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Abstract

In this paper we shall be concerned with the existence of almost homo-
clinic solutions of the Hamiltonian system q̈ + Vq(t, q) = f (t), where t ∈ R,

q ∈ R
n and V(t, q) = − 1

2(L(t)q, q) + W(t, q). It is assumed that L is a conti-
nuous matrix valued function such that L(t) are symmetric and positive def-
inite uniformly with respect to t. A map W is C1-smooth, Wq(t, q) = o(|q|), as
q → 0 uniformly with respect to t and W(t, q)|q|−2 → ∞, as |q| → ∞. More-
over, f 6= 0 is continuous and sufficiently small in L2(R, R

n). It is proved
that this Hamiltonian system possesses a solution q0 : R → R

n such that
q0(t) → 0, as t → ±∞. Since q ≡ 0 is not a solution of our system, q0 is not
homoclinic in a classical sense. We are to call such a solution almost homo-
clinic. It is obtained as a weak limit of a sequence of almost critical points of
an appropriate action functional I.

1 Introduction

In this work we will look more closely at the second order Hamiltonian system:

q̈ + Vq(t, q) = f (t), (1)

where t ∈ R, q ∈ R
n and functions V : R × R

n → R, f : R → R
n satisfy:
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(V1) V(t, x) = − 1
2(L(t)x, x) + W(t, x) for all t ∈ R, x ∈ R

n,

(V2) L is a continuous matrix valued function such that L(t) are symmetric and
positive definite uniformly with respect to t ∈ R, i.e. there is α > 0 such
that

(L(t)x, x) ≥ α|x|2

for all x ∈ R
n and t ∈ R,

(V3) W is C1-smooth and there exists µ > 2 such that

0 < µW(t, x) ≤ (Wq(t, x), x)

for all x ∈ R
n \ {0} and t ∈ R,

(V4) Wq(t, x) = o(|x|), as x → 0 uniformly with respect to t,

(V5) there is a continuous map W : R
n → R such that

W(t, x) ≤ W(x)

for all t ∈ R, x ∈ R
n,

(V6) f : R → R
n is continuous and f 6= 0.

Here (·, ·) : R
n × R

n → R denotes the standard scalar product in R
n and | · | is

the induced norm.
Let us remark that (V3)-(V4) implies that

W(t, x) = o(|x|2), (2)

as x → 0 uniformly with respect to t. Moreover, from (V3) it follows that a map-
ping

(0, ∞) ∋ s −→ W(t, s−1x)sµ

is nonincreasing for all t ∈ R and x 6= 0. Hence for every t ∈ R,

W(t, x) ≤ W

(

t,
x

|x|

)

|x|µ, if 0 < |x| ≤ 1 (3)

and

W(t, x) ≥ W

(

t,
x

|x|

)

|x|µ, if |x| ≥ 1. (4)

From (4) we conclude that W grows at a superquadratic rate, as |x| → ∞. That is
for each t ∈ R,

W(t, x)

|x|2 → ∞, as |x| → ∞.

By the assumptions (V1)-(V6), q ≡ 0 is not a solution of (1). Thus our Hamilto-
nian system does not possess a solution homoclinic to 0 in a classical meaning.
However, we can still ask for the existence of solutions emanating from 0 and
terminating at 0.
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Definition 1.1. We will say that a solution q of (1) is almost homoclinic (to 0) if
q(t) → 0, as t → ±∞.

Let us define

E := {q ∈ W1,2(R, R
n) :

∫

∞

−∞

(

|q̇(t)|2 + (L(t)q(t), q(t))
)

dt < ∞}.

Then E is a Hilbert space under the norm

‖q‖2
E :=

∫

∞

−∞

(

|q̇(t)|2 + (L(t)q(t), q(t))
)

dt.

Moreover, for q ∈ E,
‖q‖W1,2(R,Rn) ≤ β‖q‖E, (5)

where β−1 :=
√

min{1, α}. Set

M := max{W(x) : x ∈ R
n ∧ |x| = 1}.

Then M > 0, by (V3) and (V5). Suppose that

(V7)

M <
1

2β2
and ‖ f‖L2(R,Rn) <

√
2

2

(

1

2β2
− M

)

.

Let us remark that if α ≥ 1 then β = 1 and, in consequence, M <
1
2 and

‖ f‖L2(R,Rn) <

√
2

2

(

1
2 − M

)

. We will prove the following theorem.

Theorem 1.1. If the conditions (V1)-(V7) are satisfied then the Hamiltonian system (1)
has an almost homoclinic solution q0 ∈ E.

Many authors have studied the existence of homoclinic solutions of Hamilto-
nian systems. For a treatment of this subject we refer the reader for example to
[1, 2, 3, 4, 5, 9, 11, 12, 13]. This work is motivated by [10] in which P. Rabinowitz
and K. Tanaka received the following result.

Theorem 1.2 (see [10], Th. 5.4, p. 491). Suppose that V : R × R
n → R satisfies (V1),

(V3)-(V4) and

(V8) L ∈ C(R, R
n2
) is a function such that L(t) is a positive definite symmetric matrix

for all t ∈ R and the smallest eigenvalue of L(t) → ∞, as |t| → ∞, i.e.

inf
|x|=1

(L(t)x, x) → ∞, as |t| → ∞,

(V9) there is W ∈ C(Rn, R) such that

W(t, x) + |Wq(t, x)| ≤ W(x)

for all x ∈ R
n, t ∈ R.
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Then the Hamiltonian system

q̈ + Vq(t, q) = 0

has a nontrivial homoclinic to 0 solution q ∈ E.

Our theorem extends the result of Rabinowitz and Tanaka to the case where f is
nonzero. We see at once that (V9) implies (V5) and it is easy to check that (V8)
gives (V2). From (V8) it follows that there exists r > 0 such that

|t| > r =⇒ inf
|x|=1

(L(t)x, x) > 1.

Set

γ := min
|t|≤r

inf
|x|=1

(L(t)x, x).

Since L(t) is positive definite for each t ∈ R, we get γ > 0. For all x ∈ R
n and

t ∈ R we have

(L(t)x, x) ≥ inf
|y|=1

(L(t)y, y)|x|2 ≥ min{1, γ}|x|2,

which yields (V2) with α = min{1, γ}.
Similarly to [10] our solution is obtained by variational methods. Namely,

applying Ekeland’s variational principle we receive a sequence {qk}k∈N weakly
convergent in E such that its weak limit is an almost homoclinic solution of (1).

In [6, 7] we also studied almost homoclinic solutions of Hamiltonian systems.
There we considered the case where V is periodic with respect to t ∈ R.

2 Proof of Theorem 1.1

At first, for the convenience of the reader we recall some inequalities which hold
for all q ∈ E, thus making our exposition self-contained. We start with a result
which the proof can be found for example in [6].

Fact 2.1 (see [6], Fact 2.8, p. 385). Let q : R → R
n be a continuous mapping such that

q̇ ∈ L2
loc(R, R

n). For every t ∈ R, the following inequality holds:

|q(t)| ≤
√

2

(

∫ t+ 1
2

t− 1
2

(

|q(s)|2 + |q̇(s)|2
)

ds

)
1
2

. (6)

The estimation (6) implies that for each q ∈ W1,2(R, R
n),

‖q‖L∞(R,Rn) ≤
√

2‖q‖W1,2(R,Rn). (7)

Combining (7) with (5), we get

‖q‖L∞(R,Rn) ≤
√

2β‖q‖E (8)



Almost homoclinics 175

for each q ∈ E. By (7), if p ≥ 2, then for each q ∈ W1,2(R, R
n),

∫

∞

−∞

|q(t)|pdt ≤ ‖q‖p−2

L∞(R,Rn)

∫

∞

−∞

|q(t)|2dt

≤ 2
p−2

2 ‖q‖p−2

W1,2(R,Rn)

∫

∞

−∞

|q(t)|2dt

≤ 2
p−2

2 ‖q‖p

W1,2(R,Rn)
.

Hence, if p ≥ 2,

‖q‖Lp(R,Rn) ≤ 2
p−2
2p ‖q‖W1,2(R,Rn) (9)

for each q ∈ W1,2(R, R
n) and, in addition, if ‖q‖L∞(R,Rn) ≤ 1, then

‖q‖p

Lp(R,Rn)
≤ ‖q‖2

L2(R,Rn). (10)

For q ∈ E, let

I(q) :=
1

2
‖q‖2

E −
∫

∞

−∞

W(t, q(t))dt +
∫

∞

−∞

( f (t), q(t))dt.

Then I ∈ C1(E, R) and it is easy to verify that any critical point of I on E is a
classical solution of (1). Moreover,

I ′(q)w =
∫

∞

−∞

((q̇(t), ẇ(t)) + (L(t)q(t), w(t))) dt

−
∫

∞

−∞

(Wq(t, q(t)), w(t))dt +
∫

∞

−∞

( f (t), w(t))dt

for all q, w ∈ E.
We will prove that I has a critical point by the use of Ekeland’s variational

principle. Therefore, we state this theorem precisely.

Theorem 2.2 (see [8], Th. 4.3, p. 77). Let K be a compact metric space, K0 ⊂ K a closed
subset, X a Banach space, χ ∈ C(K0, X) and let us define the complete metric space M
by

M := {g ∈ C(K, X) : g(s) = χ(s) if s ∈ K0}
with the usual distance. Let ϕ ∈ C1(X, R) and let us define

c := inf
g∈M

max
s∈K

ϕ(g(s))

and
c1 := max

χ(K0)
ϕ.

If c > c1, then for each ε > 0 and for each h ∈ M such that

max
s∈K

ϕ(h(s)) ≤ c + ε,

there exists v ∈ X such that

c − ε ≤ ϕ(v) ≤ max
s∈K

ϕ(h(s)),
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dist(v, h(K)) ≤ ε
1
2 ,

‖ϕ′(v)‖X∗ ≤ ε
1
2 .

The proof of Theorem 1.1 will be divided into a sequence of lemmas.

Lemma 2.3. There are ̺ > 0 and λ > 0 such that if ‖q‖E = ̺,
then I(q) ≥ λ.

Proof. For all q ∈ E,

I(q) ≥ 1

2
‖q‖2

E −
∫

∞

−∞

W(t, q(t))dt − β‖ f‖L2(R,Rn)‖q‖E. (11)

Set

̺ :=

√
2

2β
. (12)

Assume that 0 < ‖q‖E ≤ ̺. Then (8) implies that 0 < ‖q‖L∞(R,Rn) ≤ 1. Applying

(V5), (3) and (10), we get

∫

∞

−∞

W(t, q(t))dt ≤
∫

∞

−∞

W

(

t,
q(t)

|q(t)|

)

|q(t)|µdt

≤
∫

∞

−∞

W

(

q(t)

|q(t)|

)

|q(t)|µdt

≤ M
∫

∞

−∞

|q(t)|µdt = M‖q‖µ

Lµ(R,Rn)

≤ M‖q‖2
L2(R,Rn) ≤ Mβ2‖q‖2

E.

Consequently, if ‖q‖E ≤ ̺, then

I(q) ≥ 1

2
‖q‖2

E − Mβ2‖q‖2
E − β‖ f‖L2(R,Rn)‖q‖E.

Thus for ‖q‖E = ̺,

I(q) ≥
(

1

2
− Mβ2

)

̺2 − β̺‖ f‖L2(R,Rn)

=
1

2

(

1

2β2
− M

)

−
√

2

2
‖ f‖L2(R,Rn) ≡ λ.

From (V7) we get that λ > 0, which completes the proof.

Lemma 2.4. Let ̺ be a constant defined by (12). Then there exists Q ∈ E such that
‖Q‖E > ̺ and I(Q) < 0.

Proof. Take u ∈ C∞

0 (R, R
n) such that |u(t)| = 1 if |t| ≤ 1 and u(t) = 0 if |t| > 2.

Let us define m as follows:

m := inf{W(t, x) : |t| ≤ 1 ∧ |x| = 1}.
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(V3) implies that m > 0. By the use of (4), for every ξ ≥ 1, we receive
∫

∞

−∞

W(t, ξu(t))dt ≥
∫ 1

−1
W(t, ξu(t))dt ≥

∫ 1

−1
W

(

t,
u(t)

|u(t)|

)

|ξu(t)|µ dt

≥ mξµ
∫ 1

−1
|u(t)|µdt = 2mξµ.

In consequence,

I(ξu) =
1

2
ξ2‖u‖2

E −
∫

∞

−∞

W(t, ξu(t))dt + ξ

∫

∞

−∞

( f (t), u(t))dt

≤ 1

2
ξ2‖u‖2

E − 2mξµ + ξβ‖ f‖L2(R,Rn)‖u‖E,

and hence I(ξu) → −∞, as ξ → ∞. Thus if ξ is large enough, then Q = ξu
satisfies the desired claim.

From now on, let us define the complete metric space M by

M := {g ∈ C([0, 1], E) : g(0) = 0 ∧ g(1) = Q}
with the usual distance

d(g, h) := max
s∈[0,1]

‖g(s)− h(s)‖E .

Let
c := inf

g∈M
max
s∈[0,1]

I(g(s))

and
c1 := max{I(0), I(Q)},

where Q is determined by Lemma 2.4. We check at once that c1 = 0. Moreover,
combining Lemma 2.3 with Lemma 2.4 we have that c ≥ λ > 0. Next, applying
Theorem 2.2 we conclude that there exists a sequence {qk}k∈N in E such that

I(qk) → c ∧ I ′(qk) → 0, (13)

as k → ∞. {qk}k∈N is so-called a sequence of almost critical points (compare [8],
§ 4.1, p. 75-80).

Lemma 2.5. The sequence {qk}k∈N given by (13) possesses a weakly convergent subse-
quence in E.

Proof. Since E is a Hilbert space, it is sufficient to show that {qk}k∈N is bounded.
For all k ∈ N, we have

I(qk)−
1

µ
I ′(qk)qk =

(

1

2
− 1

µ

)

‖qk‖2
E −

∫

∞

−∞

W(t, qk(t))dt

+
1

µ

∫

∞

−∞

(Wq(t, qk(t)), qk(t))dt

+

(

1 − 1

µ

)

∫

∞

−∞

( f (t), qk(t))dt

≥
(

1

2
− 1

µ

)

‖qk‖2
E − β

(

1 − 1

µ

)

‖ f‖L2(R,Rn)‖qk‖E,
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by (V3). From (13) we obtain that there is k0 ∈ N such that for all k > k0,

|I(qk)− c| < 1 ∧ ‖I ′(qk)‖E∗ < µ.

Since |I ′(qk)qk| ≤ ‖I ′(qk)‖E∗‖qk‖E, we receive

I(qk)−
1

µ
I ′(qk)qk ≤ c + 1 + ‖qk‖E

for all k > k0. Consequently, we get

c + 1 + ‖qk‖E ≥
(

1

2
− 1

µ

)

‖qk‖2
E − β

(

1 − 1

µ

)

‖ f‖L2(R,Rn)‖qk‖E (14)

for all k > k0. Since µ > 2, the inequality (14) implies that {qk}k∈N is a bounded
sequence in E.

Let q0 ∈ E be a weak limit of a weakly convergent subsequence of the se-
quence {qk}k∈N. Without loss of generality we can assume that

qk ⇀ q0 in E, as k → ∞. (15)

Lemma 2.6. q0 : R → R
n given by (15) is a desired almost homoclinic solution of the

Hamiltonian system (1).

Proof. We have to show that I ′(q0) ≡ 0 and q0(t) → 0, as t → ±∞.

Fix u ∈ C∞

0 (R, R
n). There is a > 0 such that supp(u) ⊂ [−a, a]. From (15) it

follows that qk → q0 uniformly on [−a, a] and

∫ a

−a
(q̇k(t), u̇(t))dt →

∫ a

−a
(q̇0(t), u̇(t))dt,

as k → ∞. Hence

I ′(qk)u =
∫ a

−a
(q̇k(t), u̇(t))dt +

∫ a

−a
(L(t)qk(t), u(t))dt

−
∫ a

−a
(Wq(t, qk(t)), u(t))dt +

∫ a

−a
( f (t), u(t))dt

k→∞−→
∫ a

−a
(q̇0(t), u̇(t))dt +

∫ a

−a
(L(t)q0(t), u(t))dt

−
∫ a

−a
(Wq(t, q0(t)), u(t))dt +

∫ a

−a
( f (t), u(t))dt = I ′(q0)u.

On the other hand, by (13) we have I ′(qk)u → 0, as k → ∞. In consequence, we
receive I ′(q0)u = 0. Since C∞

0 (R, R
n) is dense in E, we have I ′(q0) ≡ 0. From (6)

we conclude that q0(t) → 0, as t → ±∞, which completes the proof.
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