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Abstract

We consider a nonlinear elliptic equation driven by the p-Laplacian and
with a Carathéodory right hand side nonlinearity which exhibits an asym-
metric asymptotic behaviour at +∞ and at −∞. These hypotheses imply
that the Euler functional of the problem is noncoercive (indefinite). Using
critical point theory, we prove the existence of at least two nontrivial smooth
solutions. Also in the last section for the asymmetric functionals considered
here, we compute the critical groups at infinity.

1 Introduction

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. We consider the

following nonlinear elliptic problem

{
−div

(
‖Dx(z)‖p−2Dx(z)

)
= f (z, x(z)) for a.a. z ∈ Z,

x|
∂Z

= 0,
(1.1)

with p > 1. Recently there have been multiplicity results concerning problem
(1.1), without any symmetry condition on the right hand side nonlinearity f (z, ·).
We refer to the works of Dancer-Perera [4], Jiu-Su [8], Liu [11], Liu-Liu [10] and
Zhang-Chen-Li [15]. In the papers of Jiu-Su [8], Liu [11], Liu-Liu [10], the Euler
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functional is coercive and in the works of Dancer-Perera [4] and Zhang-Chen-
Li [15], the asymptotic limits at zero and at infinity exist. Here we examine what
happens if the Euler functional is noncoercive and the nonlinearity f (z, ·) exhibits
as asymmetric behaviour at +∞ and −∞. We should mention that an asymmetric
behaviour is also present in the works of Dancer-Perera [4] and Zhang-Chen-Li
[15], but their asymptotic limits exist and are related to the Fučik spectrum of the
negative Dirichlet p-Laplacian.

2 Mathematical Background

First let us recall some basic facts about the spectrum of the negative p-Laplacian
with Dirichlet boundary condition. Let m ∈ L∞(Z)+ , m 6= 0 and consider the
following nonlinearity weighted (with weight m) eigenvalue problem





−div
(
‖Dx(z)‖p−2Dx(z)

)
= λ̂m(z)|x(z)|p−2 x(z)

for a.a. z ∈ Z,
x|

∂Z
= 0,

(2.1)

with p > 1 and λ̂ ∈ R.

Problem (2.1) has a smallest eigenvalue denoted by λ̂1(m), which is positive,
isolated, simple and admits a variational characterization

λ̂1(m) = inf

{
‖Dx‖

p
p∫

Z

m|x|p dz
: x ∈ W

1,p
0 (Z), x 6= 0

}
. (2.2)

In (2.2) the infimum is realized at an eigenfunction u1 and by nonlinear reg-
ularity theory, we have u1 ∈ C1

0(Z) (see Lieberman [9]). Moreover, u1 > 0 and
in fact by virtue of the nonlinear strong maximum principle of Vázquez [14], we

have that u1(z) > 0 for all z ∈ Z. If m ≡ 1, then we write λ̂1(1) = λ1. If

u ∈ W
1,p
0 (Z) is an eigenfunction corresponding to an eigenvalue λ̂ 6= λ̂1(m), then

u ∈ C1
0(Z) and changes sign. Finally, it is clear from (2.2) that

m, m ∈ L∞(Z)+ , m 6= m
m(z) 6 m(z) for a.a. z ∈ Z

}
=⇒ λ̂1(m) < λ̂1(m). (2.3)

In our analysis of problem (1.1), we will also use Morse theory, in particular
critical groups in order to produce new critical points. So let X be a Banach space
and let ϕ ∈ C1(X) satisfy the PS-condition. We use the following notation

Kϕ =
{

x ∈ X : ϕ′(x) = 0
}

(critical points of ϕ),

K
ϕ
c =

{
x ∈ Kϕ : ϕ(x) = c

}
(with c ∈ R),

ϕc =
{

x ∈ X : ϕ(x) 6 c
}

(with c ∈ R).

Let x0 ∈ X be an isolated critical point of ϕ with ϕ(x0) = c0 and let U be a
neighbourhood of x0 containing no other critical point. The critical groups (over
Z) of ϕ at x0, are defined by

Ck(ϕ, x0) = Hk

(
ϕc0 ∩ U, (ϕc0 ∩ U) \ {x0}

)
∀k > 0,
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where Hk(·, ·) as the k-th singular relative homology group with integer coeffi-
cients.

Suppose that −∞ < inf ϕ(Kϕ) are choose c < inf ϕ(Kϕ). The critical groups
of ϕ at infinity, are defined by

Ck(ϕ, ∞) = Hk(X, ϕc) ∀k > 0

(see Bartsch-Li [1]). If Kϕ is finite, then the Morse-type numbers of ϕ, are defined
by

Mk = ∑
x∈Kϕ

rank Ck(ϕ, x)

and the Betti-type numbers for ϕ, are defined by

βk = rank Ck(ϕ, ∞).

By Morse theory (see Bartsch-Li [1], Chang [2, Theorem 6.1, p. 55] and Mawhin-
Willem [12]), we have

m

∑
k=0

(−1)m−k Mk >

m

∑
k=0

(−1)m−kβk m > 0 (2.4)

and

∑
k>0

(−1)k Mk = ∑
k>0

(−1)kβk. (2.5)

From the inequality (2.4), we have βk 6 Mk for all k > 0. Therefore, if
βk 6= 0 for some k > 0, then ϕ must have a critical point x ∈ X and the crit-
ical group Ck(ϕ, x) is nontrivial. The equality (2.5) is known as the “Poincaré-
Hopf formula”. If x, y ∈ X are critical points of ϕ and for some integer k > 0,
we have Ck(ϕ, x) 6= Ck(ϕ, y), then obviously x 6= y. Finally if Kϕ = {x}, then
Ck(ϕ, ∞) = Ck(ϕ, x) for all k > 0.

Finally let us recall the notion of the Clarke subdifferential, which will be
needed in the statement of our hypotheses. Let X be a Banach space and let
ϕ : X −→ R be a locally Lipschitz function. The generalized directional deriva-
tive of ϕ at x ∈ X in the direction h ∈ X is defined by

ϕ0(x; h) = lim sup
x′ → x
λ ց 0

ϕ(x′ + λh)− ϕ(x′)

λ
.

The function h 7−→ ϕ0(x; h) is sublinear, continuous and so it is the support func-
tion of a nonempty, w∗-compact and convex set ∂ϕ(x), defined by

∂ϕ(x) =
{

x∗ ∈ X∗ : 〈x∗, h〉X 6 ϕ0(x; h) for all h ∈ X
}

.

The multifunction x 7−→ ∂ϕ(x) is known as the generalized (or Clarke) subdiffer-
ential of ϕ. If ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}. The generalized subdifferential
has a rich calculus, which generalizes the subdifferential calculus of continuous,
convex functions. For details we refer to Clarke [3].
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3 Multiple Solutions

The hypotheses on the nonlinearity f are the following:

H( f ) f : Z × R −→ R is a function, such that

(i) for all ζ ∈ R, the function z 7−→ f (z, ζ) is measurable;

(ii) for almost all z ∈ Z, the function ζ 7−→ f (z, ζ) is locally Lipschitz and
f (z, 0) = 0;

(iii) there exist a ∈ L∞(Z)+ and c > 0, such that

|u| 6 a(z) + c|ζ|p−2

for almost all z ∈ Z, all ζ ∈ R and all u ∈ ∂ f (z, ζ);

(iv) there exist ϑ, β, β̂ ∈ L∞(Z)+ , ϑ(z) 6 λ1 6 β(z) for almost all z ∈ Z,
with strict inequalities on sets (not necessary the same) of positive
measure and

lim sup
ζ→+∞

f (z, ζ)

ζp−1
6 ϑ(z)

uniformly for almost all z ∈ Z and

β(z) 6 lim inf
ζ→−∞

f (z, ζ)

|ζ|p−2ζ
6 lim sup

ζ→−∞

f (z, ζ)

|ζ|p−2ζ
6 β̂(z)

uniformly for almost all z ∈ Z;

(v) there exist δ > 0 and 0 < µ < p, such that

f (z, ζ)ζ > 0 for a.a. z ∈ Z and all 0 < |ζ| 6 δ,

f (z, ζ) > 0 for a.a. z ∈ Z and all ζ > 0,

µF(z, ζ) − f (z, ζ)ζ > 0 for a.a. z ∈ Z and all |ζ| 6 δ,

with F(z, ζ) =
ζ∫

0

f (z, r) dr.

Let τ+ : R −→ R+ be the truncation map

τ+(ζ) =

{
0 if ζ 6 0,
ζ if ζ > 0.

Then we introduce

f+(z, ζ) = f (z, τ+(ζ)) ∀(z, ζ) ∈ Z × R.

Clearly f+ is still a Carathéodory function and

f+(z, ζ) = 0 for a.a. z ∈ Z and all ζ 6 0.
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We set

F+(z, ζ) =

ζ∫

0

f+(z, r) dr.

The next lemma is an easy consequence of the strict positivity of u1 ∈ C1
0(Z)

and of the hypothesis on ϑ ∈ L∞(Z)+ . So we omit the proof.

Lemma 3.1. If ϑ ∈ L∞(Z)+ , ϑ(z) 6 λ1 for almost all z ∈ Z and the inequality is strict
on a set of positive measure,
then there exists ξ0 > 0, such that

‖Dx‖
p
p −

∫

Z

ϑ|x|p dz > ξ0‖Dx‖
p
p ∀x ∈ W

1,p
0 (Z).

Let ϕ : W
1,p
0 (Z) −→ R be the Euler functional for problem (1.1), namely

ϕ(x) =
1

p
‖Dx‖

p
p −

∫

Z

F(z, x(z)) dz ∀x ∈ W
1,p
0 (Z). (3.1)

Evidently ϕ ∈ C1(W
1,p
0 (Z)).

In the next proposition we produce the first nontrivial smooth solution for
problem (1.1). In what follows

C+ =
{

x ∈ C1
0(Z) : x(z) > 0 for all z ∈ Z

}

(the positive cone of C1
0(Z)) and

int C+ =
{

x ∈ C1
0(Z) : x(z) > 0 for all z ∈ Z

and
∂x

∂n
(z) < 0 for all z ∈ ∂Z

}
.

Proposition 3.2. If hypotheses H( f ) hold,
then problem (1.1) has a solution x0 ∈ int C+, which is a local minimizer of ϕ.

Proof. Because of hypothesis H( f )(iv), for a given ε > 0, we can find M1 =
M1(ε) > 0, such that

f (z, ζ) 6 (ϑ(z) + ε)ζp−1 for a.a. z ∈ Z and all ζ > M1. (3.2)

Moreover, due to hypothesis H( f )(iii), we can find aε ∈ L∞(Z)+ , aε 6= 0, such
that

f (z, ζ) 6 aε(z) for a.a. z ∈ Z and all 0 6 ζ 6 M1. (3.3)

Since
f+(z, ζ) = 0 for a.a. z ∈ Z and all ζ 6 0, (3.4)

from (3.2), (3.3) and (3.4), we infer that

f+(z, ζ) 6 (ϑ(z) + ε)|ζ|p−1 + aε(z) for a.a. z ∈ Z and all ζ ∈ R,
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so

F+(z, ζ) 6
1

p
(ϑ(z) + ε)|ζ|p + aε(z)|ζ| for a.a. z ∈ Z and all ζ ∈ R. (3.5)

Then, using (3.5), (2.2) and Lemma 3.1, for a given x ∈ W
1,p
0 (Z), we have

ϕ+(x) =
1

p
‖Dx‖

p
p −

∫

Z

F+(z, x(z)) dz

>
1

p
‖Dx‖

p
p −

1

p

∫

Z

ϑ|x|p dz −
ε

p
‖x‖

p
p − c1‖Dx‖p

>
1

p

(
ξ0 −

ε

λ1

)
‖Dx‖

p
p − c1‖Dx‖p, (3.6)

for some c1 = c1(ε) > 0. If we choose ε < λ1ξ0, then from (3.6), we infer that ϕ+

is coercive. Also exploiting the compact embedding of W
1,p
0 (Z) into Lp(Z), we

can easily check that ϕ+ is weakly lower semicontinuous. Hence by virtue of the

Weierstrass theorem, we can find x0 ∈ W
1,p
0 (Z), such that

ϕ+(x0) = inf
{

ϕ+(x) : x ∈ W
1,p
0 (Z)

}
.

First we show that x0 6= 0. To this end, note that hypothesis H( f )(v) implies that
there exists c2 > 0, such that

F(z, ζ) > c2ζµ for a.a. z ∈ Z and all 0 6 ζ 6 δ. (3.7)

Since u1 ∈ int C+ (by the nonlinear strong maximum principle of Vázquez [14,
Theorem 5, p. 200]; see also Gasiński-Papageorgiou [6, Theorem 6.2.8, p. 738]),
we can find σ ∈ (0, 1) small enough, such that

0 6 σu1(z) 6 δ ∀z ∈ Z.

Since σu1 ∈ int C+ and using (3.7), we have

ϕ+(σu1) =
σp

p
‖Du1‖

p
p −

∫

Z

F(z, σu1(z)) dz

6
σp

p
‖Du1‖

p
p − c2σµ‖u1‖

µ
µ

= c3σp − c4σµ = σµ(c3σp−µ − c4),

for some c3, c4 > 0.
Since µ < p, by choosing σ ∈ (0, 1) even smaller if necessary, we can have

c3σp−µ
< c4 and so ϕ+(σu1) < 0 = ϕ+(0). Therefore ϕ+(x0) < 0 = ϕ+(0) and

so x0 6= 0. Because x0 is the minimizer of ϕ+, we have

ϕ′
+(x0) = 0

and so
A(x0) = N+(x0), (3.8)
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where
N+(x)(·) = f+(·, x(·)) ∀x ∈ Lp(Z)

and A : W
1,p
0 (Z) −→ W−1,p′(Z) (with 1

p + 1
p′ = 1) is the nonlinear operator de-

fined by

〈A(x), y〉 =
∫

Z

‖Dx‖p−2(Dx, Dy)
RN dz ∀x, y ∈ W

1,p
0 (Z).

Here by 〈·, ·〉 we denote the duality brackets for the pair
(
W−1,p′(Z), W

1,p
0 (Z)

)
.

We take the duality brackets of (3.8) with the test function −x−0 ∈ W
1,p
0 (Z)

and obtain
‖Dx−0 ‖

p
p = 0,

i.e. x−0 = 0 and so x0 > 0, x0 6= 0.
From (3.8), we have





−div
(
‖Dx0(z)‖

p−2Dx0(z)
)
= f+(z, x0(z)) = f (z, x0(z))

for a.a. z ∈ Z,
x0|∂Z

= 0.
(3.9)

Then, from (3.9) and nonlinear regularity theory (see Lieberman [9] or Gasiński-
Papageorgiou [6, Theorem 6.2.7, p. 738]), we have x0 ∈ C+. Hypothesis H( f )(v)
implies that

f+(z, x0(z)) > 0 for a.a. z ∈ Z

and so from (3.9), we have

∆px0(z) 6 0 for a.a. z ∈ Z.

Therefore, by the nonlinear strong maximum principle of Vázquez [14], we have
that x0 ∈ int C+. Hence, we can find r > 0 small enough, such that

B
C1

0(Z)
r =

{
u ∈ C1

0(Z) : ‖u‖C1
0(Z)

6 r
}

⊆ C+.

It follows that
ϕ+

∣∣
B

C1
0(Z)

r

= ϕ
∣∣

B
C1

0(Z)
r

and so x0 ∈ int C+ is a local C1
0(Z)-minimizer of ϕ. Invoking Theorem 1.2 of

Garcia Azorero-Manfredi-Peral Alonso [5, p. 387], we have that x0 is a local min-

imizer in W
1,p
0 (Z) of ϕ.

From the well known characterization of the critical groups at a local mini-
mizer (see Chang [2, p. 33] or Mawhin-Willem [12, p. 175]), we have the following
corollary.

Corollary 3.3. If hypotheses H( f ) hold and x0 ∈ int C+ is the solution obtained in
Proposition 3.2, then

Ck(ϕ, x0) = δk,0Z ∀k > 0.
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Also because of hypothesis H( f )(v) and Proposition 2.1 of Jiu-Su [8, p. 592],
we have the following proposition.

Proposition 3.4. If hypotheses H( f ) hold, then

Ck(ϕ, 0) = 0 ∀k > 0.

Now we are ready for the multiplicity result.

Theorem 3.5. If hypotheses H( f ) hold, then problem (1.1) has at least two nontrivial
solutions x0 ∈ int C+ and v0 ∈ C1

0(Z).

Proof. From Proposition 3.2, we already have one solution x0 ∈ int C+ being a
local minimizer of ϕ. Because of hypothesis H( f )(iv), we have

ϕ1(−tu1) −→ −∞ as t → +∞,

and so the functional ϕ is unbounded below. Thus we can use the mountain pass

theorem and obtain a second solution v0 ∈ W
1,p
0 (Z). From Chang [2, p. 89], we

know that
C1(ϕ, v0) 6= 0.

But from Proposition 3.4, we already know that all critical groups at the origin
are zero. So v0 is nontrivial. Finally nonlinear regularity theorem (see Lieberman
[9]) implies that v0 ∈ C1

0(Z).

Remark 3.6. If N = 1 (ordinary differential equation), then we can replace hy-
potheses H( f )(ii) and (iii) by the following more general ones:

H( f )(ii)′ for every M > 0 there exists a
M
∈ L1(0, 1)+, such that

∣∣ f (z, ζ) − f (z, ζ)
∣∣ 6 aM(z)|ζ − ζ| for a.a. z ∈ Z and all |ζ|, |ζ | 6 M;

H( f )(iii)′ there exist a ∈ L1(0, 1) and c > 0, such that

| f (z, ζ)| 6 a(z) + x|ζ|p−1 for a.a. z ∈ Z and all ζ ∈ R;

Note that in the new hypotheses we do not need the generalized subdiffer-
ential of f (z, ·). Indeed, now by virtue of hypothesis H( f )(ii)′ and exploit the

embedding W
1,p
0 (Z) ⊆ C(Z), we can show that N f is locally Lipschitz in (4.25).

4 Critical groups at infinity

In this section we compute the critical groups at infinity for the asymmetric Euler
functional of the problem. We believe that our result here can be useful to people
using Morse theoretic techniques in their study of multiple solutions. We start
with an auxiliary result that is related to Lemma 2.4 of Perera-Schechter [13, p.
365].
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Lemma 4.1. If X is a Banach space, (t, x) 7−→ ϕt(x) is a function which belongs to
C1([0, 1]× X; R), such that:
(i) x 7−→ ∂t ϕt(x) and x 7−→ ϕ′

t(x) are both locally Lipschitz;
(ii) there exists R > 0, such that

inf
{
‖ϕ′

t(x)‖ : t ∈ [0, 1], ‖x‖ > R
}

> 0 (4.1)

and
inf

{
ϕt(x) : t ∈ [0, 1], ‖x‖ 6 R

}
> −∞; (4.2)

(iii) ϕ1 is unbounded below and

Ck(ϕ0, ∞) = 0 ∀k > 0, (4.3)

then
Ck(ϕ1, ∞) = 0 ∀k > 0.

Proof. Note that by (4.1) we have that Kϕ ⊆ B
X
R .

For every t ∈ [0, 1], let vt : X \ Kϕ −→ R be the pseudogradient vector field
corresponding to ϕt Gasiński-Papageorgiou [6, Definition 5.1.16, p. 614 and The-
orem 5.1.19, p. 616]). By definition it is locally Lipschitz, so the map

X \ Kϕ ∋ x 7−→ −
|∂t ϕt(x)|

‖ϕ′
t(x)‖

2
vt(x) ∈ X

is locally Lipschitz (see Clarke [3]).
Let

α < inf
{

ϕt(x) : t ∈ [0, 1], ‖x‖ 6 R
}

and let u ∈ ϕα
0 . We consider the Cauchy problem





η̇(t) = −
|∂t ϕt(η(t))|

‖ϕ′
t(η(t))‖

2
vt(η(t)) for a.a. t ∈ [0, 1]

η(0) = u.
(4.4)

By the local existence theorem (see e.g. Gasiński-Papageorgiou [6, Theorem 5.1.21,
p. 618])), there exists local flow η(t). Then

d

dt
ϕt(η(t)) = 〈ϕ′

t(η(t)), η̇(t)〉+ ∂t ϕt(η(t))

= −〈ϕ′
t(η(t)), vt(η(t))〉

|∂t ϕt(η(t))|

‖ϕ′
t(η(t))‖

2
+ ∂t ϕt(η(t))

6 −‖ϕ′
t(η(t))‖

2 |∂t ϕt(η(t))|

‖ϕ′
t(η(t))‖

2
+ ∂t ϕt(η(t))

= −|∂t ϕt(η(t))| + ∂t ϕt(η(t)) 6 0.

Therefore the function t 7−→ ϕt(η(t)) is decreasing and we have

ϕt(η(t)) 6 ϕ0(η(0)) = ϕ0(u) 6 α.
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Thus ‖η(t)‖ > R and the global solution η(t) of (4.4) exists in X \ B
X
R . Hence

η(1) is a homeomorphism of ϕα
0 onto a subset of ϕα

1 . Let ε > 0 and let us set
C = ϕa−ε

1 \ ϕa
0. Then

C = ϕa−ε
1 \ ϕa

0 ⊆ int ϕa
1.

By virtue of the excision property of singular homology, we have

Hk(X \ C, ϕa−ε
1 \ C) = Hk(X, ϕa−ε

1 ),

so

Hk(X \ C, ϕa
0) = Hk(X, ϕa−ε

1 ) = Hk(X, ϕa
1) = Ck(ϕ, ∞).

Note that

η(1)(ϕa
0) ⊆ ϕa

1 ⊆ X.

Let

i : (ϕa
1, η(1)(ϕa

0)) −→ (X, η(1)(ϕa
0))

and

j : (X, η(1)(ϕa
0)) −→ (X, ϕa

1)

be the inclusion maps. We have the following exact sequence:

Ck+1(ϕ1, ∞) = Hk+1(X, ϕa
1)

∂
−→ Hk(ϕa

1, η(1)(ϕa
0))

i∗−→

i∗−→ Hk(X, η(1)(ϕa
0))

j∗
−→ Hk(X, ϕa

1).

Since η(1) is a homeomorphism and using hypothesis (4.3), we have

Hk(X, η(1)(ϕa
0)) = Hk(X, ϕa

0) = Ck(ϕ0, ∞) = 0.

So, it follows that

Ck(ϕ1, ∞) = 0 ∀k > 1.

Moreover, since ϕ1 is unbounded below, we have that ϕa
1 6= ∅ and so

C0(ϕ1, ∞) = H0(X, ϕa
1) = 0.

Therefore, finally we obtain that

Ck(ϕ1, ∞) = 0 ∀k > 0

Now we are ready to compute the critical groups of the Euler functional ϕ at
infinity.

Theorem 4.2. If p > 2, hypotheses H( f ) hold and ϕ is defined by (3.1), then

Ck(ϕ, ∞) = 0 ∀k > 0.
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Proof. Let h ∈ L∞(Z)+ , h 6= 0 and consider the one parameter family of C1-maps

ϕt : W
1,p
0 (Z) −→ R, defined by

ϕt(x) =
1

p
‖Dx‖

p
p − t

∫

Z

F(z, x(z)) dz

−
1 − t

p

∫

Z

β(x−)p dz + (1 − t)
∫

Z

hx dz ∀t ∈ [0, 1].

Claim 1. There exists R > 0, such that

inf
{
‖ϕ′

t(x)‖ : t ∈ [0, 1], ‖x‖ > R
}

> 0. (4.5)

To prove the Claim we argue by contradiction. So suppose that the Claim is

not true. We can find sequences {tn}n>1 ⊆ [0, 1] and {xn}n>1 ⊆ W
1,p
0 (Z), such

that

tn −→ t ∈ [0, 1], ‖xn‖ −→ +∞ and ϕ′
tn
(xn) −→ 0 in W−1,p′(Z).

We have
∣∣∣∣〈A(xn), v〉 − tn

∫

Z

f (z, xn(z))v(z) dz + (1 − tn)
∫

Z

β(x−n )
p−1v dz

+(1 − tn)
∫

Z

hv dz

∣∣∣∣ 6 εn‖v‖ ∀v ∈ W
1,p
0 (Z), (4.6)

with εn ց 0.

In (4.6), we let v = x+n ∈ W
1,p
0 (Z). We obtain

‖Dx+n ‖
p
p − tn

∫

Z

f (z, xn(z))x
+
n (z) dz + (1 − tn)

∫

Z

hx+n dz 6 εn‖x+n ‖. (4.7)

From hypotheses H( f )(iii) and (iv), we know that for each ε > 0, there is aε ∈
L∞(Z)+ , such that

f (z, ζ) 6 (ϑ(z) + ε)ζp−1 + aε(z) for a.a. z ∈ Z and all ζ > 0.

Hence (4.7) becomes

‖Dx+n ‖
p
p −

∫

Z

ϑ(x+n )
p dz − ε‖x+n ‖

p
p 6 εn‖x+n ‖

(recall that tn ∈ [0, 1], h > 0), so using (2.2) and Lemma 3.1, we have

(
ξ0 −

ε

λ1

)
‖Dx+n ‖

p
p 6 ε′n‖Dx+n ‖p, (4.8)

with ε′n ց 0.
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So, if we choose ε < λ1ξ0, then from (4.8) we infer that the sequence {x+n }n>1 ⊆

W
1,p
0 (Z) is bounded. Because ‖xn‖ −→ +∞, we must have that ‖x−n ‖ −→ +∞.

We set

yn =
x−n

‖x−n ‖
∀n > 1.

By passing to a suitable subsequence if necessary, we may assume that

yn
w

−→ y in W
1,p
0 (Z),

yn −→ y in Lp(Z),

yn(z) −→ y(z) for a.a. z ∈ Z,

|yn(z)| 6 k(z) ∀n > 1,

with k ∈ Lp(Z)+ .

In (4.6), we take v = yn − y ∈ W
1,p
0 (Z) and we find

∣∣∣∣
1

‖x−n ‖p−1
〈A(x+n ), yn − y〉 − 〈A(yn), yn − y〉

−tn

∫

Z

f (z, xn(z))

‖x−n ‖p−1
(yn − y) dz + (1 − tn)

∫

Z

βy
p−1
n (yn − y) dz

+(1 − tn)
∫

Z

h

‖x−n ‖p−1
(yn − y) dz

∣∣∣∣ 6 εn‖yn − y‖. (4.9)

Due to the boundedness of {x+n }n>1 ⊆ W
1,p
0 (Z), we have

1

‖x−n ‖p−1
〈A(x+n ), yn − y〉 −→ 0. (4.10)

We have
∫

Z

f (z, xn(z))

‖x−n ‖p−1
(yn − y) dz (4.11)

=
∫

{xn>0}

f (z, xn(z))

‖x−n ‖p−1
(yn − y) dz +

∫

{xn<0}

f (z, xn(z))

‖x−n ‖p−1
(yn − y) dz.

Evidently, we have

∫

{xn>0}

f (z, xn(z))

‖x−n ‖p−1
(yn − y) dz −→ 0. (4.12)

Also from hypotheses H( f )(iii) and (iv), we have

|N(−x−n )|

‖x−n ‖p−1
6

â(z)

‖x−n ‖p−1
+ ĉ|yn(z)|

p−1 for a.a. z ∈ Z and all n > 1, (4.13)

with â ∈ L∞(Z)+ and ĉ > 0. Thus the sequence
{ N(−x−n )
‖x−n ‖p−1

}
⊆ Lp′(Z) is bounded.
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Therefore, passing to a subsequence if necessary, we may assume that

N(−x−n )

‖x−n ‖p−1

w
−→ g in Lp′(Z), (4.14)

for some g ∈ Lp′(Z). For every ε > 0 and n > 1, we introduce the set

Cε,n =

{
z ∈ Z : x−n (z) > 0, β(z) − ε 6

f (z,−x−n (z))

−x−n (z)p−1
6 β̂(z) + ε

}
.

Note that
x−n (z) −→ +∞ for a.a. z ∈ {y > 0},

so from hypothesis H( f )(iv), we have

χ
Cε,n

(z) −→ 1 for a.a. z ∈ {y > 0}.

From this and (4.14), it follows that

χ
Cε,n

N(−x−n )

‖x−n ‖p−1

w
−→ g in Lp′({y > 0}). (4.15)

From the definition of the set Cε,n, we have that

−χ
Cε,n

(z)
(

β̂(z) + ε
)
yn(z)

p−1
6 χ

Cε,n
(z)

N(−x−n )(z)

‖x−n ‖p−1

= χ
Cε,n

(z)
f (z,−x−n (z))

−x−n (z)p−1
yn(z)

p−1

6 −χ
Cε,n

(z)
(

β(z) − ε
)
yn(z)

p−1 for a.a. z ∈ Z.

Passing to the limit as n → +∞ and using (4.15) together with Mazur’s lemma,
we obtain

−
(

β̂(z)− ε
)

y(z)p−1
6 g(z) 6 −

(
β(z) + ε

)
y(z)p−1 for a.a. z ∈ {y > 0}.

Since ε > 0 was arbitrary, we let ε ց 0, to obtain

−β̂(z)y(z)p−1
6 g(z) 6 −β(z)y(z)p−1 for a.a. z ∈ {y > 0}. (4.16)

Moreover, from (4.13), it is clear that

g(z) = 0 for a.a. z ∈ {y = 0}. (4.17)

Since Z = {y > 0} ∪ {y = 0}, from (4.16) and (4.17), we infer that

g(z) = −ĝ(z)y(z)p−1 for a.a. z ∈ Z, (4.18)

with ĝ ∈ L∞(Z)+ and β(z) 6 ĝ(z) 6 β̂(z) for almost all z ∈ Z. Note that

∫

{xn<0}

f (z, xn(z))

‖x−n ‖p−1
(yn − y) dz −→ 0. (4.19)
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Clearly, we also have

∫

Z

h

‖x−n ‖p−1
(yn − y) dz −→ 0 and

∫

Z

βy
p−1
n (yn − y) dz −→ 0. (4.20)

So, if we pass to the limit as n −→ +∞ in (4.9) and use (4.10), (4.11), (4.12), (4.19)
and (4.20), we obtain

lim
n→+∞

〈A(yn), yn − y〉 = 0. (4.21)

But A is an operator of type (S)+ (see e.g. Gasiński-Papageorgiou [6, Definition
3.2.55(b), p. 338]). So from (4.21), it follows that

yn −→ y in W
1,p
0 (Z).

We write (4.6) in the following form:

∣∣∣∣
1

‖x−n ‖p−1
〈A(x+n ), v〉 − 〈A(yn), v〉 − tn

∫

Z

f (z, xn(z))

‖x−n ‖p−1
v dz

+(1 − tn)
∫

Z

βy
p−1
n v dz + (1 − tn)

∫

Z

h

‖x−n ‖p−1
v dz

∣∣∣∣ 6
εn

‖x−n ‖p−1
‖v‖.

So, in the limit as n → +∞, because of (4.14) and (4.18), we have

〈A(y), v〉 =
∫

Z

(
tĝ + (1 − t)β)

)
yp−1v dz ∀v ∈ W

1,p
0 (Z),

so
A(y) = gyp−1,

with g = tĝ + (1 − t)β ∈ L∞(Z)+ and thus

{
−div

(
‖Dy(z)‖p−2Dy(z)

)
= g(z)|y(z)|p−2y(z) for a.a. z ∈ Z,

y|
∂Z

= 0, y 6= 0.
(4.22)

From the strict monotonicity of the principal eigenvalue on the weight (see (2.3)),
we have

λ̂1(g) 6 λ̂1(β) < λ̂1(λ1) = 1. (4.23)

Combining (4.22) and (4.23), we infer that y must change sign, a contradiction. So
Claim 1 is true.

Clearly, we also have

inf
{

ϕt(x) : t ∈ [0, 1], ‖x‖ 6 R
}

> −∞. (4.24)

Obviously ∂t ϕt is locally Lipschitz. We need to check that also ϕ′
t is locally

Lipschitz. We have

ϕ′
t(x) = A(x)− N f (x) + (1 − t)β(x−)p−1 + (1 − t)h, (4.25)
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where N f (x) = f (·, x(·)). Obviously the first (since p > 2), the third and the
fourth terms on the right hand side are locally Lipschitz. Because of hypotheses
H( f )(ii) and (iii) we also have that N f is locally Lipschitz (see Clarke [3]). So ϕ′

t
is locally Lipschitz.

Note that

ϕ0(x) =
1

p
‖Dx‖

p
p −

1

p

∫

Z

β(x−)p dz +
∫

Z

hx dz ∀x ∈ W
1,p
0 (Z),

ϕ1(x) =
1

p
‖Dx‖

p
p −

∫

Z

F(z, x(z)) dz = ϕ(x) ∀x ∈ W
1,p
0 (Z).

Suppose that ϕ0 has a critical point. Then

A(x) = −β(x−)p−1 − h. (4.26)

We take duality brackets with x+ ∈ W
1,p
0 (Z) and obtain

‖Dx+‖p = 0,

i.e. x+ = 0 and so x 6 0, x 6= 0 (see (4.26)).
Hence from (4.26), we have

A(−x) = β(−x)p−1 + h,

so 



−div
(
‖D(−x)(z)‖p−2 D(−x)(z)

)
= β(z)|(−x)(z)|p−2(−x)(z) + h(z)

for a.a. z ∈ Z,
x|

∂Z
= 0,

Without any loss of generality, we may assume that

λ1 6 β(z) 6 λ1 + ε for a.a. z ∈ Z,

with ε > 0 small enough (depending on h). So invoking the antimaximum prin-
ciple of Godoy-Gossez-Paczka [7, Theorem 5.1], we infer that x ∈ int C+, a con-
tradiction. Therefore, ϕ0 has no critical points and so

Ck(ϕ0, ∞) = 0 ∀k > 0. (4.27)

Moreover, due to hypothesis H( f )(iv), we have

ϕ1(−tu1) −→ −∞ as t → +∞,

and so ϕ1 is unbounded below. Thus, using also (4.5), (4.24) and (4.27), we can
invoke Lemma 4.1, to conclude that

Ck(ϕ, ∞) = 0 ∀k > 0.

Remark 4.3. Because of the Theorem 4.2 we can obtain the second nontrivial so-
lution in Theorem 3.5 arguing in another way. Suppose that 0 and x0 are the
only critical points of ϕ. From Corollary 3.3, Propositions 3.4, Theorem 4.2 and
Poincaré-Hopf formula (see (2.5)), we have that (−1)0 = 0, a contradiction. This

implies that we can find v0 ∈ W
1,p
0 (Z), v0 6= 0, a third critical point of ϕ.

Acknowledgments The authors wish to thank knowledgeable referees for point-
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Critical Groups, J. Math. Anal. Appl., 254 (2001), 164–177.

[5] J. Garcı́a Azorero, J. Manfredi, I. Peral Alonso, Sobolev versus Hölder local mini-
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