} h \eta_{h}=2 i ;
$$

while $\beta_{i}^{*}, \omega_{*}^{-1} \gamma_{i}^{*}$ have analogous expansions on replacing $2 i$ by $2 i+1$ and $2 i+2$. In particular, we have

$$
\begin{equation*}
\alpha_{0}^{*}=c_{0} \omega_{*}, \quad \beta_{0}^{*}=-c_{0} \omega_{*}^{\prime}, \quad \gamma_{0}^{*}=-2 c_{0} \omega_{*}^{2} \omega_{*}^{\prime \prime}, \tag{7.10}
\end{equation*}
$$

where c_{0} is an arbitrary real constant. Thus, setting $c_{0}=1$, the first term of $\mathcal{Q}_{k}^{*}\left(z, z_{t}\right)$ is the energy function

$$
\begin{equation*}
\mathcal{E}^{*}\left(z, z_{t}\right) \stackrel{\text { def }}{=} \frac{\sqrt{a_{*}(t)}}{2}|\xi|^{2}|z|^{2}+\frac{\left|z_{t}\right|^{2}}{2 \sqrt{a_{*}(t)}} \tag{7.11}
\end{equation*}
$$

Finally, let us recall that

$$
\frac{d}{d t} \mathcal{Q}_{k}^{*}\left(z, z_{t}\right)=\left\{\begin{array}{l}
\left(\beta_{\left[\frac{k}{2}\right]-1}^{*}\right)^{\prime}|\xi|^{-k+2} \operatorname{Re}\left(\bar{z} z_{t}\right) \quad \text { for } k \geq 2 \text { even }, \tag{7.12}\\
\left(\gamma_{\left[\frac{k}{2}\right]-1}^{*}\right)^{\prime}|\xi|^{-k+1}\left|z_{t}\right|^{2} \quad \text { for } k \geq 3 \text { odd }
\end{array}\right.
$$

for every complex-valued solution of (7.3). See Theorems 1.1 and 1.2 of [4].

7.2 Quadratic forms for the damped Kirchhoff equation

Let us suppose that $u \in C^{j}\left([0, T) ; H^{1+\frac{k}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ be a solution of (1.1). Since we suppose $m \in C^{k}$, it follows that $s(t)=\||\xi| \hat{u}(t)\|^{2}$ is of class C^{k}, which in turn implies that $m(s(t)) \in C^{k}[0, T)$. On a account of the arguments developed in $\S 7.1$, by Fourier transform in space variables, we consider the equivalent equation

$$
\begin{equation*}
\hat{u}_{t t}+m(s(t))|\xi|^{2} \hat{u}+2 \gamma \hat{u}_{t}=0, \quad \xi \in \mathbb{R}^{n}, t \geq 0 . \tag{7.13}
\end{equation*}
$$

Then, setting

$$
\begin{gather*}
z(\xi, t)=e^{\gamma t} \hat{u}(\xi, t), \tag{7.14}\\
a_{*}(|\xi|, t)=m(s(t))-\gamma^{2}|\xi|^{-2}, \tag{7.15}\\
\omega_{*} \stackrel{\text { def }}{=} \frac{1}{2 \sqrt{a_{*}}}=\frac{1}{2 \sqrt{m(s(t))-\gamma^{2}|\xi|^{-2}}}, \tag{7.16}
\end{gather*}
$$

for $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$ we introduce the quadratic form \mathcal{Q}_{k}^{*} with coefficients $\alpha_{i}^{*}, \beta_{i}^{*}, \gamma_{i}^{*}$ polynomials in ω_{*} and satisfying (7.9). Finally, we also take $\alpha_{0}^{*}=\omega_{*}$ in order that \mathcal{Q}_{k}^{*} begin with the energy \mathcal{E}^{*} defined in (7.11). Then, since $z_{t}=e^{\gamma t}\left(\gamma \hat{u}+\hat{u}_{t}\right)$, we define:

Definition 7.1. For $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$, we set

$$
\begin{align*}
& \mathcal{Q}_{k} \stackrel{\text { def }}{=} e^{2 \gamma t}|\xi|^{k} \mathcal{Q}_{k}^{*}\left(\hat{u}, \gamma \hat{u}+\hat{u}_{t}\right), \tag{7.17}\\
& \mathcal{E}_{k} \stackrel{\text { def }}{=} e^{2 \gamma t}|\xi|^{k} \mathcal{E}^{*}\left(\hat{u}, \gamma \hat{u}+\hat{u}_{t}\right) . \tag{7.18}
\end{align*}
$$

Since $\mathcal{Q}_{k}=|\xi|^{k} \mathcal{Q}_{k}^{*}\left(e^{\gamma t} \hat{u},\left(e^{\gamma t} \hat{u}\right)_{t}\right)$, from (7.12) we immediately obtain

$$
\frac{d}{d t} \mathcal{Q}_{k}=\left\{\begin{array}{l}
e^{2 \gamma t}\left(\beta_{\left[\frac{k}{2}\right]-1}^{*}\right)^{\prime}|\xi|^{2} \operatorname{Re}\left(\overline{\hat{u}}\left(\gamma \hat{u}+\hat{u}_{t}\right)\right) \quad \text { for } k \geq 2 \text { even }, \tag{7.19}\\
e^{2 \gamma t}\left(\gamma_{\left[\frac{k}{2}\right]-1}^{*}\right)^{\prime}|\xi|\left|\gamma \hat{u}+\hat{u}_{t}\right|^{2} \quad \text { for } k \geq 3 \text { odd },
\end{array}\right.
$$

Besides, $\mathcal{E}_{k}=|\xi|^{k} \mathcal{E}^{*}\left(e^{\gamma t} \hat{u},\left(e^{\gamma t} \hat{u}\right)_{t}\right)$ and

$$
\begin{equation*}
\mathcal{E}_{k} \geq \frac{e^{2 \gamma t}}{4}\left(\frac{\sqrt{m}}{2}|\xi|^{k+2}|\hat{u}|^{2}+\frac{|\xi|^{k}\left|\hat{u}_{t}\right|^{2}}{2 \sqrt{m}}\right) \tag{7.20}
\end{equation*}
$$

when $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$. Now we can proceed estimating $\mathcal{Q}_{k}\left(\hat{u}, \hat{u}_{t}\right)^{\prime}$ and the remainder term

$$
\begin{equation*}
\mathcal{R}_{k} \stackrel{\text { def }}{=} \mathcal{Q}_{k}-\mathcal{E}_{k} \tag{7.21}
\end{equation*}
$$

as in §4. Setting

$$
\begin{equation*}
\mathcal{E}_{k}^{\rho}(t) \stackrel{\text { def }}{=} \int_{|\xi|>\rho} \mathcal{E}_{k}(\xi, t) d \xi, \tag{7.22}
\end{equation*}
$$

after some calculations, similar to those of [4], for every $\rho \geq \frac{2 \gamma}{\sqrt{\delta}}$ we have

$$
\begin{align*}
\int|\xi|^{l}|\hat{u}|\left|\hat{u}_{t}\right| d \xi \leq C \rho^{l-1}\left(\mathcal{H}+\frac{\mathcal{E}_{k}^{\rho}}{\rho^{k}}\right), & 1 \leq l \leq k+1 \tag{7.23}\\
\int|\xi|^{l}\left|\hat{u}_{t}\right|^{2} d \xi \leq C \rho^{l}\left(\mathcal{H}+\frac{\mathcal{E}_{k}^{\rho}}{\rho^{k}}\right), & 0 \leq l \leq k \tag{7.24}\\
\int|\xi|^{l}|\hat{u}|^{2} d \xi \leq C \rho^{l-2}\left(\mathcal{H}+\frac{\mathcal{E}_{k}^{\rho}}{\rho^{k}}\right), & 2 \leq l \leq k+2 \tag{7.25}
\end{align*}
$$

where $C=C\left(\delta, \mu_{0}\right)>0$ is a suitable constant. Using these a priori bounds and the expansions (7.9) to estimate $\alpha_{i}^{*}, \beta_{i}^{*}, \gamma_{i}^{*}$, we finally obtain that:

$$
\begin{align*}
& \left|\mathcal{R}_{k}\right| \leq C_{k} p_{k-1}\left(\mathcal{H}+e^{-2 \gamma t} \frac{\mathcal{E}_{k}^{\rho}}{\rho^{k}}\right) \frac{\rho}{|\xi|} \mathcal{E}_{k}, \tag{7.26}\\
& \left|\mathcal{Q}_{k}^{\prime}\right| \leq C_{k} p_{k}\left(\mathcal{H}+e^{-2 \gamma t} \frac{\mathcal{E}_{k}^{\rho}}{\rho^{k}}\right) \frac{\rho^{k}}{|\tilde{\zeta}|^{k-1}} \mathcal{E}_{k} \tag{7.27}
\end{align*}
$$

for all $|\xi| \geq \rho \geq \max \left\{1, \frac{2 \gamma}{\sqrt{\delta}}\right\}$, with $C_{k}=C_{k}\left(\delta, \gamma, \mu_{0}, \ldots, \mu_{k}\right)$ a positive constant and $p_{j}(r)=r+r^{j}$, for $j \geq 1$.

7.3 Global solvability and decay estimates

Having the a-priori estimates (7.26)-(7.27) it is now easy to complete the proof of Theorem 1.2 for $k \geq 2$. We can follow almost the same reasoning of $\S 5$ and $\S 6$.

To begin with, assuming $\left(u_{0}, u_{1}\right) \in B_{\Delta^{\prime}}^{k}$, there exist $\eta>0$ and a sequence $\left\{\rho_{j}\right\}_{j \geq 1}$ such that $\rho_{j}>0, \lim _{j} \rho_{j}=+\infty$ and

$$
\begin{equation*}
Y_{k} \stackrel{\text { def }}{=} \sup _{j} \int_{|\xi|>\rho_{j}}\left(\frac{\sqrt{\mu_{0}}}{2}|\xi|^{k+2}\left|\hat{u}_{0}(\xi)\right|^{2}+\frac{|\xi|^{2}\left|\hat{u}_{1}(\xi)\right|^{k}}{2 \sqrt{\delta}}\right) \frac{e^{\eta \rho_{j}^{k} /|\xi|^{k-1}}}{\rho_{j}^{k}} d \xi<\infty . \tag{7.28}
\end{equation*}
$$

Global solvability. We argue by contradiction: let $u \in C^{j}\left([0, T) ; H^{1+\frac{k}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=$ $0,1,2)$ be a solution of (1.1)-(1.2) in $\mathbb{R}^{n} \times[0, T)$ with $0<T<\infty$ maximal. Then we consider u in the stripe $\mathbb{R}^{n} \times[T-\varepsilon, T)$, where $\varepsilon \in(0, T]$ is a parameter that we shall fix imposing condition similar to those of (5.12)-(5.14). For $T-\varepsilon \leq t<T$ and $|\xi| \geq \frac{2 \gamma}{\sqrt{\delta}}$, we have

$$
\begin{equation*}
\mathcal{E}_{k}(\xi, t)=\mathcal{E}_{k}(\xi, T-\varepsilon)-\left[\mathcal{R}_{k}(\xi, \tau)\right]_{T-\varepsilon}^{t}+\int_{T-\varepsilon}^{t} \mathcal{Q}_{k}^{\prime}(\xi, \tau) d \tau \tag{7.29}
\end{equation*}
$$

Using (7.26), (7.27), (4.18) and Lemma 9.2 of Appendix I, we can proceed in the estimate the right-hand side of (7.29) exactly as in §5. After some calculations, this leads us to conclude that

$$
\begin{equation*}
\sup _{t \in[0, T)} E_{k}(u, t)<\infty, \tag{7.30}
\end{equation*}
$$

proving that T cannot be maximal. See also the proof of Theorem 1.4 of [4].
Decay Estimate (1.7). Let $u \in C^{j}\left([0, \infty) ; H^{1+\frac{k}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ be a global solution of (1.1)-(1.2). We take $\Gamma_{k}>0$ such that

$$
\begin{equation*}
C_{k} p_{k-1}\left(2 \Gamma_{k}\right)=\frac{1}{2}, \tag{7.31}
\end{equation*}
$$

then we select $\mathcal{T}_{k} \geq 0$ so large that

$$
\begin{gather*}
\mathcal{H}(t) \leq \Gamma_{k} \quad \text { for } \quad t \geq \mathcal{T}_{k}, \tag{7.32}\\
2 C_{k} \int_{\mathcal{T}_{k}}^{\infty} p_{k}\left(\mathcal{H}(t)+e^{-2 \gamma t} \Gamma_{k}\right) d t \leq \frac{\eta}{2} . \tag{7.33}
\end{gather*}
$$

Finally, we take $\rho_{k} \geq \max \left\{1, \frac{2 \gamma}{\sqrt{\delta}}\right\}$ such that

$$
\begin{equation*}
\frac{\mathcal{E}_{k}^{\rho}\left(\mathcal{T}_{k}\right)}{\rho^{k}} \leq \frac{\Gamma_{k}}{2} \quad \text { for } \quad \forall \rho \geq \rho_{k} \tag{7.34}
\end{equation*}
$$

Then, using (7.26)-(7.27), we can proceed on the estimation of $\mathcal{E}_{k}^{\rho}(t)$ for $t \geq \mathcal{T}_{k}$ by repeating almost the same proof of $\S 6$.

8 Proof of theorem 1.3

The idea of the proof is essentially due to Yamada [9]. Given an integer $k \geq 1$, let $u \in C^{j}\left([0, \infty) ; H^{1+\frac{k}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ be a global solution of equation (1.1). By Lemmas 2.2 and 2.3, we know that

$$
\begin{equation*}
\sup _{t \geq 0}\left\{t\left(|u|_{1}^{2}+\left|u_{t}\right|_{0}^{2}\right)+\int_{0}^{t}\left(|u|_{1}^{2}+\tau\left|u_{t}\right|_{0}^{2}\right) d \tau\right\}<\infty . \tag{8.1}
\end{equation*}
$$

Hence (1.9) holds with $r=0$. Then, to prove (1.9) for $0<r \leq k / 2$, we proceed as follows. By partial Fourier transform in space variables, we consider the equivalent equation

$$
\begin{equation*}
\hat{u}_{t t}+m(s(t))|\xi|^{2} \hat{u}+2 \gamma \hat{u}_{t}=0, \quad \xi \in \mathbb{R}^{n}, t \geq 0, \tag{8.2}
\end{equation*}
$$

where, as usual, $s(t)=\||\xi| \hat{u}(t)\|^{2}$. Besides, we introduce the auxiliary functions

$$
\begin{equation*}
\chi(\xi) \phi(t) \text { and } \omega(\tilde{\xi}) \psi(t) \tag{8.3}
\end{equation*}
$$

where $\phi(t), \psi(t) \in C^{2}[0, \infty)$ and $\chi(\xi), \omega(\xi)$ are suitable weights that we shall fix in the following. Multiplying equation (8.2) by $\chi(\xi) \phi(t) \overline{\hat{u}}_{t}$ and integrating other $\mathbb{R}_{\xi}^{n} \times[\bar{t}, t)$, with $0 \leq \bar{t}<t$, we get

$$
\begin{align*}
\phi(t) \int \chi(\xi) & \left.\left(\left|\hat{u}_{t}\right|^{2}+m|\xi|^{2}|\hat{u}|^{2}\right) d \xi\right|_{t}+4 \gamma \int_{\bar{t}}^{t} \int \phi \chi(\xi)\left|\hat{u}_{t}\right|^{2} d \xi d \tau \\
= & \left.\phi(\bar{t}) \int \chi(\xi)\left(\left|\hat{u}_{t}\right|^{2}+m|\xi|^{2}|\hat{u}|^{2}\right) d \xi\right|_{\bar{t}} \tag{8.4}\\
& +\int_{\bar{t}}^{t} \int \chi(\xi)\left[\phi^{\prime}\left|\hat{u}_{t}\right|^{2}+\phi^{\prime} m|\xi|^{2}|\hat{u}|^{2}+\phi m^{\prime} s^{\prime}|\xi|^{2}|\hat{u}|^{2}\right] d \xi d \tau
\end{align*}
$$

where, as usual, $m=m(s(t)), m^{\prime}=m^{\prime}(s(t))$. Similarly, multiplying (8.2) by $\omega(\xi) \psi(t) \overline{\hat{u}}$ and integrating over $\mathbb{R}_{\xi}^{n} \times[\bar{t}, t)$, we have

$$
\begin{align*}
& \left.2 \psi(t) \int \omega(\xi) \operatorname{Re}\left(\hat{u} \bar{u}_{t}\right) d \xi\right|_{t}+\left.\left(2 \gamma \psi(t)-\psi^{\prime}(t)\right) \int \omega(\xi)|\hat{u}|^{2} d \xi\right|_{t} \\
& \quad+\int_{\bar{t}}^{t} \int \omega(\xi)\left[2 \psi m|\xi|^{2}|\hat{u}|^{2}+\left(\psi^{\prime \prime}-2 \gamma \psi^{\prime}\right)|\hat{u}|^{2}\right] d \xi d \tau \\
& \quad=\left.\int\left(2 \psi \omega(\xi) \operatorname{Re}\left(\hat{u} \bar{u}_{t}\right)+\left(2 \gamma \psi-\psi^{\prime}\right) \omega(\xi)|\hat{u}|^{2}\right) d \xi\right|_{\bar{t}} \tag{8.5}\\
& \quad+2 \int_{\bar{t}}^{t} \int \psi \omega(\xi)\left|\hat{u}_{t}\right|^{2} d \xi d \tau .
\end{align*}
$$

Now, adding (8.4) and (8.5) with

$$
\omega=\chi
$$

some elementary calculations give

$$
\begin{align*}
& \left.\int \phi m \chi(\xi)|\xi|^{2}|\hat{u}|^{2} d \xi\right|_{t} \\
+ & \left.\int\left[\phi\left|\hat{u}_{t}\right|^{2}+2 \psi \operatorname{Re}\left(\hat{u} \bar{u}_{t}\right)+\left(2 \gamma \psi-\psi^{\prime}\right)|\hat{u}|^{2}\right] \chi(\xi) d \xi\right|_{t} \\
+ & \int_{\bar{t}}^{t} \int\left[4 \gamma \phi-2 \psi-\phi^{\prime}\right] \chi(\xi)\left|\hat{u}_{t}\right|^{2} d \xi d \tau \\
+ & \int_{\bar{t}}^{t} \int\left[2 \psi m-\phi^{\prime} m-\phi m^{\prime} s^{\prime}\right] \chi(\xi)|\xi|^{2}|\hat{u}|^{2} d \xi d \tau \tag{8.6}\\
+ & \int_{\bar{t}}^{t} \int\left(\psi^{\prime \prime}-2 \gamma \psi^{\prime}\right) \chi(\xi)|\hat{\xi}|^{2} d \xi d \tau \\
= & \left.\int\left[\phi\left|\hat{u}_{t}\right|^{2}+2 \psi \operatorname{Re}\left(\hat{u} \bar{u}_{t}\right)+\left(m \phi|\xi|^{2}+2 \gamma \psi-\psi^{\prime}\right)|\hat{u}|^{2}\right] \chi(\xi) d \xi\right|_{\bar{t}} .
\end{align*}
$$

In order to proceed in the proof of (1.9), it is convenient to deal with the cases $k \geq 2$ even, $k \geq 3$ odd and $k=1$ separately.

Case $k \geq 2$ even

First of all, we apply the identity (8.6) with

$$
\begin{equation*}
\chi(\xi)=|\xi|^{2}, \quad \phi(t)=t, \quad \psi(t)=\frac{\gamma}{4} t . \tag{8.7}
\end{equation*}
$$

Considering the terms in (8.6), we immediately see that

$$
\begin{equation*}
m \phi \geq \delta t \quad \text { and } \quad \psi^{\prime \prime}-2 \gamma \psi^{\prime}=-\gamma^{2} / 2, \quad \forall t \geq 0 \tag{8.8}
\end{equation*}
$$

It is also easy to verify that, when $t \geq 2 / \gamma$,

$$
\begin{gather*}
\phi\left|\zeta_{1}\right|^{2}+2 \psi \operatorname{Re}\left(\zeta_{1} \bar{\zeta}_{2}\right)+\left(2 \gamma \psi-\psi^{\prime}\right)\left|\zeta_{2}\right|^{2} \geq \frac{t}{2}\left|\zeta_{1}\right|^{2}+\frac{\gamma^{2} t}{4}\left|\zeta_{2}\right|^{2}, \quad \forall \zeta_{1}, \zeta_{2} \in \mathbb{C} \tag{8.9}\\
4 \gamma \phi-2 \psi-\phi^{\prime} \geq 3 \gamma t \tag{8.10}
\end{gather*}
$$

Furthermore, since we are assuming the first of (1.8) holds and, by (i)-(iii) of Lemma 2.2, $\sup _{t \geq 0}(1+t)^{\frac{1}{2}}\left\|u_{t}\right\|<\infty$, it follows that $\sup _{t \geq 0}(1+t)^{\frac{1}{2}}\left|s^{\prime}(t)\right|<\infty$. Consequently, we deduce the inequality

$$
\begin{equation*}
2 \psi m-\phi^{\prime} m-\phi m^{\prime} s^{\prime} \geq\left(\frac{\gamma t}{2}-1\right) \delta-C t^{\frac{1}{2}}, \quad \forall t \geq 2 / \gamma \tag{8.11}
\end{equation*}
$$

with a suitable constant $C>0$. Then, taking account of (8.8)-(8.11) and recalling that $\int_{0}^{\infty}|u|_{1}^{2} d t<\infty$, we apply the identity (8.6) with $\bar{t}=t_{0} \geq 0$ large enough. It readily follows that

$$
\begin{equation*}
\sup _{t \geq 0}\left\{t|u|_{2}^{2}+t\left(|u|_{1}^{2}+\left|u_{t}\right|_{1}^{2}\right)+\int_{0}^{t} \tau\left(|u|_{2}^{2}+\left|u_{t}\right|_{1}^{2}\right) d \tau\right\}<\infty \tag{8.12}
\end{equation*}
$$

which in turn implies that

$$
\begin{equation*}
\left|s^{\prime}(t)\right| \leq 2|u(t)|_{1}\left|u_{t}(t)\right|_{1} \leq C(1+t)^{-1}, \quad \forall t \geq 0 \tag{8.13}
\end{equation*}
$$

for a suitable constant $C>0$. To continue, for $j \geq 1$, we set

$$
\begin{equation*}
\chi_{j}(\xi)=|\xi|^{2 j}, \quad \phi(t)=t^{j+1}, \quad \psi(t)=\lambda_{j} t^{j} \tag{8.14}
\end{equation*}
$$

where λ_{j} are suitable positive parameters. More precisely, taking account of (8.13), it is not difficult to see that we can fix $\lambda_{j}>0$ such that, for $t \geq t_{j}$ (with $t_{j} \geq 0$ large enough), the following hold:

$$
\begin{gather*}
m \phi \geq \delta t^{j+1}, \tag{8.15}\\
\phi\left|\zeta_{1}\right|^{2}+2 \psi \operatorname{Re}\left(\zeta_{1} \bar{\zeta}_{2}\right)+\left(2 \gamma \psi-\psi^{\prime}\right)\left|\zeta_{2}\right|^{2} \geq \frac{t^{j+1}}{2}\left|\zeta_{1}\right|^{2}+\gamma \lambda_{j} t^{j}\left|\zeta_{2}\right|^{2}, \tag{8.16}\\
4 \gamma \phi-2 \psi-\phi^{\prime} \geq 3 \gamma t^{j+1}, \tag{8.17}\\
2 \psi m-\phi^{\prime} m-\phi m^{\prime} s^{\prime} \geq \lambda_{j} t^{j}, \tag{8.18}\\
\left|\psi^{\prime \prime}-2 \gamma \psi^{\prime}\right| \leq 2 \gamma \lambda_{j} t^{j-1} \tag{8.19}
\end{gather*}
$$

Then, fixed $\lambda_{j}>0$, for $j \geq 1$, such that (8.15)-(8.19) hold, we proceed to prove by induction (1.9) for $r=0,1, \ldots, \frac{k}{2}$.

As already remarked, see (8.1) above, (1.9) holds for $r=0$. Suppose that it holds when $r=j-1$, for some integer j with $1 \leq j \leq \frac{k}{2}$. In particular, we have

$$
\begin{equation*}
\int_{0}^{\infty} t^{j-1}|u(t)|_{j}^{2} d t<\infty \tag{8.20}
\end{equation*}
$$

Then, setting $\chi=\chi_{j}, \phi=\phi_{j}$ and $\psi=\psi_{j}$ as in (8.14), we apply the identity (8.6) with $\bar{t}=t_{j}$. Taking account of (8.15)-(8.19) and (8.20), we derive that

$$
\begin{equation*}
t^{j+1}|u|_{j+1}^{2}+t^{j+1}\left|u_{t}\right|_{j}^{2}+t^{j}|u|_{j}^{2}+\int_{0}^{t}\left(\tau^{j}|u|_{j+1}^{2}+\tau^{j+1}\left|u_{t}\right|_{j}^{2}\right) d \tau \leq K_{j}, \tag{8.21}
\end{equation*}
$$

for all $t \geq 0$, for a suitable constant $K_{j}>0$. By induction, this proves that (1.9) holds for all integers $r, 0 \leq r \leq \frac{k}{2}$. Finally, using a standard interpolation argument, we obtain (1.9) for all real values $r, 0 \leq r \leq \frac{k}{2}$.

Case $k \geq 3$ odd

We set $\tilde{k}=k-1$. Then $u \in C^{j}\left([0, \infty) ; H^{1+\frac{\tilde{k}}{2}-j}\left(\mathbb{R}^{n}\right)\right)(j=0,1,2)$ where $\tilde{k} \geq 2$ in an even integer. By the previous case, this implies that (8.13) holds and that the statement (1.9) is verified for $0 \leq r \leq \frac{\tilde{k}}{2}$. In particular, setting $r=\frac{\tilde{k}}{2}-\frac{1}{2}=\frac{k}{2}-1$, it follows that

$$
\begin{equation*}
\int_{0}^{\infty} t^{\frac{k}{2}-1}|u(t)|_{\frac{k}{2}}^{2} d t<\infty . \tag{8.22}
\end{equation*}
$$

Now, we define

$$
\begin{equation*}
\tilde{\chi}(\tilde{\xi})=|\xi|^{k}, \quad \tilde{\phi}(t)=t^{\frac{k}{2}+1}, \quad \tilde{\psi}(t)=\tilde{\lambda} t^{\frac{k}{2}} \tag{8.23}
\end{equation*}
$$

where $\tilde{\lambda}>0$ is a suitable parameter such that, by replacing j with $\frac{k}{2}$ and λ_{j} with $\tilde{\lambda}$, conditions like (8.15)-(8.19) are verified for $t \geq \tilde{t}$ (with $\tilde{t} \geq 0$ large enough). Then, we put $\chi=\tilde{\chi}, \phi=\tilde{\phi}, \psi=\tilde{\psi}$ and $\bar{t}=\tilde{t}$ in (8.6). Using condition (8.22), we obtain that (1.9) holds also for $r=\frac{k}{2}$. Finally, by interpolation, we deduce that (1.9) holds for all real values $r, 0 \leq r \leq \frac{k}{2}$.

Case $k=1$
Since

$$
\begin{equation*}
\left|s^{\prime}(t)\right| \leq 2|u(t)|_{\frac{3}{2}}\left|u_{t}(t)\right|_{\frac{1}{2}}, \tag{8.24}
\end{equation*}
$$

by the second assumption of (1.8) it follows that (8.13) holds. Since $\sup _{t \geq 0}|u|_{0}^{2}<$ ∞ (see Proposition 2.5) and $\sup _{t \geq 0}(1+t)|u|_{1}^{2}<\infty$, by interpolation we get

$$
\begin{equation*}
\sup _{t \geq 0}(1+t)^{\frac{1}{2}}|u|_{\frac{1}{2}}^{2}<\infty . \tag{8.25}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\int_{0}^{\infty}(1+\tau)^{\beta}|u|_{\frac{1}{2}}^{2} d \tau<\infty \quad \text { if } \quad \beta<-1 / 2 \tag{8.26}
\end{equation*}
$$

Then, given a real number $\alpha, 0 \leq \alpha<1 / 2$, we define

$$
\begin{equation*}
\chi^{*}(\xi)=|\xi|, \quad \phi^{*}(t)=t^{\alpha+1}, \quad \psi^{*}(t)=\lambda^{*} t^{\alpha} \tag{8.27}
\end{equation*}
$$

where $\lambda^{*}>0$ is a suitable parameter such that, by replacing j with α and λ_{j} with λ^{*}, conditions like (8.15)-(8.19) are verified for $t \geq t^{*}$ (with $t^{*} \geq 0$ large enough). Then, we put $\chi=\chi^{*}, \phi=\phi^{*}, \psi=\psi^{*}$ and $\bar{t}=t^{*}$ in identity (8.6). Using condition (8.26), we readily obtain

$$
\begin{equation*}
t^{\alpha+1}|u|_{\frac{3}{2}}^{2}+t^{\alpha+1}\left|u_{t}\right|_{\frac{1}{2}}^{2}+\int_{0}^{t}\left(\tau^{\alpha}|u|_{\frac{3}{2}}^{2}+\tau^{\alpha+1}\left|u_{t}\right|_{\frac{1}{2}}^{2}\right) d \tau \leq K^{*} \tag{8.28}
\end{equation*}
$$

for all $t \geq 0$, with $K^{*}>0$ a suitable constant. Finally, by interpolation, we derive (1.9) for $0 \leq r \leq \frac{1}{2}$.

9 Appendix I

In this appendix we shall derive a suitable quadratic form for the solutions of the damped wave equation

$$
\begin{equation*}
u_{t t}-a(t) \Delta u+2 \gamma u_{t}=0 \quad \text { in } \quad \mathbb{R}^{n} \times[0, T) \tag{9.1}
\end{equation*}
$$

where $0<T \leq+\infty$ and

$$
\begin{equation*}
a(t) \in C^{2}[0, T), \quad a(t)>0, \quad \gamma>0 \tag{9.2}
\end{equation*}
$$

By Fourier transform in the space variables, we are led to consider the infinite system of linear oscillating equations with dissipative terms

$$
\begin{equation*}
w_{t t}+a(t)|\xi|^{2} w+2 \gamma w_{t}=0 \quad \text { for } \quad t \in[0, T), \quad \xi \in \mathbb{R}^{n} \tag{9.3}
\end{equation*}
$$

For the solutions of (9.3) we introduce the quadratic form

$$
\begin{equation*}
q(\xi, t)=\frac{1}{2} a_{1}(t) a(t)|\xi|^{4}|w|^{2}+\frac{1}{2} a_{1}(t)|\xi|^{2}\left|w_{t}\right|^{2}+a_{2}(t)|\xi|^{2} \operatorname{Re}\left(\bar{w} w_{t}\right) \tag{9.4}
\end{equation*}
$$

where we suppose $a_{1}(t), a_{2}(t) \in C^{1}[0, T)$. Deriving with respect to t, using (9.3) and collecting like terms, we obtain

$$
\begin{align*}
\frac{d}{d t} q(\xi, t) & =\left[\frac{1}{2}\left(a_{1} a\right)^{\prime}-a_{2} a\right]|\xi|^{4}|w|^{2} \\
& +\left[\frac{1}{2} a_{1}^{\prime}-2 \gamma a_{1}+a_{2}\right]|\xi|^{2}\left|w_{t}\right|^{2} \tag{9.5}\\
& +\left[a_{2}^{\prime}-2 \gamma a_{2}\right]|\xi|^{2} \operatorname{Re}\left(\bar{w} w_{t}\right)^{2}
\end{align*}
$$

Now, considering (9.5), we require that the coefficients of $|\xi|^{4}|w|^{2}$ and $|\xi|^{2}\left|w_{t}\right|^{2}$ vanish. Namely we search $a_{1}(t), a_{2}(t)$ satisfying the conditions:

$$
\left\{\begin{array}{l}
\frac{1}{2}\left(a_{1} a\right)^{\prime}-a_{2} a=0 \tag{9.6}\\
\frac{1}{2} a_{1}^{\prime}-2 \gamma a_{1}+a_{2}=0
\end{array}\right.
$$

An easy computation shows that $a_{1}=c \frac{e^{2 \gamma t}}{\sqrt{a}}$ and $a_{2}=c e^{2 \gamma t}\left(\frac{\gamma}{\sqrt{a}}+\frac{a^{\prime}}{4 a^{3 / 2}}\right)$, where $c \in \mathbb{R}$ is an arbitrary constant. Taking $c=1$, from now on we set:

$$
\begin{equation*}
a_{1} \stackrel{\text { def }}{=} \frac{e^{2 \gamma t}}{\sqrt{a}}, \quad a_{2} \stackrel{\text { def }}{=} e^{2 \gamma t}\left(\frac{\gamma}{\sqrt{a}}+\frac{a^{\prime}}{4 a^{3 / 2}}\right) . \tag{9.7}
\end{equation*}
$$

Taking account of the previous calculations, we define
Definition 9.1. Let $w(\xi, t)$ be a solution of equation (9.3), we set

$$
\begin{align*}
& \mathcal{Q}(\xi, t) \stackrel{\text { def }}{=} e^{2 \gamma t}\left(\frac{\sqrt{a}}{2}|\xi|^{4}|w|^{2}+\frac{1}{2 \sqrt{a}}|\xi|^{2}\left|w_{t}\right|^{2}\right) \\
& \quad+e^{2 \gamma t}\left(\frac{\gamma}{\sqrt{a}}+\frac{a^{\prime}}{4 a^{3 / 2}}\right)|\xi|^{2} \operatorname{Re}\left(\bar{w} w_{t}\right) . \tag{9.8}
\end{align*}
$$

From (9.5)-(9.7), it is immediate that

$$
\begin{equation*}
\frac{d}{d t} \mathcal{Q}(\xi, t)=e^{2 \gamma t}\left(\frac{\gamma}{\sqrt{a}}+\frac{a^{\prime}}{4 a^{3 / 2}}\right)^{\prime}|\xi|^{2} \operatorname{Re}\left(\bar{w} w_{t}\right) . \tag{9.9}
\end{equation*}
$$

Besides, introducing the energy

$$
\begin{equation*}
\mathcal{E}(\xi, t) \stackrel{\text { def }}{=} e^{2 \gamma t}\left(\frac{\sqrt{a}}{2}|\xi|^{4}|w|^{2}+\frac{1}{2 \sqrt{a}}|\xi|^{2}\left|w_{t}\right|^{2}\right), \tag{9.10}
\end{equation*}
$$

we easily have the estimates:

$$
\begin{gather*}
|(\mathcal{Q}-\mathcal{E})(\xi, t)| \leq\left|\frac{\gamma}{\sqrt{a}}+\frac{a^{\prime}}{4 a^{3 / 2}}\right| \frac{\mathcal{E}(\xi, t)}{|\xi|} \tag{9.11}\\
\left|Q^{\prime}(\xi, t)\right| \leq\left|\left(\frac{\gamma}{\sqrt{a}}+\frac{a^{\prime}}{4 a^{3 / 2}}\right)^{\prime}\right| \frac{\mathcal{E}(\xi, t)}{|\xi|} \tag{9.12}
\end{gather*}
$$

for all $t \in[0, T)$ and $|\xi|>0$. Finally, applying these inequalities, we prove:
Lemma 9.2. Assume that (9.2) holds. Besides, let $w(\xi, t)$ be a solution of (9.3). Then for all $\bar{T} \in(0, T)$ there exists $\varrho=\varrho(\bar{T})>0$ such that

$$
\begin{equation*}
|\xi| \geq \varrho \quad \Rightarrow \quad \mathcal{E}(\xi, t) \leq 2 \mathcal{E}(\xi, 0) \quad \text { for } \quad t \in[0, \bar{T}] . \tag{9.13}
\end{equation*}
$$

Proof. In the interval $I=[0, \bar{T}]$ we have

$$
\begin{gather*}
\inf _{I} a(t)>0, \\
\sup _{I}\left|a^{\prime}(t)\right|<\infty, \quad \sup _{I}\left|a^{\prime \prime}(t)\right|<\infty . \tag{9.14}
\end{gather*}
$$

Hence, by (9.11) and (9.12), there exists $C=C(\bar{T})>0$ such that:

$$
\begin{equation*}
|\mathcal{Q}-\mathcal{E}| \leq \frac{C}{|\xi|} \mathcal{E}, \quad\left|\mathcal{Q}^{\prime}\right| \leq \frac{C}{|\xi|} \mathcal{E}, \tag{9.15}
\end{equation*}
$$

for all $t \in[0, \bar{T}]$ and $|\xi|>0$. Then, using (9.9) and (9.15), it is easy to derive the estimate (9.13). In fact, integrating (9.9) with respect to t, for $|\xi|>0$ and $0 \leq t \leq \bar{T}$, we find the inequality

$$
\begin{equation*}
\mathcal{E}(\xi, t)\left(1-\frac{C}{|\xi|}\right) \leq \mathcal{E}(\xi, 0)\left(1+\frac{C}{|\xi|}\right)+\frac{C}{|\xi|} \int_{0}^{t} \mathcal{E}(\xi, \tau) d \tau \tag{9.16}
\end{equation*}
$$

From this, applying Gronwall's lemma, we can estimate $\mathcal{E}(\xi, t)$ if $|\xi|>C$. In particular, taking $|\xi|$ large enough, we obtain (9.13).

10 Appendix II

Let us consider the ordinary problem

$$
\begin{gather*}
w^{\prime \prime}+\left(a_{o}+b(t)\right)|\xi|^{2} w+2 \gamma w^{\prime}=0, \quad t \geq 0 \tag{10.1}\\
w(\xi, 0)=w_{0}(\xi), \quad w_{t}(\xi, 0)=w_{1}(\xi) \tag{10.2}
\end{gather*}
$$

with a parameter $\xi \in \mathbb{R}^{n}$ and coefficients $a_{0}, \gamma, b(t)$ such that

$$
\begin{equation*}
a_{0}, \gamma>0, \quad b(t) \in L_{l o c}^{1}[0, \infty) . \tag{10.3}
\end{equation*}
$$

Here, we will estimate $|w(\xi, t)|$ for $|\xi|$ small enough.
Lemma 10.1. For the solution $w(t, \xi)$ of (10.1)-(10.2) for all $t \geq 0$ there holds

$$
\begin{equation*}
|w(t, \xi)| \leq W(\xi) \exp \left\{-\frac{a_{o}|\xi|^{2} t}{2 \gamma}+\frac{|\xi|^{2}}{\gamma} \int_{0}^{t}|b(\tau)| d \tau\right\} \tag{10.4}
\end{equation*}
$$

for all $|\xi| \leq \sqrt{\frac{3}{4 a_{o}}} \gamma$, where $W(\xi)=\left[2\left|w_{0}(\xi)\right|+\gamma^{-1}\left|w_{1}(\xi)\right|\right]$.
Proof. By putting

$$
\begin{equation*}
w(\xi, t) \stackrel{\text { def }}{=} e^{-\gamma t} z(\xi, t) \tag{10.5}
\end{equation*}
$$

the Cauchy problem (10.1)-(10.2) is transformed to

$$
\begin{gather*}
z^{\prime \prime}+\left(a_{0}+b(t)\right)|\xi|^{2} z-\gamma^{2} z=0 \tag{10.6}\\
z(0, \xi)=w_{0}(\xi) \quad z^{\prime}(0, \xi)=\gamma w_{0}(\xi)+w_{1}(\xi) \tag{10.7}
\end{gather*}
$$

To estimate $z(\xi, t)$, we rewrite (10.6) in the form

$$
\begin{equation*}
z^{\prime \prime}-\lambda^{2} z=-b(t)|\xi|^{2} z \tag{10.8}
\end{equation*}
$$

with $\lambda \in \mathbb{C}$ such that

$$
\begin{equation*}
\lambda^{2}=\gamma^{2}-a_{0}|\xi|^{2} \tag{10.9}
\end{equation*}
$$

Assuming $\lambda \neq 0$, by the Lagrange's method of variation of parameters, we easily obtain that $z(\xi, t)$ satisfies the relation

$$
\begin{align*}
z(\xi, t)= & \frac{w_{0}(\xi)}{2}\left(e^{\lambda t}+e^{-\lambda t}\right)+\frac{\gamma w_{0}(\xi)+w_{1}(\xi)}{2 \lambda}\left(e^{\lambda t}-e^{-\lambda t}\right) \\
& -\frac{|\xi|^{2}}{2 \lambda} \int_{0}^{t}\left(e^{\lambda(t-\tau)}-e^{-\lambda(t-\tau)}\right) b(t) z(\xi, \tau) d \tau . \tag{10.10}
\end{align*}
$$

Besides, setting

$$
\begin{equation*}
\phi_{\lambda}(s) \stackrel{\text { def }}{=} 1-e^{-2 \lambda s} \quad \text { for } \quad s \in \mathbb{R}, \tag{10.11}
\end{equation*}
$$

we have also

$$
\begin{align*}
e^{-\lambda t} z(\xi, t)= & w_{0}(\xi) \frac{1+e^{-2 \lambda t}}{2}+\left[\gamma w_{0}(\xi)+w_{1}(\xi)\right] \frac{\phi_{\lambda}(t)}{2 \lambda} \\
& -\frac{|\xi|^{2}}{2 \lambda} \int_{0}^{t} \phi_{\lambda}(t-\tau) b(\tau) e^{-\lambda \tau} z(\xi, \tau) d \tau \tag{10.12}
\end{align*}
$$

Now let $|\xi| \leq \sqrt{\frac{3}{4 a_{0}}} \gamma$ as in the statement above, thus $\gamma^{2}-a_{0}|\xi|^{2} \geq \gamma^{2} / 4$. Choosing λ as the positive square root of the right side of (10.9), we easily see that

$$
\begin{equation*}
\frac{\gamma}{2} \leq \lambda \leq \gamma-\frac{a_{0}|\xi|^{2}}{2 \gamma} \tag{10.13}
\end{equation*}
$$

Furthermore, having $\lambda>0, \phi_{\lambda}(s)$ is increasing and $0 \leq \phi_{\lambda}(s) \leq 1$ for $s \in[0, \infty)$. Hence, applying Gronwall's lemma to (10.12), we get

$$
\begin{align*}
& e^{-\lambda t}|z(\xi, t)| \leq\left[\left|w_{0}(\xi)\right|+\left|\gamma w_{0}(\xi)+w_{1}(\xi)\right| \frac{\phi_{\lambda}(t)}{2 \lambda}\right] \\
& \cdot \exp \left\{\frac{|\xi|^{2}}{2 \lambda} \int_{0}^{t} \phi_{\lambda}(t-\tau)|b(\tau)| d \tau\right\} . \tag{10.14}
\end{align*}
$$

Finally, taking account of (10.11) and (10.13), for $w(\xi, t)$ we have

$$
\begin{align*}
|w(\xi, t)| & =e^{-(\gamma-\lambda) t} e^{-\lambda t}|z(\xi, t)| \\
& \leq W(\xi) \exp \left\{-\frac{a_{0}|\xi|^{2} t}{2 \gamma}+\frac{|\xi|^{2}}{\gamma} \int_{0}^{t}|b(\tau)| d \tau\right\}, \tag{10.15}
\end{align*}
$$

for $|\xi| \leq \sqrt{\frac{3}{4 a_{0}}} \gamma$ and $t \geq 0$, with $W(\xi)$ defined as in the statement above.

References

[1] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc. 348 (1996), 305-330.
[2] R. Manfrin, Global solvability to the Kirchhoff equation for a new class of initial data. Portugaliae Math. 59 (2002), 91-109.
[3] R. Manfrin, On the global solvability of Kirchhoff equation for non-analytic initial data. J. Diff. Equations 211 (2005), 38-60.
[4] R. Manfrin, Quadratic forms for the Liouville equation $w_{t t}+\lambda^{2} a(t) w=0$ with applications to kirchhoff equation. Portugaliae Math. 65 (2008), 447-484.
[5] K. Nishihara, On a global solution of some quasilinear hyperbolic equation. Tokyo J. Math. 7 (1984), 437-459.
[6] K. Nishihara, Exponential decay of solutions of some quasilinear hyperbolic equations with linear damping. Nonlinear Analysis 8 (1984), 623-636.
[7] K. Nishihara, Global existence and asymptotic behaviour of the solution of some quasilinear hyperbolic equation with linear damping. Funkcial. Ekvac. 32 (1989), 343-355.
[8] R.E.A.C. Paley \& N. Wiener, Fourier Transforms in the Complex Domain. A.M.S. Colloquium Publications, New York, 1934.
[9] Y. Yamada, On some quasilinear wave equations with dissipative terms. Nagoya Math. J. 87 (1982), 17-39.
[10] T. Yamazaki, Bounded solutions of quasilinear hyperbolic equations of Kirchhoff type with dissipative and forcing terms. Funkcial. Ekvac. 43 (2000), 511-528.
[11] T. Yamazaki, Sufficient conditions on the forcing terms for the global solvability of dissipative Kirchhoff equations. Nonlinear Analysis 51 (2002), 969982.

Università IUAV di Venezia
Tolentini S.Croce 191, 30135 Venezia, Italy email:manfrin@iuav.it

