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Abstract

It is an open problem to determine the Hilbert function and graded Betti
numbers for the ideal of a fat point subscheme supported at general points
of the projective plane. In fact, there is not yet even a general explicit con-
jecture for the graded Betti numbers. Here we formulate explicit asymptotic
conjectures for both problems. We work over an algebraically closed field K
of arbitrary characteristic.

1 Introduction

We are interested here in studying the problem of computing h0(X,OX(tF)) when
t ≫ 0, where F is a divisor on the blow up π : X → P2 at a finite set of distinct
generic points P1, . . . , Pn of P2. We also consider the problem of determining the
dimension of the cokernel of the map µtF : H0(X,OX(tF)) ⊗ H0(X,OX(L)) →
H0(X,OX(L + tF)) for t ≫ 0, where µtF is given by multiplication and L is the
pullback to X of a general line in P2.

One motivation for computing h0(X,OX(F)) for arbitrary F on X comes from
fat points. If I(Pi) is the ideal in the homogeneous coordinate ring R = K[P2]
generated by all forms vanishing at Pi, and if each mi is a nonnegative integer,
then the subscheme Z of P2 defined by the homogeneous ideal ∩I(Pi)

mi is known
as a fat point subscheme of P2. We will denote the ideal by I(Z) and Z by Z =
m1P1 + · · · + mnPn. The Hilbert function of I(Z) is defined to be the function
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giving the K-vector space dimension h(t, I(Z)) = dim I(Z)t of the homogeneous
component I(Z)t of I(Z) as a function of the degree t. For each t we can associate
to Z the divisor Ft(Z) = tL − m1E1 − · · · − mnEn, where Ei = π−1(Pi). Then it
is well known that h0(X,OX(Ft(Z))) = h(t, I(Z)). Moreover, the dimension of
the cokernel of µFt(Z) is the number of generators of degree t + 1 in any minimal

set of homogeneous generators of I(Z). In fact, computing h0(X,OX(Ft(Z))) and
the dimension of the cokernel of µFt(Z) for each t is equivalent to computing the

graded Betti numbers of a graded minimal free resolution of I(Z) over R (see, for
example, [GHI]).

Both problems are still open, whether approached from the point of view of fat
points or from the point of view of complete linear systems on X. Here we con-
sider stable (i.e., asymptotic) versions of these problems. From the perspective
of fat points, given any s and Z supported at the points Pi, the stable version of
the postulation problem is to find h(ts, I(tZ)) for all t ≫ 0 (i.e., for all but finitely
many t). The stable version of the ideal generation problem is to find the mini-
mum number of homogeneous generators of I(tZ) in degree ts + 1 for all t ≫ 0
(i.e., to find the dimension of the cokernel of I(tZ)st ⊗ R1 → I(tZ)st+1 for t ≫ 0).
From what is to us the more convenient perspective of divisors on X, the stable
versions of the postulation and ideal generation problems, given an arbitrary F,
are to determine h0(X,OX(tF)) and the dimension of the cokernel of µtF for all
t ≫ 0. We find that these stable versions can be cast in a way that is more purely
geometric than the full problem. Indeed, we show that the well known SHGH
Conjecture (see Conjecture 3.2), which gives a complete conjectural solution to
the postulation problem, implies that to solve the Stable Postulation Problem it is
enough to determine the integral curves C on X with C2 ≤ 0, and it implies that
to solve the Stable Ideal Generation Problem it is enough to determine the dimen-
sion of the cokernel of µF in the case that F = L + iE where E is a smooth rational
curve with E2 = −1 and where i = L · E. We also include explicit conjectures for
the complete solution to both stable problems; see Conjectures 3.6 and 3.8.

2 Background

The divisor classes l = [L], e1 = [E1], . . . , en = [En] give a free Z-basis for the divi-
sor class group Cl(X) of X. The intersection form is a bilinear form on Cl(X) com-
patible with a bilinear form on the group of divisors defined by having L, E1, . . . ,
En be orthogonal with L2 = 1 and E2

i = −1.
We now recall the definition of the Weyl group W = W(X) of X; it is a sub-

group of the orthogonal group acting on Cl(X). To avoid special cases, we will
hereafter assume that n ≥ 3. This is harmless, since blowing up additional points
just embeds Cl(X) in a larger divisor class group but the dimension of the space
of sections of a divisor F and the dimension of the cokernel of µF is the same
whether one regards F on X or on the surface obtained after additional points are
blown up.

The subgroup W is generated by the operators sx for x ∈ {r0, . . . , rn−1}, where
sx(F) = F +(x · F)x for any F ∈ Cl(X), with r0 = l − e1 − e2 − e3 and ri = ei − ei+1

for 1 ≤ i ≤ n − 1. Given F = dl − m1e1 − · · · − mnen, note when i > 0 that sri
(F)
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merely transposes mi and mi+1. Thus by the action of W we may always reduce
to the case that m1 ≥ m2 ≥ · · · ≥ mn. Moreover, if F = dl − m1e1 − · · · − mnen

with m1 ≥ m2 ≥ · · · ≥ mn, then either d ≥ m1 + m2 + m3 or L · sr0 F < L · F = d.
In particular, letting ∆′ denote the submonoid of Cl(X) of all classes F satisfying
F · ri ≥ 0 for all i, then given any class F, it is clear that either wF ∈ ∆′ for some
w ∈ W or there is an element w ∈ W such that wF · L < 0.

It is easy to check that F ·G = wF ·wG for any classes F and G and any w ∈ W.
It is also easy to check that KX = wKX for all w ∈ W, where KX is the canonical
class of X (which takes the form KX = −3l + e1 + · · ·+ en).

We refer to [GHI] for general facts about W. We recall that since the points Pi

are generic we have h0(X, F) = h0(X, wF) for all F and w ∈ W (Lemma A1.1.1(c)
of [GHI]), where for convenience we write h0(X, F) in place of h0(X,OX(F)). In
view of our remark above regarding wF · L, this means that h0(X, F) = 0 un-
less there is some w ∈ W such that wF ∈ ∆′. This raises the question of what
h0(X, F) = h0(X, wF) is equal to when wF ∈ ∆′.

In this regard, the submonoid ∆ = {F ∈ ∆′ : F · en ≥ 0} of Cl(X) is of
particular interest. Note that dl − m1e1 − · · · − mnen ∈ ∆ if and only if d ≥ m1 +
m2 + m3 and m1 ≥ m2 ≥ · · · ≥ mn ≥ 0. Suppose wF ∈ ∆′. If wF · L < 0 or
if wF · (L − E1) < 0, then h0(X, F) = h0(X, wF) = 0, since L and L − E1 are
nef (where we recall that a nef divisor is one which meets every effective divisor
nonnegatively). On the other hand, if wF · L ≥ 0 and wF · (L − E1) ≥ 0, we can
apply the following lemma (which is essentially Lemma A1.1.1(e) of [GHI]). We
recall that an exceptional curve is a smooth rational curve C such that C2 = −1.

Lemma 2.1. Let F = dl − m1e1 − · · · − mnen where F ∈ ∆′ with L · F ≥ 0 and
F · (L − E1) ≥ 0. Then there are classes H ∈ ∆ and N = c1C1 + · · · + crCr such
that F = H + N, where each Ci is the class of an exceptional curve and ci ≥ 0 for all i,
H · N = 0 and Ci · Cj = 0 for all i 6= j, and hence h0(X, F) = h0(X, H).

Proof. If m1 ≤ 0, then take H = dL and N = −m1e1 − · · · − mnen, with ci = −mi

and Ci = ei. If m1 > 0, then F · (L− E1) ≥ 0 implies d ≥ m1. If in addition m2 ≤ 0,
then take H = dL − m1e1 and N = −m2e2 − · · · − mnen, with c1 = −m2, C1 = e2,
etc. If however m2 > 0 but m3 ≤ 0, there are two cases. If F · (L − E1 − E2) < 0,
then take H = (dL − m1e1 − m2e2) + (F · (L − E1 − E2))(l − e1 − e2) and N =
−(F · (L − E1 − E2))(l − e1 − e2) − m3e3 − · · · − mnen, with c1 = −(F · (L − E1 −
E2)), C1 = l − e1 − e2, c2 = −m3, C2 = e3, etc. If F · (L − E1 − E2) ≥ 0, then
take H = dL − m1e1 − m2e2 and N = −m3e3 − · · · − mnen. Finally, if m1 > 0,
m2 > 0 and m3 > 0, then let j be the greatest index such that mj ≥ 0 and take
H = dL − m1e1 − · · · − mjej with N = ∑i>j −miej.

The fact that h0(X, F) = h0(X, H) is now clear. If h0(X, F) > 0, then N is
in the base locus of |F| and hence h0(X, F) = h0(X, H). If h0(X, F) = 0, then
h0(X, H) = 0 too, since otherwise F would be the sum H + N with both H and N
being classes of effective divisors.
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3 Problems and Conjectures

For any given class F = dl −m1e1 − · · · −mnen, it is thus easy (using the approach
of the discussion above) to determine if wF ∈ ∆′ for some w ∈ W, and if so to find
an element w such that wF ∈ ∆′ and thence to find the class H ∈ ∆ corresponding
to wF. It is therefore clear that to compute h0(X, F) for an arbitrary class F it is
enough to do so for classes in ∆. The question remains as to what is the value of
h0(X, H), and for this we have Conjecture 3.2 below.

The monoid ∆ also plays a role for the problem of computing dim cok µF. If
h0(X, F) = 0, then dim cok µF = h0(X, L + F). If h0(X, F) > 0, then for some
w ∈ W we have wF ∈ ∆′ and hence wF = H + N as above, in which case it is not
hard to see that dim cok µF = (h0(X, L + F)− h0(X, L + w−1H)) + dim cok µw−1H
(viz. Lemma 2.1.1 of [GHI]). Thus, to be able to determine dim cok µF for an
arbitrary F, it is enough to be able in general to compute h0 and to be able to
compute dim cok µwH for any w ∈ W and H ∈ ∆.

This motivates the following problem:

Problem 3.1. Given F ∈ ∆ and w ∈ W:

(a) determine h0(X, F); and

(b) determine the dimension of the cokernel of µwF : H0(X, wF) ⊗ H0(X, L) →
H0(X, L + wF).

Although Problem 3.1 is open, there is a conjecture for the values of h0(X, F)
for arbitrary F. Equivalent versions of this conjecture have been given by Segre
[S], Harbourne [Ha2], Gimigliano [G] and Hirschowitz [Hi], and so we refer to
them collectively as the SHGH Conjecture. In terms of our preceding discussion,
the SHGH Conjecture is as follows:

Conjecture 3.2. If F ∈ ∆, then h0(X, F) = max(0, 1 + (F2 − KX · F)/2).

Although there are conjectures in special cases (see [GHI] for statements and
discussion), there is as yet no general explicit conjecture for the dimension of the
cokernel of µF. However, we now formulate a stable version of both parts of
Problem 3.1, for both of which we will offer conjectures.

Problem 3.3. Given F ∈ ∆ and w ∈ W, for t ≫ 0 (i.e., for all but finitely many t > 0):

(a) determine h0(X, tF); and

(b) determine the dimension of the cokernel of µtwF : H0(X, twF) ⊗ H0(X, L) →
H0(X, L + twF).

We are interested in developing conjectural solutions of Problem 3.3. We begin
with part (a). We could just replace F in Conjecture 3.2 by tF, but in order to
emphasize the stable aspect of Problem 3.3 (which will lead in Conjecture 3.6 to a
more geometric statement), we propose:

Conjecture 3.4. Let F ∈ ∆. If h0(X, tF) > 0 for some t > 0, then h0(X, tF) =
1 + ((tF)2 − tKX · F)/2 for all t sufficiently large and either F2

> 0, or F2 = 0 and F
is a nonnegative multiple of either 3l − e1 − · · · − e9 or l − e1.
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We now have:

Lemma 3.5. Conjecture 3.2 implies Conjecture 3.4.

Proof. Let F ∈ ∆ with h0(X, tF) > 0 for some t > 0, and hence h0(X, stF) > 0 for
all s > 0. Then by Conjecture 3.2 we must have F2 ≥ 0, since F2

< 0 implies that
1 + ((stF)2 − KX · (stF))/2 < 0 for s ≫ 0. If F2

> 0, we are done, so assume F2 =
0. By Conjecture 3.2 and h0(X, stF) > 0 for s ≫ 0, it follows that −KX · F ≥ 0.

Since F ∈ ∆, as in A1.1 of [GHI], it is not hard to check that F is a nonnegative
integer linear combination F = ∑i ai Ji of the classes J0 = l, J1 = l − e1, J2 =
2l − e1 − e2, J3 = 3l − e1 − e2 − e3, . . . , Jn = 3l − e1 − · · · − en = −KX. Since
0 ≤ −KX · F = F · Jn ≤ F · Ji for i ≥ 3, while F · Ji ≥ 0 for i < 3 (since F ∈ ∆ and,
by direct check, Ji · Jk ≥ 0 for all k when i ≤ 3), we see that F2 ≥ aiF · Ji ≥ 0 for
each i. Thus, in order to have F2 = 0, it follows that ai = 0 unless either i = 1
or i ≥ 9 (since Jk · Ji > 0 for all k if 1 6= i < 9, and hence F · Ji ≥ ak Jk · Ji > 0 if
1 6= i < 9). Now, if a1 > 0, then ai = 0 for all i 6= 1, since Ji · J1 > 0 for all i 6= 1. If
a1 = 0 but ai > 0 for some i > 9, then F · Ji ≤ ai J

2
i < 0, since J2

i < 0 and Ji · Jk ≤ 0

for all k ≥ 9. Thus F2 = 0 implies either F = a1 J1 or F = a9 J9, as claimed.

In fact, Conjecture 3.4 is equivalent to the following conjecture:

Conjecture 3.6. Let C be the class of a reduced irreducible divisor on X. Then C2 ≤ 0 if
and only if C is the class of an exceptional curve, or C = w(l − e1) or C = w(3l − e1 −
· · · − e9), for some w ∈ W.

Lemma 3.7. Conjectures 3.4 and 3.6 are equivalent.

Proof. Assume Conjecture 3.4, and consider the class C of a reduced irreducible
divisor on X. First say C2

< 0. If C is not exceptional, then C · E ≥ 0 for all
exceptional E so (by A1.1.1(b) [GHI]) we may assume wC ∈ ∆ for some w ∈ W.
Let F = dL + swC for some choices of d > 0 and s > 0 such that F2

> 0 but
C · F < −1. Then Conjecture 3.4 implies that h0(X, tF) = 1 + ((tF)2 − tKX · F)/2
for large t (and hence h1(X, tF) = 0 by Riemann-Roch, since L · (KX − tF) < 0
implies h2(X, tF) = h0(X, KX − tF) = 0), but taking cohomology of 0 → OX(tF −
C) → OX(tF) → OC(tF) → 0 and keeping in mind that h2(X, tF − C) = 0 as
before for t ≫ 0, while h1(C, tF) > 0 by Riemann-Roch (since F · C < −1), we see
that h1(X, tF) > 0, which is a contradiction. Thus C is exceptional if C2

< 0.
Now say C2 = 0; then C = wF for some w ∈ W and some F ∈ ∆, again

by A1.1.1(b) [GHI], and by Conjecture 3.4 F is a nonnegative multiple of either
3l − e1 − · · · − e9 or l − e1. Since C is reduced and irreducible, the multiple must
be 1.

Now assume Conjecture 3.6. Let F ∈ ∆. If h0(X, tF) > 0 for some t > 0, then
F is nef. (If not, |tF| has a fixed component C of negative self-intersection with
F ·C < 0. Since F ∈ ∆, by A1.1.1(b) of [GHI] we know F · E ≥ 0 for all exceptional
E, thus C is not exceptional, which contradicts Conjecture 3.6.) Thus F2 ≥ 0.

First say F2 = 0; this and nefness implies all irreducible components C of any
section of tF have C2 ≤ 0 and F · C = 0. If C2

< 0 for some component C, then
C is exceptional and C · C′

> 0 for some other component C′ of tF. If C′ is not
exceptional or if C · C′

> 1, then C + C′ is nef and has positive self-intersection,
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but this contradicts F · (C + C′) = 0. If C′ is exceptional and C · C′ = 1, then a
general section D of |C + C′| is reduced and irreducible of self-intersection 0. (To
see that D is reduced and irreducible, note that wC′ = En for some w ∈ W, since
C′ is exceptional. Thus wC = dL − m1E1 − · · · − mn−1En−1 − En, since C · C′ = 1.
This means that wD = dL − m1E1 − · · · − mn−1En−1. If Y is the blow up of P2 at
P1, . . . , Pn−1 and if X → Y is the blow up of Pn, then |wD| has a smooth integral
section, regarded as a divisor on Y, since C, and hence wC, is smooth and integral.
Thus the general section of D on Y is smooth and integral, hence also on X. Hence
C is not a component of a general section of C + C′ and so not of tF either. Thus
C cannot be exceptional, and we conclude C2 = 0.)

Thus any component C of a general section of tF is reduced and irreducible
with C2 = 0, so by Conjecture 3.6 it is either w(l − e1) or w(3l − e1 − · · · − e9) for
some w ∈ W. But C · F = 0, and, applying A1.1.1(a) of [GHI], the only class in
∆ orthogonal to w(l − e1), is a multiple of l − e1. If C = w(3l − e1 − · · · − e9), a
similar argument shows F is a multiple of 3l − e1 − · · · − e9. Thus F must itself be
a multiple of either l − e1 or 3l − e1 − · · · − e9, and for any nonnegative multiple
tF of either 3l − e1 − · · · − e9 or l − e1, it is not hard to check that h0(X, tF) =
1 + ((tF)2 − tKX · F)/2 for all t.

Finally, suppose F2
> 0. Then, for t large enough, we have (tF − KX)2

> 0
and hence by Riemann-Roch tF − KX is effective for t ≫ 0. But we also have
tF − KX ∈ ∆ for t ≫ 0, hence, as above, tF − KX is nef. By the Ramanu-
jam vanishing theorem (see Theorem 2.8 of [Ha1]) and duality, we now have
h1(X, tF) = h1(X,−tF + KX) = 0, hence h0(X, tF) = 1 + ((tF)2 − tKX · F)/2
for all t sufficiently large.

As mentioned above, there are conjectures for the dimension of the cokernel
of µF only in special cases. We recall one such now (Conjecture 3.4 of [GHI]). To
state it, let E be an exceptional curve. Pulling back and restricting the twisted
cotangent bundle ΩP2(1) gives a rank two bundle (π∗(ΩP2(1)))|E on E, which
thus splits as OE(−aE)⊕OE(−bE) for some integers aE ≤ bE. We call (aE, bE) the
splitting type of E.

Conjecture 3.8. Let F = L + iE, where E is an exceptional curve and 0 ≤ i ≤ L · E.

Then dim cok µF = (i−bE
2 ) + (i−aE

2 ).

Actually part of the conjecture is known; note that the inequality dim cokµF ≤

(i−bE
2 ) + (i−aE

2 ) is proved in [GHI], Theorem 3.3, along with the equality in a range
of cases.

Now we relate Conjecture 3.8 to Problem 3.3(b).

Proposition 3.9. Conjecture 3.6 and Conjecture 3.8, if true, give a complete solution to
Problem 3.3(b).

Proof. Consider wF for some w ∈ W and F ∈ ∆. To determine the dimension
of the cokernel of µtwF : H0(X, twF) ⊗ H0(X, L) → H0(X, L + twF) for large t,
we may as well assume that twF is effective. Thus (assuming Conjecture 3.6 and
hence Conjecture 3.4) F either has positive self-intersection or it is a nonnegative
multiple of either 3L − E1 − · · · − E9 or L − E1. If F is a nonnegative multiple of
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either 3L − E1 − · · · − E9 or L − E1, it is not hard by induction (using Mumford’s
snake lemma, Lemma 2.3.1 [GHI]) on t to show that µtwF has maximal rank (in
fact, it is injective unless wF · L = 1, in which case it is surjective), so we may
as well assume that F2

> 0. But then for all t large enough, twF − L is effective,
hence can be written as a sum Ht + Nt, where Ht is an effective nef divisor and
Nt is the sum of the fixed components of |twF − L| of negative self-intersection
which meet twF − L negatively. By Conjecture 3.6, Nt is a sum of exceptional
curves which therefore must be disjoint and such that Ht · Nt = 0. For all t large
enough, we claim that Nt = Nt′ for all t′ ≥ t and wF · Nt = 0. If for some t we
have Nt = 0, then clearly Nt′ = 0 for all t′ > t (since F is nef), so say Nt 6= 0 for
all large t. By definition, any component C of Nt has C · (twF − L) = C · Nt < 0.
If C′ is a component of Nt′ for some t′ > t, then 0 > C′ · Nt′ = C′ · (t′wF − L) ≥
C′ · (twF − L) = C′ · Nt, so all components of Nt′ are components of Nt. For
t large enough, we may therefore assume that Nt stays the same as t increases.
Thus for any component C of Nt for t large enough, we have C · (t′wF − L) < 0
for all t′ > t, hence C · wF = 0, so wF · Nt = 0 and in addition −C · Nt = C · L.
We also see that Ht′ = (t′ − t)wF + Ht for all t′ ≥ t, and hence that H2

t > 0
for t ≫ 0. As above, (t′ − t)wF − KX + Ht is nef and big for t′ ≫ 0, so duality
and Ramanujam vanishing imply h1(X, Ht′) = h1(X, KX − ((t′ − t)wF + Ht)) =
h1(X,−((t′ − t)wF − KX + Ht)) = 0 for t′ ≫ 0.

Note that h1(X, Ht) = 0 implies that µtwF = µHt+L is surjective (by the usual
fact that fat point ideals are generated in degrees less than the regularity). Thus
µtwF = µHt+L is surjective if Nt = 0. If N 6= 0 (suppressing the subscript t), by
considering the exact sequences 0 → OX(H + L) → OX(H + L + N) → ON(H +
L + N) → 0 and 0 → OX(L) → OX(L + N) → ON(L + N) → 0, keeping in mind
that ON(H + L + N) and ON(L + N) are isomorphic, it follows (by Mumford’s
snake lemma, Lemma 2.3.1 [GHI]) that µtwF : H0(X, H + L + N) ⊗ H0(X, L) →
H0(X, L + H + L + N) and µL+N : H0(X, L + N) ⊗ H0(X, L) → H0(X, 2L + N)
both have cokernels isomorphic to the cokernel of µL+N,N : H0(N, L + N) ⊗
H0(X, L) → H0(N, 2L + N), and hence to each other. Writing N = d1C1 +
· · ·+ drCr as a sum of positive multiples of disjoint exceptional curves Ci (where
di = −Ci · N = C · L), it follows that µL+N,N : H0(N, L + N) ⊗ H0(X, L) →
H0(N, 2L + N) is the direct sum of the maps µL+diCi,diCi

: H0(diCi, L + diCi) ⊗

H0(X, L) → H0(diCi, 2L + diCi), so the cokernel of µL+N (or equivalently, of µtwF)
is isomorphic to the direct sum of the cokernels of µL+diCi

. Thus to solve Prob-

lem 3.3(b) it is enough to consider µF : H0(X, F) ⊗ H0(X, L) → H0(X, L + F) in
case F = L + dC where C is exceptional and d = C · L, and this is precisely the
situation of Conjecture 3.8.

Remark 3.10. When F = L + (C · L)C and C is an exceptional curve, as an aside
we note that determining the dimension of the cokernel of µtF : H0(X, tF) ⊗
H0(X, L) → H0(X, L + tF) for large t, is equivalent to doing so for t = 1:

For convenience, let c = C · L, so F = L + cC. It is not hard to show that
h1(X, (t − 1)F) = 0, hence µtF−cC : H0(X, tF − cC) ⊗ H0(X, L) → H0(X, L +
tF − cC) is surjective by regularity considerations. But since C · F = 0, we see
OcC(tF) is isomorphic to OcC, so we have an exact sequence 0 → OX(tF −
cC) → OX(tF) → OcC → 0, from which it now follows for t > 0 that µtF :
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H0(X, tF) ⊗ H0(X, L) → H0(X, L + tF) and µcC,cC : H0(cC,OcC) ⊗ H0(X, L) →
H0(cC,OcC(L)) have isomorphic cokernels, as in the argument above. Since the
latter is independent of t, we see that the dimension of the cokernel of µtF :
H0(X, tF) ⊗ H0(X, L) → H0(X, L + tF) is the same for all t > 0.
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