On subordinations for certain analytic functions associated with Fox-Wright psi function

V.B.L. Chaurasia Hari Singh Parihar

Abstract

The aim of the present paper is to investigate several interesting properties of a linear operator $L_{q, s}^{p}\left(\alpha_{i}\right)$ associated with the Fox-Wright psi function.

1 Introduction

Let A denote the class of functions that are analytic in the open unit disk $U=$ $\{z \in C:|z|<1\}$ and consisting of the functions f of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad(p \in N=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

where f is analytic and p -valent in U .
Given two functions $f(z)$ and $g(z)$ which are analytic in U, then we say that the function $g(z)$ is subordinate to $f(z)$, if there exists an analytic function $\omega(z)$ in U such that $|\omega(z)|<1$ for $(z \in U)$ and $g(z)=f(\omega(z))$. This relation is denoted by $g(z) \prec f(z)$. In case $f(z)$ is univalent in U, we have that the subordination $g(z) \prec f(z)$ is equivalent to $g(0)=f(0)$ and $g(U) \subset f(U)$.
For analytic functions given by

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

[^0]let $f * g$ denote the Hadamard product or convolution of f and g, defined by
\[

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \tag{1.2}
\end{equation*}
$$

\]

Next for real parameters A and B such that $-1 \leq B<A \leq 1$, we define the function

$$
\begin{equation*}
h(A, B ; z)=\frac{1+A z}{1+B z} \quad(z \in U) . \tag{1.3}
\end{equation*}
$$

It is obvious that $h(A, B ; z)$ for $-1 \leq B \leq 1$ is the conformal map of the unit disk U onto the disk symmetrical with respect to the real axis having the center $\frac{1-A B}{1-B^{2}}$ and the radius $\frac{A-B}{1-B^{2}}$ for $B \neq \mp 1$. Furthermore the boundary circle intersects the real axis at the points $\frac{1-A}{1-B}$ and $\frac{1+A}{1+B}$.
The Fox-Wright psi function is defined by [4, p. 50]

$$
\begin{array}{r}
{ }_{\cdot q} \psi_{s}\left[\begin{array}{lll}
\left(\alpha_{i}, A_{i}\right)_{1, q} \\
\left(\beta_{i}, B_{i}\right)_{1, s} & z
\end{array}\right]={ }_{\cdot q} \psi_{s}\left[\begin{array}{llll}
\left(\alpha_{1}, A_{1}\right), & \cdot & \cdot & ,\left(\alpha_{q}, A_{q}\right) ; \\
\left(\beta_{1}, B_{1}\right), & \cdot & \cdot & \cdot \\
,\left(\beta_{s}, B_{s}\right) ; & z
\end{array}\right] \tag{1.4}\\
=\sum_{n=0}^{\infty}\left(\prod_{i=1}^{q} \Gamma\left(\alpha_{i}+A_{i} n\right)\right)\left(\prod_{i=1}^{s} \Gamma\left(\beta_{i}+B_{i} n\right)\right)^{-1} \frac{z^{n}}{n!}
\end{array}
$$

where $\alpha_{i} \in C(i=1, \ldots, q), \beta_{i} \in C(i=1, \ldots, s)$ and the coefficients $A_{i} \in R_{+}$ $(i=1, \ldots, q)$ and $B_{i} \in R_{+}(i=1, \ldots, s)$ such that

$$
1+\sum_{i=1}^{s} B_{i}-\sum_{i=1}^{q} A_{i} \geq 0, \quad\left(q, s \in N_{0}=N \cup\{0\}\right)
$$

The normalized Fox-Wright psi function ${ }_{\cdot q} \psi_{s}^{*}(z)$ in series form is represented as

$$
\left.{ }_{\cdot q} \psi_{s}^{*}\left[\begin{array}{ll}
\left(\alpha_{i}, A_{i}\right)_{1, q} & \tag{1.5}\\
\left(\beta_{i}, B_{i}\right)_{1, s} & z
\end{array}\right]=\frac{\prod_{i=1}^{s} \Gamma\left(\beta_{i}\right)}{\prod_{i=1}^{q} \Gamma\left(\alpha_{i}\right)} \cdot q \psi_{s}\left[\begin{array}{lll}
\left(\alpha_{1}, A_{1}\right), & . & . \\
\left(\beta_{1}, B_{1}\right), & . & .
\end{array} \alpha_{q}, A_{q}\right) ;\left(\beta_{s}, B_{s}\right) ; ~ z\right] .
$$

The ${ }_{q} \psi_{s}(z)$ is a special case of Fox's H-function $H_{k, l}^{m, n}(z)$ (see e.g.[4, p. 50]) and ${ }_{. q} \psi_{s}^{*}(z)$ is a generalization of the familiar generalized hypergeometric function ${ }_{\cdot q} F_{s}(z)$,

$$
\begin{aligned}
{ }_{\cdot q} F_{s}\left[\begin{array}{ll}
\left(\alpha_{i}\right)_{1, q} \\
\left(\beta_{i}\right)_{1, s} & z
\end{array}\right] & ={ }_{\cdot q} F_{s}\left[\begin{array}{lllll}
\left(\alpha_{1}\right), & \cdot & \cdot & \cdot\left(\alpha_{q}\right) ; \\
\left(\beta_{1}\right), & \cdot & \cdot & \cdot & ,\left(\beta_{s}\right) ; \\
\hline
\end{array}\right] \\
& =\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n}, \ldots,\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n}, \ldots,\left(\beta_{s}\right)_{n}} \frac{z^{n}}{n!}
\end{aligned}
$$

where $(\alpha)_{n}$ is the Pochhammer symbol,defined in terms of the gamma function Γ by

$$
(\alpha)_{n}=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}
$$

Corresponding to a function $£_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; A_{1}, \ldots, A_{q} ; \beta_{1}, \ldots, \beta_{s} ; B_{1}, \ldots, B_{s} ; z\right)$ defined by

$$
£_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; A_{1}, \ldots, A_{q} ; \beta_{1}, \ldots, \beta_{s} ; B_{1}, \ldots, B_{s} ; z\right)=z^{p}{ }_{\cdot q} \psi_{s}^{*}(z) .
$$

We consider a linear operator

$$
L_{q, s}^{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; A_{1}, \ldots, A_{q} ; \beta_{1}, \ldots, \beta_{s} ; B_{1}, \ldots, B_{s}\right): A(p) \rightarrow A(p)
$$

defined by the convolution

$$
\begin{aligned}
& L_{q, s}^{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; A_{1}, \ldots, A_{q} ; \beta_{1}, \ldots, \beta_{s} ; B_{1}, \ldots, B_{s}\right) f(z) \\
= & £_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; A_{1}, \ldots, A_{q} ; \beta_{1}, \ldots, \beta_{s} ; B_{1}, \ldots, B_{s} ; z\right) * f(z) .
\end{aligned}
$$

For brevity, we write

$$
L_{q, s}^{p}\left(\alpha_{i}\right)=L_{q, s}^{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; A_{1}, \ldots, A_{q} ; \beta_{1}, \ldots, \beta_{s} ; B_{1}, \ldots, B_{s}\right) \quad(i=1, \ldots, q) .
$$

Thus, after some calculations, we get

$$
\begin{equation*}
z\left(A_{i} L_{q, s}^{p}\left(\alpha_{i}\right) f(z)\right)^{\prime}=\alpha_{i} L_{q, s}^{p}\left(\alpha_{i}+1\right) f(z)-\left(\alpha_{i}-A_{i} p\right) L_{q, s}^{p}\left(\alpha_{i}\right) f(z) \quad(i=1, \ldots, q) \tag{1.6}
\end{equation*}
$$

Special cases of the operator $L_{q, s}^{p}\left(\alpha_{i}\right) \quad(i=1, \ldots, q)$ includes Dziok-Srivastava linear operator (cf. [5, 6, 3]), Hohlov linear operator [7], the Carlson-Shaffer linear operator [2], the Ruscheweyh derivative operator [13], the generalized Bernardi-Libera-Livingston linear integral operator (cf. [1, 9, 10]), and the Srivastava-Owa fractional derivative operators (cf. [11, 12]).
Our aim in the present paper is to derive several interesting properties and characteristics of the linear operator $L_{q, s}^{p}\left(\alpha_{i}\right) \quad(i=1, \ldots, q)$ by the application of the differential subordination method.

2 Main Results

We begin by recalling the following Lemmas which will be required in our investigation.

Lemma 2.1. (see[14]). Let $h(z)$ be analytic and convex univalent in $U, h(0)=1$ and let $g(z)=1+b_{1} z+b_{2} z^{2}+\ldots$ be analytic in U. If

$$
\begin{equation*}
g(z)+\frac{z g^{\prime}(z)}{c} \prec h(z) \tag{2.1}
\end{equation*}
$$

then for $\operatorname{Re}(c) \geq 0$

$$
\begin{equation*}
g(z) \prec \frac{c}{z^{c}} \int_{0}^{z} t^{c-1} h(t) d t . \tag{2.2}
\end{equation*}
$$

Lemma 2.2. (see[8]). The function $(1-z)^{\gamma} \equiv e^{\gamma \log (1-z)}, \gamma \neq 0$ is univalent in U iff γ is either in closed disk $|\gamma-1| \leq 1$ or in the closed disk $|\gamma+1| \leq 1$.

Lemma 2.3. (see[15]). Let $q(z)$ be univalent in U and let $\theta(\omega)$ and $\phi(\omega)$ be analytic in a domain D containing $q(U)$ with $\phi(\omega) \neq 0$ when $\omega \in q(U)$. Set $Q(z)=$ $z q^{\prime}(z) \phi(q(z)), \quad h(z)=\theta(q(z))+Q(z)$ and suppose that
(i) $Q(z)$ is starlike(univalent) in U;
(ii) $\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)=\operatorname{Re}\left(\frac{\theta^{\prime}(q(z))}{\phi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right)>0 \quad(z \in U)$
if $p(z)$ is analytic in U, with $p(0)=q(0), p(U) \subset D$, and

$$
\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z))=h(z)
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
Theorem 2.4. Let $\alpha_{i}>0, A_{i}>0(i=1, \ldots, q), \lambda>0$ and $-1 \leq B<A \leq 1$. If $f(z) \in A(p)$ satisfies

$$
\begin{equation*}
(1-\lambda) \frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}+\lambda \frac{L_{q, s}^{p}\left(\alpha_{i}+1\right) f(z)}{z^{p}} \prec h(A, B ; z), \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left(\left(\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\frac{1}{m}}\right)>\left(\frac{\alpha_{i}}{\lambda A_{i}} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda A_{i}}-1}\left(\frac{1-A u}{1-B u}\right) d u\right)^{\frac{1}{m}} \quad(m \geq 1) \tag{2.4}
\end{equation*}
$$

The result is sharp.
Proof. Let

$$
\begin{equation*}
g(z)=\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}} \tag{2.5}
\end{equation*}
$$

for $f(z) \in A(p)$. Then the function $g(z)=1+b_{1} z+\ldots$ is analytic in U. By making use of (1.6) and (2.5), we obtain

$$
\begin{equation*}
\frac{L_{q, s}^{p}\left(\alpha_{i}+1\right) f(z)}{z^{p}}=g(z)+\frac{A_{i} z g^{\prime}(z)}{\alpha_{i}} \tag{2.6}
\end{equation*}
$$

From (2.3), (2.5), and (2.6), we get

$$
\begin{equation*}
g(z)+\lambda \frac{A_{i} z g^{\prime}(z)}{\alpha_{i}} \prec h(A, B ; z) . \tag{2.7}
\end{equation*}
$$

Now an application of Lemma 2.1 leads to

$$
\begin{equation*}
g(z) \prec \frac{\alpha_{i}}{\lambda A_{i}} z^{\frac{-\alpha_{i}}{\lambda A_{i}}} \int_{0}^{1} t^{\frac{\alpha_{i}}{\lambda A_{i}}-1}\left(\frac{1+A t}{1+B t}\right) d t \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}=\frac{\alpha_{i}}{\lambda A_{i}} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda A_{i}}-1}\left(\frac{1+A u \omega(z)}{1+B u \omega(z)}\right) d u \tag{2.9}
\end{equation*}
$$

where $\omega(z)$ is analytic in U with $\omega(0)=0$ and $|\omega(z)|<1 \quad(z \in U)$.
In view of $-1 \leq B<A \leq 1, \alpha_{i}>0$ and $A_{i}>0$, it follows from (2.9) that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)>\frac{\alpha_{i}}{\lambda A_{i}} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda A_{i}}-1}\left(\frac{1-A u}{1-B u}\right) d u \quad(z \in U) . \tag{2.10}
\end{equation*}
$$

Therefore, with the aid of elementary inequality $\operatorname{Re}\left(\omega^{\frac{1}{m}}\right) \geq(\operatorname{Re} \omega)^{\frac{1}{m}}$ for $\operatorname{Re} \omega>0$ and $m \geq 1$, the inequality (2.4) follows directly from (2.10).
To show the sharpness of (2.4), we take $f(z) \in A(p)$ defined by

$$
\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}=\frac{\alpha_{i}}{\lambda A_{i}} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda A_{i}}-1}\left(\frac{1+A u z}{1+B u z}\right) d u
$$

For this function, we find that

$$
(1-\lambda) \frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}+\lambda \frac{L_{q, s}^{p}\left(\alpha_{i}+1\right) f(z)}{z^{p}}=\frac{1+A z}{1+B z}
$$

and

$$
\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}} \rightarrow \frac{\alpha_{i}}{\lambda A_{i}} \int_{0}^{1} u^{\frac{\alpha_{i}}{\lambda A_{i}}-1}\left(\frac{1-A u}{1-B u}\right) d u \text { as } z \rightarrow-1
$$

Hence the proof of the Theorem is complete.
Theorem 2.5. Let $\alpha_{i}>0, A_{i}>0(i=1, \ldots, q)$, and $0 \leq \rho<1$. Let γ be a complex number with $\gamma \neq 0$ and satisfy either $\left|\frac{2 \gamma(1-\rho) \alpha_{i}}{A_{i}}-1\right| \leq 1$ or $\left|\frac{2 \gamma(1-\rho) \alpha_{i}}{A_{i}}+1\right| \leq 1$ $(i=1, \ldots, q)$. If $f(z) \in A(p)$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{L_{q, s}^{p}\left(\alpha_{i}+1\right) f(z)}{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}\right)>\rho \quad(z \in U ; i=1, \ldots, q) \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\gamma} \prec \frac{1}{(1-z)^{\frac{2 \gamma(1-\rho) \alpha_{i}}{A_{i}}}}=q(z) \quad(z \in U ; i=1, \ldots, q), \tag{2.12}
\end{equation*}
$$

where $q(z)$ is the best dominant.
Proof. Let

$$
\begin{equation*}
p(z)=\left(\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\gamma} \quad(z \in U ; i=1, \ldots, q) . \tag{2.13}
\end{equation*}
$$

Then by making use of (1.6),(2.11) and (2.13), we have

$$
\begin{equation*}
1+\frac{z A_{i} p^{\prime}(z)}{\gamma \alpha_{i} p(z)} \prec \frac{1+(1-2 \rho) z}{1-z} \quad(z \in U) . \tag{2.14}
\end{equation*}
$$

If we take

$$
q(z)=\frac{1}{(1-z)^{\frac{2 \gamma(1-\rho) \alpha_{i}}{A_{i}}}}, \quad \theta(\omega)=1, \quad \phi(\omega)=\frac{A_{i}}{\gamma \alpha_{i} \omega},
$$

then $q(z)$ is univalent by the condition of the Theorem 2.5 and Lemma 2.2. Further, it is easy to solve that $q(z), \theta(\omega)$ and $\phi(\omega)$ satisfy the condition of Lemma 2.3. Since

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\frac{2(1-\rho) z}{1-z}
$$

is univalent starlike in U and

$$
h(z)=\theta(q(z))+Q(z)=\frac{1+(1-2 \rho) z}{1-z}
$$

It may be readily checked that the condition (i) and (ii) of Lemma 2.3 are satisfied. Thus, the result follows from (2.14) immediately.The proof is complete.

Corollary 2.6. Let $\alpha_{i}>0, A_{i}>0(i=1, \ldots, q)$, and $0 \leq \rho<1$. Let γ be a real number with $\gamma \geq 1$. If $f(z) \in A(p)$ satisfies the condition (2.11), then

$$
\operatorname{Re}\left(\frac{L_{q, s}^{p}\left(\alpha_{i}\right) f(z)}{z^{p}}\right)^{\frac{A_{i}}{2 \gamma(1-\rho) \alpha_{i}}}>2^{\frac{-1}{\gamma}} \quad(z \in U ; i=1, \ldots, q)
$$

The bound $2^{\frac{-1}{\gamma}}$ is the best possible.

References

[1] A. E. Livingston,: On the radius of univalence of certain analytic functions, Proc. Am. Math. Soc., 17(1966), 352-357.
[2] B. C. Carlson and D. B. Shaffer,: Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(4)(1984), 737-745.
[3] H. M. Srivastava,: Some families of fractional derivative and other linear derivative operators associated with analytic, univalent and multivalent functions, in: K. S. Lakshmi(Ed.), Proceedings of International Conferences on Analysis and Its Applications, Allied Publishers Limited,New Delhi and Chennai, (2001), pp. 209-243.
[4] H. M. Srivastava and H. L. Manocha,: A treatise on generating functions, Wiley/Halsted,New York, (1984).
[5] J. Dziok and H. M. Srivastava,: Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.
[6] J. Dziok and H. M. Srivastava,: Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14(2003),7-18.
[7] Ju. E. Hohlov,: Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat., 10(197)(1978), 83-89.
[8] M. S. Robertson,: Certain classes of starlike functions, Michigan Math. J., 32(1985), 135-140.
[9] R. J. Libera,: Some classes of regular univalent functions, Proc. Am. Math. Soc., 17(1965), 755-758.
[10] S. D. Bernardi,: Convex and starlike univalent functions, Trans. Am. Math. Soc., 135(1969), 429-446.
[11] S. Owa,: On the distortion theorems, I, Kyungpook Math. J., 18(1978), 53-59.
[12] S. Owa and H. M. Srivastava,: Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077.
[13] S. Ruscheweyh,: New criteria for univalent functions, Proc. Am. Math. Soc., 49(1975), 109-115.
[14] S. S. Miller and P. T. Mocanu,: Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
[15] S. S. Miller and P. T. Mocanu,: On some classes of first order differential subordination, Michigan Math. J., 32(1985), 185-195.

Department of mathematics
University of Rajasthan
Jaipur-302004, Rajasthan
India

Department of Mathematics
Poornima Institute of Engineering \& Technology
ISI-2, RIICO Institutional Area, Sitapura, Goner Road
Jaipur-302022, (Rajasthan) - India
email:harisingh.p@rediffmail.com

[^0]: Received by the editors July 2008.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : Primary 26A33, Secondary 30C45.
 Key words and phrases : Analytic function, Convolution, Fox-Wright psi function, Differential subordination.

