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Abstract

We study a class of new examples of congruences of lines of order one,
i.e. the congruences associated to the completely exceptional Monge-Ampère
equations. We prove that they are in general not linear, and that through a
general point of the focal locus there passes a planar pencil of lines of the con-
gruence. In particular, the completely exceptional Monge-Ampère equations
are of Temple type.

Introduction

In [AF01], Agafonov and Ferapontov introduce and study congruences of lines
associated to hyperbolic systems of conservation laws. They prove that in PN,
N ≤ 4, these families of lines, if the systems are of Temple type, are, in fact, linear
congruences.

Successively, they consider, for all N ∈ N, the completely exceptional Monge-
Ampère equations, studied in [Boi92], and state that these systems are of Temple
type, and for N ≥ 5, the associated congruence of lines is not linear.

In [DM07], we have studied the first interesting case, i.e. N = 5, giving a geo-
metrical construction of the congruence of lines BMA in P5 in this way obtained:
it results to be a first order congruence and a smooth Fano 4-fold in P

11 in the
Plücker embedding; its focal locus is a sextic threefold X such that the lines of
BMA through a general point of X form a (planar) pencil. This confirms the fact
that the considered system is of Temple type.
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We have also determined the class of BMA in the Chow ring of G(1, 5), finding
that the multidegree of BMA is (1, 3, 3). BMA is indeed the residual in a quadratic
congruence of the union of a subgrassmannian G(1, L) (where L is a P3) with a
congruence of multidegree (1, 3, 0) contained in a very special linear congruence.
In particular BMA is not a linear congruence. This brings us to some interesting
conclusions on the focal variety X ⊂ P

5, in particular that it is not 2-normal.
Here we describe the congruences associated to completely exceptional Monge-

Ampère equations for all N ≥ 5. The main difference, compared with the case
of P

5, is that, starting from P
9, in the construction of BMA it is necessary to con-

sider congruences contained in hypersurfaces of degree bigger than 2. Precisely,
BMA is the residual in a congruence contained in a hypersurface of degree µ, with
4µ − 3 ≤ N ≤ 4µ of a special first order congruence BC (that we describe in
Section 4).

As for the (pure) focal locus X, we are able to deduce that its codimension in
PN is 2 and that it is not (N − 3)-normal, i.e. h1(IX(N − 3)) 6= 0. This follows
from the fact that a general hyperplane section of X is contained in a hypersurface
of degree N − 2, whereas X is not, because otherwise the lines of BMA, which are
(N − 1)-secant to X, would be contained in this hypersurface. We also give an
upper bound on the degree of X, and we show that the focal locus F contains a
parasitical linear component of codimension two.

It would be interesting to know if X is irreducible and if BMA is smooth for all
N, as in the case N = 5.

This article is structured as follows: in Section 1, we recall some general def-
initions and results about congruences of lines. In Section 2 we consider higher
secant varieties of Grassmann varieties, and we recall that these are defined by the
rank of antisymmetric matrices. Then, we introduce a suitable generalisation of
the classical Gauss map with respect to these varieties. Finally, we concentrate on
linear spaces of antisymmetric matrices of constant rank four, in Subsection 2.1.
Then in Section 3 we explain and investigate the association between completely
exceptional Monge-Ampère type equations and congruences of lines. In particu-
lar, we show that all these congruences BMA are of order one, and that through
a general point of the focal locus of BMA there passes a (planar) pencil of lines
of the congruence. In particular, from general results of [AF01], we deduce that
the completely exceptional Monge-Ampère type equations are of Temple type.
Section 4 is devoted to the study of the congruences which arise naturally in the
study of BMA, and in particular to the geometrical description of BMA itself.

1 Preliminaries on congruences of lines

We will work with schemes and varieties over the complex field C, with standard
notation and definitions as in [Har77]. In this article, a variety will always be pro-
jective and irreducible. Besides, we refer to [GH78] for notations about Schubert
cycles.

We recall that a congruence of lines in P
N is a flat family (Λ, B, p) of lines of

PN obtained by a desingularisation of a subvariety B′ of dimension N − 1 of
the Grassmannian G(1, N) of lines of PN. p is the restriction of the projection
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p1 : B × P
N → B to Λ, while we will denote the restriction of p2 : B × P

N → P
N

by f . Λb := p−1(b), (b ∈ B) will be an element of the family and f (Λb) =: Λ(b) is
a line of PN . We can summarise all these notations in the following two diagrams:
the first one defines the family

Λ := ψ∗(H1,N)
ψ∗

−−−→ H1,N
p2

−−−→ PN

p





y

p1





y

B
ψ

−−−→ B′ ⊂ G(1, N),

where H1,N ⊂ G(1, N) × PN is the incidence variety and ψ is the desingularisa-
tion map, and the second one explains the notation for the elements of the family

Λb ⊂ Λ
f :=ψ∗p2
−−−−→ P

N ⊃ Λ(b) := f (Λb)

p





y

b ∈ B.

A point y ∈ P
N is called fundamental if its fibre f−1(y) has dimension greater

than the dimension of the general one. In particular, if f is dominant, a point
is fundamental if dim( f−1(y)) > 0. The fundamental locus is the set of the fun-
damental points. The focal (sub)scheme V ⊂ Λ is the scheme of the ramification
points of f . The focal locus, Φ := f (V) ⊂ PN, is the set of the branch points of
f . We endow this locus with the scheme structure given by considering it as the
scheme-theoretic image of V under f (see, for example, [Har77]).

To a congruence is associated a multidegree (a0, . . . , aν) if we write

[B] =
ν

∑
i=0

aiσN−1−i,i

—where we put ν :=
[

N−1
2

]

—as a linear combination of Schubert cycles of the

Grassmannian (recall that σN−1−i,i := [{ℓ ∈ G(1, N) | ℓ ∩ Pi 6= ∅; ℓ, Pi ⊂
PN−i}]). In particular, the order a0 is the number of lines of B passing through
a general point of PN . The fundamental locus is contained in the focal locus and
the two loci coincide in the case of a first order congruence, i.e. through a focal
point there pass infinitely many lines of the congruence. An important result—
independent of order and class—due to C. Segre is the following:

Proposition 1. On every line Λb ⊂ Λ of the family, the focal subscheme V either co-
incides with the whole Λb—in which case Λ(b) is called focal line—or is a zero dimen-
sional subscheme of Λb of length N − 1. Moreover, in the latter case, if Λ is a first order
congruence, Φ ∩ Λ(b) has length N − 1.

See [CS] for a modern proof.
The following result gives the converse to the fact that fundamental and focal

loci coincide, if the order is one:

Proposition 2. Let B be a congruence whose focal locus F has codimension at least two.
Then, B has order either zero or one.

See [DP04] for a proof.
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2 Grassmannians and higher secant varieties

Let us start by considering the Grassmann variety of lines in PN with the Plücker
embedding

G(1, N) ⊂ P(∧2V),

where PN = P(V), and its (higher) secant varieties SkG(1, N), i.e.

SkG(1, N) := {P ∈ P(∧2V) | P ∈ Pk = 〈P0, . . . , Pk〉, Pi ∈ G(1, N), ∀i}

if k ≤ (N
2 ) − 1 (set SkG(1, N) := P(∧2V) otherwise).

It is well known that we have the chain of inclusions

G(1, N) ⊂ S1G(1, N) ⊂ S2G(1, N) ⊂ · · · ⊂ Sk0
G(1, N) ( P(∧2V), (1)

where Sk0
G(1, N) is the last higher secant variety properly contained in P(∧2V).

It has codimension one if N is odd, and three if N is even; moreover, if we put
N = 2m + 1 (respectively, N = 2m), then k0 = m − 1.

The stratification (1) of P(∧2V) is given by the tensorial rank. In fact, the
points in G(1, N) are just the projectivisations of the totally decomposable tensors, i.e.
of the form [u ∧ v], with u, v ∈ V, those in S1G(1, N) correspond to the tensorial
rank two, i.e. of the form [u1 ∧ v1 + u2 ∧ v2], u1, v1, u2, v2 ∈ V, and so on.

The Plücker coordinates [pij] of a point in P(∧2V) can be put as the entries of
an (N + 1) × (N + 1)-skew-symmetric matrix; the points in G(1, N) correspond
to matrices of rank two, those in S1G(1, N) to matrices of rank at most four and,
in general the points in SiG(1, N), to matrices of rank at most 2(i + 1). We note
moreover that the singular locus of Si+1G(1, N) is SiG(1, N), for all i.

In the dual projective space P(∧2V∗), which parametrises the hyperplanes of
P(∧2V), we have a stratification isomorphic to the one in (1).

The dual Grassmannian Ǧ(1, N), which parametrises the tangent hyperplanes
to G(1, N), is isomorphic to Sk0

G(1, N): its general point represents a hyperplane
which is tangent at a unique point of G(1, N), if N is odd, and at the points of
a 2-plane in G(1, N), if N is even. More generally, in Ǧ(1, N) every subvariety
of the chain parametrises the hyperplanes which are tangent at all the points of
the subgrassmannians of a fixed dimension. In particular, hyperplanes which
are tangent along a G(1, PN−2) form a subvariety which is naturally isomorphic
to G(N − 2, N), and therefore isomorphic to G(1, N); its secant variety SiG(N −
2, N) parametrises the hyperplanes which are tangent along a G(1, N − 2(i + 1)).

Besides the filtration, we have also a family of rational maps, ϕi:

G(N − 2, N)⊂ S1G(N − 2, N)⊂ S2G(N − 2, N)⊂· · ·⊂ Sk0
G(N − 2, N)∼= Ǧ(1, N)

ϕ1





y

ϕ2





y
· · · ϕk0





y

G(N − 4, N) G(N − 6, N) · · · G(1, N)

where ϕi associates to the hyperplane, which is tangent to G(1, N) along G(1, L),
precisely the subspace L. If H ∈ SiG(N − 2, N) has dual Plücker coordinates [aij],
entries of a skew-symmetric matrix A, the coordinates of ϕi(H) result to be the
principal Pfaffians of order 2(i + 1) of A, which are homogeneous polynomials of
degree i + 1 in the aij’s. If H ∈ SiG(N − 2, N) \ Si−1G(N − 2, N), these Pfaffians
are not all zero, so ϕi is regular at the point H.
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Remark 1. If Λ ∼= P
d is a linear subvariety of SiG(N − 2, N), disjoint from Si−1G(N −

2, N), ϕi |Λ is a regular map defined by homogeneous polynomials of degree
i + 1, therefore ϕi(Λ) results to be an (i + 1)-tuple Veronese embedding of Pd in
G(N − 2(i + 1), N) or a projection of it of the same degree.

Example 1. For i = 1, ϕ1 : S1G(N − 2, N) 99K G(N − 4, N) is a double Veronese
embedding v2, if it is restricted to a subspace Λ which is disjoint from G(N −
2, N).

Example 2. For i = k0 and N odd, ϕk0
: Ǧ(1, N) → G(1, N) is the Gauss map of

the Pfaffian hypersurface Ǧ(1, N).

Remark 2. A linear subspace Λ of dimension d contained in SiG(N − 2, N) \
Si−1G(N − 2, N) can be interpreted as a linear space of skew-symmetric matri-
ces of order N + 1 of constant rank 2(i + 1).

2.1 Linear subspaces

We are interested in studying a particular linear space Λ of matrices of constant
rank 4, or, better, its orbit under the natural action of the projective linear group
PGL(N + 1). Λ is defined by the linear system of matrices of the form

Λ(a1 : · · · : aN−2) :=























0 a1 a2 · · · aN−2 0 0
0 0 · · · 0 0

0 · · · 0 a1

0 a2
...

0 aN−2

0























, (2)

varying a1, . . . , aN−2; it is therefore a linear subvariety of dimension N − 3 of
S1G(N − 2, N) and it is immediate to verify that it is disjoint from G(N − 2, N).

Λ can be written as the linear span 〈h1, . . . , hN−2〉, where hi is the point Λ(0 :
· · · : 0 : 1 : 0 : · · · : 0) ∈ P(∧2V∗) obtained with ai 6= 0 and aj = 0 ∀j 6= i. hi

represents a hyperplane Hi ∈ P(∧2V). The intersection

Γ := H1 ∩ · · · ∩ HN−2 ∩ G(1, N) (3)

is a family of lines whose expected dimension is N; we will see later that it con-
tains a subgrassmannian G(1, N − 2), so it is reducible if N > 5. The equations
defining Γ are

p0,1 + p2,N = p0,2 + p3,N = · · · = p0,N−2 + pN−1,N = 0 (4)

plus the ones defining the Grassmannian.
For every h ∈ Λ, ϕ1(h) is—as we have seen above—the unique (N − 4)-

dimensional linear space M such that h is tangent to G(1, N) along G(1, M). The
image ϕ1(Λ) is a double Veronese embedding of Λ ∼= PN−3 in G(N − 4, N). In-
deed, we can say more:
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Proposition 3. Let ϕ1 and Λ be as above; then

1. ϕ1(Λ) is a double Veronese embedding of Λ ∼= PN−3 in G(N − 4, L), where
L := V(x0, xN) ⊂ P

N;

2. geometrically, ϕ1(Λ) ⊂ G(N − 4, L) represents the family of the PN−4’s (N − 3)-
secants to a rational normal curve C (of degree N − 2) contained in L;

3. C ⊂ L is the curve defined by the 2 × 2-minors of the persymmetric matrix

(

x1 · · · xN−2

x2 · · · xN−1

)

. (5)

Proof. The fact that ϕ1(Λ) ⊂ G(N − 4, L) is immediate from the equations defin-
ing Λ.

The rest follows from [SU07], since—if N > 5—this is the unique double
Veronese embedding of a linear space of dimension N − 3 in G(N − 4, N − 2).
The case N = 5 is in [DM07], and for N ≤ 4 it is trivial.

Extending the results of [DM07], we can describe for all P ∈ PN the subfamily
ΓP of Γ of the lines passing through P:

Lemma 4. Let us denote by ΓP the set of lines of

Γ = V(p0,1 + p2,N , . . . , p0,N−2 + pN−1,N) ∩ G(1, N)

passing through P ∈ PN ; then

1. if P ∈ PN \ L, ΓP is a pencil of lines, contained in a plane αP that intersects L in
one point, belonging to C;

2. if P ∈ L \ C, ΓP is the star of all lines through P contained in L;

3. if P ∈ C, then ΓP is the star of all lines through P contained in a hyperplane of P
N

which contains L.

Proof. If P = (a0 : · · · : aN) ∈ P
N, then, by (4), and recalling that pij = xiaj − xjai,

the lines through P belonging to Γ are contained in the linear space defined by

a1x0 − a0x1 + aN x2 − a2xN = 0

a2x0 − a0x2 + aN x3 − a3xN = 0

...

aN−2x0 − a0xN−2 + aNxN−1 − aN−1xN = 0.

Now, the matrix of the coefficients

A =











a1 −a0 aN 0 · · · 0 −a2

a2 0 −a0 aN 0 · · · −a3
...

aN−2 0 · · · 0 −a0 aN −aN−1











(6)
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has maximal rank N − 2 if and only if P ∈ P
N \ L, and the solutions form in fact

a plane.
Then, it is an easy exercise to show that

rk(A) < 3 ⇐⇒ P ∈ L (7)

and, if a0 = aN = 0
rk(A) < 2 ⇐⇒ P ∈ C, (8)

so if P ∈ L \ C the solutions form a PN−2 ⊂ L and if P ∈ C the solutions, and so
the lines of ΓP, form the hyperplane HP of equation aN x0 − a0xN = 0 containing
L.

Proposition 5. If N ≥ 6, the family of lines Γ contains the subgrassmannian G(1, L) as
irreducible component. Let Γ̃ denote the closure of Γ \G(1, L); then Γ̃ has dimension N, is
irreducible and its class in the Chow ring of G(1, N) is [Γ̃] = σN−2 + (N − 3)σN−3,1 +
(N − 5)σN−4,2 + · · · .

Proof. That G(1, L) is contained in Γ follows from Lemma 4(2). Since G(1, L) has
codimension 4 in G(1, N), it is an irreducible component of Γ4 := G(1, N) ∩ H1 ∩
· · · ∩ H4 and Γ4 can be written as the union of two proper closed subsets:

Γ4 = Γ̃4 ∪ G(1, L).

Then we consider Γ5 := Γ̃4 ∩ H5; since G(1, L) ⊂ H5, again we can decompose it
as union of two proper closed subsets:

Γ5 = Γ̃5 ∪ (Γ̃4 ∩ G(1, L)),

and so on until we get Γ̃ = Γ̃N−2. We observe that the lines of Γ̃ through a point
P ∈ PN \ L or P ∈ C are all the lines of Γ through P, while if P ∈ L \ C, they form
the join of P and C. The irreducibility of Γ̃ follows with a standard argument from
this.

In order to calculate the class of Γ̃, we use Schubert calculus in G(1, N), recall-
ing that σ1 is a hyperplane section and the coefficient of σN−2−i,i is the number
of lines of Γ̃ contained in a PN−1−i meeting a Pi, linear spaces of a fixed flag of

PN. The first two coefficients of [Γ̃], as those of Γ, are the same as in σN−2
1 , i.e. 1

and N − 3. To compute the others, we fix a flag such that Pi is generated by i + 1
points of C, P0, . . . , Pi. Then, in order to generate a suitable PN−1−i, we add to it
N − 1− 2i general lines of Γ̃ passing through the Pj’s. Here “general” means that

we first take [ N−1−2i
i+1 ] lines through each point, and then one more line through

the first N − 1 − 2i − (i + 1)[ N−1−2i
i+1 ] points. With this choice, we deduce that the

coefficient of σN−2−i,i is N − 1 − 2i.

Remark 3. The singular locus of Γ̃, as a subvariety of G(1, N) ⊂ P(∧2V), is con-
tained in its intersection with G(1, L), which has dimension (at most) N − 2: in
fact it is the union of the subgrassmannians G(1, M), as M varies in ϕ1(Λ). Note
that if ℓ ∈ G(1, L), then there exists an (N − 4)-space M which is (N − 3)-secant
to the rational normal curve C ⊂ L such that ℓ ∈ G(1, M), therefore the singular
locus is contained in Γ̃ ∩ G(1, L).

Remark 4. For N ≤ 5 we have that G(1, L) ⊂ Γ also, but it is not a component,
since it has lower dimension.
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3 On the completely exceptional Monge-Ampère equations

For the definitions and generalities about systems of conservation laws and their
correspondence with congruences of lines, we refer to [AF01], see also [DM05].
An important class of strictly hyperbolic PDE’s of conservation laws are the com-
pletely exceptional Monge-Ampère equations, which are introduced and studied in
[Boi92]. It is shown there that they are linearly degenerate, which means that the
eigenvalues of the Jacobian matrix associated to the system are constant along
the rarefaction curves. In [AF01], it is asserted that this class is even a T-system,
i.e. that the rarefaction curves are lines, and it is suggested that these could be
examples of non-linear T-systems. We will prove this fact. We need to divide the
cases of order odd and even.

3.1 The even order case

The completely exceptional Monge-Ampère systems of the even order 2m are
defined as follows (see [AF01], Section 5). Introduce the Hankel (or persymmetric)
matrix of type (m + 1)× (m + 1)

H :=













∂2mu
∂x2m

∂2mu
∂x2m−1∂t

· · · ∂2mu
∂xm∂tm

∂2mu
∂x2m−1∂t

∂2mu
∂x2m−2∂t2

∂2mu
∂xm−1∂tm+1

...
∂2mu

∂xm∂tm
∂2mu

∂xm−1∂tm+1 · · · ∂2mu
∂t2m













,

and consider the PDE of the 2m-th order

a(0,...,m),(0,...,m) det(H) + · · ·+ a = 0, (9)

i.e. a linear combination of the minors of all orders of H (where we suppose
a(0,...,m),(0,...,m) 6= 0).

3.2 The odd order case

The completely exceptional Monge-Ampère systems of the odd order 2m − 1 are
defined again via the Hankel matrix, which now is of type m × (m + 1) and has
the form

H :=













∂2m−1u
∂x2m−1

∂2m−1u
∂x2m−2∂t

· · · ∂2m−1u
∂xm−1∂tm

∂2m−1u
∂x2m−2∂t

∂2m−1u
∂x2m−3∂t2

∂2m−1u
∂xm−2∂tm+1

...
∂2m−1u

∂xm∂tm−1
∂2m−1u

∂xm−1∂tm · · · ∂2m−1u
∂t2m−1













,

and consider the PDE of the (2m − 1)-th order

∑
i

a(0,...,î,...,m),(1,...,m)(h(0,...,î,...,m),(1,...,m)) + · · · + a = 0, (10)

i.e. a linear combination of the minors of all orders of H (where we suppose that
at least one of the a(0,...,î,...,m),(1,...,m)’s is not zero).
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3.3 The congruence

We now suppose that N = 2m + 1 in the even order case and N = 2m in the odd
case.

After the introduction of the new variables (u1, u2, . . . , uN) such that

u1 =
∂N−1u

∂xN−1
,

u2 =
∂N−1u

∂xN−2∂t
,

u3 =
∂N−1u

∂xN−3∂t2
,

...

uN =
∂N−1u

∂tN−1
,

Equation (9) becomes

a(0,...,m),(0,...,m) det











u1 u2 · · · um+1

u2 u3 · · · um+2
...

um+1 um+2 · · · uN











+ · · · + a = 0 (11)

(and Equation (10) has an analogous expression), moreover

(u1)t = (u2)x , (u2)t = (u3)x, (u3)t = (u4)x, . . . ,(uN−1)t = (uN)x. (12)

This is a system of conservation laws, and the corresponding congruence BMA

in PN , according to the Agafonov-Ferapontov construction [AF01] is (in non-
homogeneous coordinates (x0, . . . , xN−1))

x1 = u1x0 − u2

x2 = u2x0 − u3

x3 = u3x0 − u4

...

xN−1 = uN−1x0 − uN

together with Equation (11). Using projective coordinates (x0 : · · · : xN) in P
N

and (u0 : · · · : uN) as parameters for the lines in BMA, it is given by

u0x1 = u1x0 − u2xN

u0x2 = u2x0 − u3xN

u0x3 = u3x0 − u4xN

...

u0xN−1 = uN−1x0 − uNxN.
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Here we have to be careful, since in this way we introduce some extra compo-
nents (having u0 identically zero), which must not be considered. In fact, since
BMA is parametrised by the hypersurface in PN defined in Equation (11), we de-
duce that

Proposition 6. BMA is an irreducible variety of dimension N − 1.

To obtain the equations of BMA in the Plücker embedding, we can proceed as
this: we notice that the line corresponding to the parameters (u0 : · · · : uN) joins
the points (u0 : · · · : uN−1 : 0) and (0 : −u2 : · · · : −uN : u0), hence we can
compute its Plücker coordinates taking the 2 × 2-minors of the matrix

M =

(

u0 u1 · · · uN−1 0
0 u2 · · · uN −u0

)

, (13)

obtaining

p0,1 = u0u2

...

p0,N−1 = u0uN

p1,N = −u0u1

...

pN−1,N = −u0uN−1.

From this, we get immediately that the points of BMA satisfy Equations (4), so
BMA ⊂ Γ. We recall (see Proposition 5) that Γ is the union of Γ̃ with other compo-
nents contained in G(1, L). Since a general line of BMA is not in G(1, L), we have
proven:

Proposition 7. With notation as above, BMA ⊂ Γ̃.

Theorem 8. Let BMA be the congruence of lines associated to a completely exceptional
Monge-Ampère equation; then

1. BMA is a first order congruence;

2. the lines of BMA passing through a focal point P not in L form a planar pencil of
lines.

Proof. Fix a general point P = (y0, . . . , yN−1) ∈ AN of the affine space xN 6= 0,
and set u := u1. Then, using the above affine equations, we deduce

u2 = y0u − y1

u3 = y0u2 − y2 = y2
0u − y0y1 − y2

u4 = y0u3 − y3 = y3
0u − y2

0y1 − y0y2 − y3

...

uN = yN−1
0 u − · · · − yN−1.
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If we substitute these equations in Equation (9) (or (10)), we get

a(0,...,m),(0,...,m) det











u y0u − y1 · · · ym
0 u − · · · − ym

y0u − y1 y2
0u − y0y1 − y2 · · · ym+1

0 u − · · · − ym+1
...

ym
0 u − · · · − ym ym+1

0 u − · · · − ym+1 · · · yN−1
0 u − · · · − yN−1











+ · · ·+ a = 0.

(14)

Now, we observe that

det











u y0u − y1 · · · ym
0 u − · · · − ym

y0u − y1 y2
0u − y0y1 − y2 · · · ym+1

0 u − · · · − ym+1
...

ym
0 u − · · · − ym ym+1

0 u − · · · − ym+1 · · · yN−1
0 u − · · · − yN−1











=

= det











u −y1 · · · −ym

y0u − y1 −y2 · · · −ym+1
...

ym
0 u − · · · − ym −ym+1 · · · −yN−1











and similarly for each minor in Equation (14), therefore Equation (14) becomes a
linear equation in u, and so BMA is a first order congruence.

Then, from the general results cited in the introduction, since BMA is a first or-
der congruence, if P ∈ PN is a focal point for BMA, then there pass infinitely many
lines of BMA through it. But from Proposition 7, BMA ⊂ Γ̃, and, by Lemma 4, if P
is a focal point not in L, there passes a pencil of lines of BMA through it.

Alternatively, if P is a focal point, we have that Equation (14) depends on two
parameters (for example u1 and u2), but it is always a linear equation, and so it
defines a plane.

Moreover, if we multiply each entry of the matrices in the Equation (9) (or
(10)) by u0, and we homogenise the obtained expression by uN , then, by the above
parametric expressions of the p0,j’s, we obtain

a(0,...,m),(0,...,m) det











p1,N p2,N · · · pm+1,N

p2,N p3,N · · · pm+2,N
...

pm+1,N pm+2,N · · · −p0,N−1











+ · · · + apm
0,N−1 = 0. (15)

We will give in the next section the precise algebraic construction of this con-
gruence. From general results contained in [AF01], Section 2, we deduce imme-
diately that

Corollary 9. The completely exceptional Monge-Ampère systems, given by Equations
(11) and (12), are T-systems.



816 P. De Poi – E. Mezzetti

4 Congruences contained in Γ̃

We continue to use the notation of Section 3, assuming N ≥ 6. In order to obtain
a congruence B contained in Γ̃, we have (at least to start) to intersect Γ̃ with a
hypersurface. Since we are interested in first order congruences, we may need
that the congruence B splits in some components.

We note first that G(1, L) is the intersection of G(1, N) with the following
space:

ΠL = V(p0,1, p0,2, . . . , p0,N , p1,N, p2,N , . . . , pN−1,N) (16)

and that the hyperplane HL := V(p0N) is the only one which is tangent to G(1, N)
along G(1, L).

Example 3. We first intersect Γ̃ with a general hyperplane H, in particular we
request that H 6⊃ G(1, L). In this case the congruence B = Γ̃ ∩ H is irreducible,
and by Proposition 5, the multidegree comes from

[Γ̃] · σ1 = (σN−2 + ((N − 3)σN−3,1 + (N − 5)σN−4,2 + · · · ) · σ1

= σN−1 + (N − 2)σN−2,1 + 2(N − 4)σN−3,2 + · · ·

so the multidegree is (1, N − 2, 2(N − 4), 2(N − 6), . . . ).
Finally, we observe that the lines of B, passing through a point P, not in L, of

the focal locus X, form a planar pencil since B is contained in a linear congruence
(as in Proposition 4.2 of [DM05]), or by Lemma 4(3).

Example 4. We consider now BL := Γ̃ ∩ HL. A line of Γ̃ belongs to BL if it inter-
sects L. Hence BL contains the congruence BC formed by the lines of Γ̃ meeting
the rational normal curve C of degree N − 2 contained in L.

BC is an irreducible congruence of lines whose multidegree is (1, N − 2, 0, . . . , 0):
the first number is 1 because through a general point of PN there passes one line
of Γ̃ meeting C; the second number is N − 2 because a hyperplane intersects C in
N − 2 points; the other numbers are 0 because a general linear space of codimen-
sion greater than 2 does not meet C. So we can write BL = BC ∪ B′, where, by
Example 3, B′ is a congruence of class [B′] = (0, 0, 2(N − 4), 2(N − 6), . . . ). Hence
B′ is formed by lines all contained in a linear subspace of codimension at least 2,
which is necessarily equal to L.

For example, for N = 6 the multidegree of B′ is (0, 0, 4), and the one of BC is
(1, 4, 0).

In terms of coordinates, let I(BC) be the homogeneous ideal of BC of Exam-
ple 4. We have

Proposition 10. If N ≥ 5, I(BC), modulo I(G(1, N)), contains at least one quadric
which contains also G(1, L).

If N ≥ 7, I(BC), modulo I(G(1, N)), contains at least one quadric which does not
contain G(1, L).

Proof. We have that

I(BL) ⊃ I(G(1, N)) + (p0,N , p0,1 + p2,N , . . . , p0,N−2 + pN−1,N)

= (p0,i pj,N − p0,j pi,N, pa,b pc,d − pa,c pb,d + pa,d pb,c, p0,N , p0,1 + p2,N , . . . ),

1 ≤ i < j ≤ N − 1, 1 ≤ a < b < c < d ≤ N − 1.
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In particular, the first relations, i.e. p0,i pj,N − p0,j pi,N with 1 ≤ i < j ≤ N − 1, can
be seen as the 2 × 2-minors of the matrix

(

p0,1 p0,2 · · · p0,N−1

p1,N p2,N pN−1,N

)

,

or, equivalently, using the relations in I(BL), by the minors of

(

p2,N p3,N · · · −p0,N−1

p1,N p2,N pN−1,N

)

.

Equivalently, these minors can be seen as the 2 × 2-minors of the persymmetric
matrices MN of one of the two types, which correspond to the cases N odd or
even:

MN =















p1,N p2,N pm+1,N

p2,N p3,N · · · −pm+2,N
...

pm,N pm+1,N pN−1,N

pm+1,N pm+2,N · · · −p0,N−1















,

if N = 2m + 1 is odd, or

MN =















p1,N p2,N pm+1,N

p2,N p3,N · · · −pm+2,N
...

pm−1,N pm,N pN−1,N

pm,N pm+1,N · · · −p0,N−1















,

if N = 2m is even.
We deduce that I(BL) contains also the minors of higher order of MN , in par-

ticular, the determinant of MN if N is odd, and the m + 1 minors of order m if N
is even.

Now, we observe that

I(BC) ⊃ I(BL) : I(G(1, L))2

⊃ I(BL) : I(G(1, L))

moreover, every 3× 3-minor of MN gives an expression of the type p0,NQ, where
Q is a quadric, and one can prove, with simple computations, that Q ∈ G(1, L)
and Q ∈ I(BL) : I(G(1, L)).

Instead, every 4× 4-minor of MN gives an expression of the type p2
0,NQ, where

Q is again a quadric, this time such that Q /∈ G(1, L) but Q ∈ I(BL) : I(G(1, L))2.

Remark 5. The matrix MN introduced in the proof of the preceding proposition,
is nothing but the matrix whose minors give rise to Equation (15). In particular,
the hypersurface of degree m defined by this equation contains always the con-
gruence BC of Example 4 with some multiplicity, and, of course, the congruence
BMA.
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Then we can pass to consider quadratic complexes, always with the aim of
finding first order congruences.

Example 5. Let us take Γ̃ ∩ Q, where Q is a quadratic complex. If Q is general,
then Γ̃ ∩ Q is an irreducible congruence of order 2. In order to get a reducible
congruence, we require that Q contains BC of Example 4.

If N = 6, by Proposition 10, such a Q contains also G(1, L), so we can proceed
as in the proof of Proposition 5. We get that the irreducible components of Γ̃ ∩ Q
are BC, Γ̃ ∩ G(1, L) and a congruence BQ of multidegree (1, 4, 7).

If N > 6, using Proposition 5 and Example 4, we get that Γ̃ ∩ Q, with Q gen-
eral, contains BC and a residual component BQ, which is a congruence of type
2[Γ̃] · σ1 − [BC], hence of multidegree (1, N − 2, 4(N − 4), 4(N − 6), . . . ).

We compare BQ with a linear congruence, whose multidegree is (1, N − 2, (N−2
2 )−

1, . . . , (N−2
i ) − (N−2

i−2 ), . . . ). The first two coefficients are the same and the differ-

ence of the third ones is 2 for N = 6 and
(N−9)(N−4)

2 for N ≥ 7, which is negative
for N < 9. So for N < 9 BQ is not contained in any linear congruence.

Let us consider again the congruences BMA associated to the Monge-Ampère
equations: the congruences just obtained in Example 5 are those obtained from
Equation (15) if the only nonzero coefficients are those of the minors of order
less than or equal to four. So, these are associated to the general Monge-Ampère
equation if N ≤ 8, but only to degenerate ones if N ≥ 9.

In order to obtain the congruences associated to a non-degenerate Monge-
Ampère equation, it is not sufficient to consider quadratic complexes, if N ≥ 9.
However, the result is similar:

Theorem 11. Let BMA be a general congruence in PN defined by a Monge-Ampère type
equation as in Section 3; then BMA is an irreducible congruence contained in Γ̃ ∩ V,
where V is a hypersurface of degree µ, if 4µ − 3 ≤ N ≤ 4µ, and V contains the congru-
ence BC of Proposition 10 with multiplicity µ − 1. Moreover if N ≥ 7 the multidegree
of BMA is (1, N − 2, 2µ(N − 4), 2µ(N − 6), . . . ). In particular, BMA is a first order
congruence which is not linear.

Proof. For the sake of clearness, we only show this for the case N = 9: if we
consider M9, then det(M9) gives p2

0,9F, with deg(F) = 3. But F ∈ I(BC)2, since
if we develop the determinant with respect to the 2 × 2-minors of the first two
rows and the 3× 3-minors of the remaining three, every term of the development
is the product of a quadratic polynomial and a cubic polynomial, each of them
contained in I(BC). Therefore, we can construct a component of order one taking
V(F) ∩ Γ̃: set-theoretically we obtain BC ∪ B̃, but BC appears with multiplicity
2, hence [B̃] = [BMA] and its class is as stated. It is easy to see that the same
conclusion – i.e. there is a polynomial F of degree three such that set-theoretically
V(F) ∩ Γ̃ = BC ∪ B̃, and so [B̃] = [BMA] – holds for 10 ≤ N ≤ 12, since, as
we have seen in the proof of Proposition 10, the k × k-minors, with k ≤ 4, give
polynomials in I(BC).

If N = 4µ − h, 0 ≤ h ≤ 3, note that (N−1)(N−4)
2 < 2µ(N − 4), which proves

last assertion.
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Remark 6. It is now easy to see that the focal locus X of BMA has codimension two
in PN, since BMA has order one, and through a point of X not in L there passes a
pencil of lines of the congruence, by Theorem 8.

Moreover, X cannot be contained in a hypersurface S of degree N − 2, again
by the fact that BMA has order one. In fact, if there were such a hypersurface S,
by Proposition 1, each line of the congruence would be contained in S.

On the other hand, the general hyperplane section of X, X ∩ H, is contained
in a hypersurface of degree N − 2, since BMA has second multidegree N − 2,
which in fact is the degree of the hypersurface of the lines of BMA contained in
H. Therefore, by the long exact cohomology sequence associated to the exact
sequence

0 → IX(N − 3)
·H
−→ IX(N − 2) → IH∩X(N − 2) → 0,

we deduce that X is not (N − 3)-normal.

We will compute now the degree of X, using a formula from [DP05]. To state
it we need to introduce the parasitical components of the fundamental locus and
the hypersurfaces VΠ.

Definition 1. Let B be a non-degenerate congruence of lines in PN and F be an
irreducible component of the fundamental locus of B of dimension d, with 2 ≤
d ≤ N − 2. F is called i-parasitical if:

1. through every point of F there pass infinitely many focal lines of B con-
tained in F;

2. F is a component of the fundamental locus with multiplicity i;

3. a general line of B does not meet F.

The union of the non-parasitical components of the fundamental locus is called
the pure fundamental locus.

Let Π be a general linear subspace of PN of dimension N − 2, let VΠ be the
union of the lines of B meeting Π. Then VΠ is a hypersurface of degree a0 + a1,
where a0 and a1 are the first two multidegrees of B.

Proposition 12. (see [DP05]) Let B be a congruence of lines of order one in PN. Let
Fj, j = 1, . . . , h, be the irreducible components of dimension N − 2 of the fundamental
locus. Let mj denote the degree of (Fj)red and kj the algebraic multiplicity of (Fj)red on
VΠ. Finally, let lj denote the length of the intersection of (Fj)red with a general line of B.
Then the following formulae hold:

h

∑
j=1

ljkj ≤ a0 + a1; (17)

(a0 + a1)
2 =

h

∑
j=1

k2
j mj + a0 + 2a1 + a2 + x, (18)

where x is a non-negative number, which vanishes only if there are no parasitical compo-
nents of dimension N − 2. Moreover, if the fundamental locus has pure dimension N − 2,
then equality holds in Formula (17).
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Theorem 13. In the above notations:

1. L is the only parasitical component of the congruence BMA of dimension N − 2;

2. the pure fundamental locus X has pure dimension N − 2;

3. if N = 6, deg(X) = 9; if N ≥ 7 deg(X) = (N − 2)2 − 2µ(N − 4)− x, where
N = 4µ − h, 0 ≤ h ≤ 3 and x ≥ 1.

Remark 7. If P ∈ X \ L, then αP ∩ X = {P} ∪ C, where C is a plane curve of degree
δ ≤ N − 2 (possibly P ∈ C), because on each line of the pencil of centre P in αP

there are N − 1 foci including P (counting multiplicities).

Proof. Every irreducible component of the focal locus has dimension at most N −
2 because BMA has order one. If Fj is a non-parasitical component and if there
exists a point P ∈ Fj \ L, the lines of BMA through P form a planar pencil, so
dim Fj = N − 2: this proves (2).

To prove that L is a parasitical component we remark that Q contains BC, i.e.
all lines of Γ̃ meeting C, and that the lines of Γ̃ through any point P of L \ C are
all the lines of the join of P and C.

On the other hand, a parasitical component F is necessarily contained in L: if
P ∈ F \ L, through P there passes a focal line l ⊂ F, which is necessarily k-secant
X, with k > N − 1. So αP ∩ X contains P, a curve of degree δ ≤ N − 2 and at least
one other point P′ 6= P. Hence P′ is the centre of another pencil of lines of BMA.
Therefore αP is a focal plane, which means that all lines of αP belong to BMA: this
is impossible by Lemma 4, because P /∈ L. We conclude that F ⊂ L.

To prove (3), it is enough to apply Formula 18, noticing that kj = 1 for all
indices j. In fact kj, the algebraic multiplicity of Fj, is nothing else but the number
of lines of BMA passing through a general point P of Fj and meeting a general
subspace Π of dimension N − 2. Since P /∈ L, there is only one such line, joining
P with αP ∩ Π.

Remark 8. With a computation performed with Macaulay2, we have seen that for
N = 7 the constant x which appears in Theorem 13(3) is 1.

Interesting questions now arise. We can ask first of all whether the congru-
ences BMA are smooth for every N, as in the case of N = 5. Other questions can
be addressed about the pure focal locus X: if it is irreducible, and about the type
and the dimension of its singular locus. Also for these last questions, we have
answers only for N = 5 (see [DM07]).

Acknowledgement. We wish to thank Frédéric Han for interesting discussions
and remarks.
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