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Introduction

The classical Hermite interpolation technique approximates a given differentiable
function defined on an open subset of Rr with a polynomial of a given degree
which takes at an assigned set of points p1, . . . , pn, usually assumed to be suffi-
ciently general, the same values as the function and as its derivatives up to order
m1, . . . , mn respectively.

A geometric counterpart of Hermite interpolation is the following. Fix general
points p1, . . . , pn in the complex projective space P

r, and multiplicities m1, . . . , mn.
We will denote by L = Lr,d(m1, . . . , mn) the linear system of hypersurfaces of de-
gree d in Pr having multiplicity at least mi at pi for each i = 1, . . . , n, and we will
employ exponential notation Lr,d(me1

1 , . . . , m
eh
h ) for repeated multiplicities. A ba-

sic question is to determine the dimension of the system L. In the 1–dimensional
case r = 1 this is easy. Ruffini’s theorem says that

dim(L) = max{−1, d −∑
i

mi}.

As soon as r ≥ 2 this problem becomes very complicated and so far it is still
unsolved in this generality. In the present paper will mainly deal with the planar
case r = 2, and we will write Ld(m1, . . . , mn) rather than L2,d(m1, . . . , mn) if there
is no ambiguity. Then, the virtual dimension of L is

v(L) = d(d + 3)/2 − ∑
i

mi(mi + 1)/2
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and the expected dimension is

e(L) = max{−1, v}.

One has dim(L) ≥ e(L) and the system L is called special if dim(L) > e(L). A
special system is not empty.

Consider the blow–up X of the plane at the points p1, . . . , pn. We abuse no-
tation and denote by L also the proper transform of L to X. Suppose L is non
empty, and assume that there is a (−1)–curve C on X such that C · L ≤ −2. This
forces C to be a multiple fixed curve in the system and it is easy to see that L
is special in this case. We will then say that L is (−1)–special. The Harbourne-
Hirshowitz Conjecture (see also Gimigliano [26]) says that a system is special if
and only if it is (−1)–special (see [15],[27],[28], etc.) Related to this conjecture,
but weaker, is Nagata’s Conjecture: if n > 9 and d2 < nm2 then Ld(mn) is empty
(see [30]).

There has been a substantial amount of partial progress on these conjectures;
let us briefly recall some of the results. The Harbourne-Hirschowitz Conjecture
is true for n ≤ 9 (Castelnuovo, 1891 [6]; Nagata, 1960 [33]; Gimigliano [26]; Har-
bourne 1986 [27]). The Harbourne-Hirschowitz Conjecture is true for mi ≤ 7 (S.
Yang, 2004 [42]; results have been announced for mi ≤ 11 by M. Dumnicki and W.
Jarnicki, 2005 [20].) The Harbourne-Hirschowitz Conjecture is true for Ld(mn) if
m ≤ 20 (see [10]; results have been announced for m ≤ 42 by M. Dumnicki [21]).
Nagata proved in [30] that his conjecture is true for n = k2 points and he deduced
from this a counterexample to the fourteenth problem of Hilbert. More specifi-
cally, the Harbourne-Hirschowitz Conjecture is true for n = k2 points (see Evain
2005 [23]; also see [16] and [36]).

The results of Ciliberto and Miranda mentioned above (see [13], [14], [15],
[16]; see also [10]) have systematically exploited a degeneration of the plane to
the union of two surfaces, one of which is a plane and the other a ruled surface.
In this work we describe some toric degenerations of the Veronese (see §§2 and 3)
which we find useful in similar applications to interpolation results. In particular,
using such degenerations, we give in §§4, 6 and 7 a new proof of the following:

Theorem 0.1. The linear systems

Ld(2n) for d ≥ 5; Lkm(mk2
), Lkm+1(mk2

)

all have the expected dimension.

These are all known results. In particular the first assertion is the planar in-
stance of a famous theorem of Alexander–Hirschowitz (see [1]). However our
purpose in this article is to introduce the technique of degenerations of the Vero-
nese, and to illustrate its efficacy. This technique has interesting relations with
tropical geometry (see [19]). It can be usefully applied to higher dimensional
projective spaces and, more generally, to interpolation problems on toric vari-
eties. In fact it has been recently applied to give a new combinatorial proof of
Alexander–Hirschowitz Theorem in P3 (see [4]). The relation of double points in-
terpolation problems with the study of secant varieties to the Veronese varieties
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is well known (see §1 and [9]). Section 5 contains some speculations on appli-
cations of degeneration techniques to the problem of computing the degree of
secant varieties of the Veronese surfaces.

The authors wish to thank S. Sullivant for useful remarks concerning a pre-
liminary version of this paper.

1 Double Points, the Veronese, Secant Varieties

Consider Ld(2n), i.e. the linear system of plane curves of degree d with n general
double points. Recall the Veronese embedding

vd : P
2 −→ P

d(d+3)/2

with image Vd, the Veronese surface of degree d2. A plane curve of degree d corre-
sponds via vd to a hyperplane section of Vd; and such a plane curve has a double
point at p if and only if the corresponding hyperplane is tangent to Vd at vd(p).
Therefore the linear system Ld(2n) corresponds to the linear system H of hyper-

planes in Pd(d+3)/2 which are tangent to Vd at n fixed (but general) points. The
famous Terracini’s Lemma (see [9]) relates this linear system to the tangent space
to the a secant variety of Vd: the base locus of H is the general tangent space to
Secn−1(Vd), the (n − 1)–secant variety to Vd, i.e. the variety described by all lin-
ear spaces of dimension n − 1 which are n–secant to Vd. One thus concludes that
Ld(2n) is special if and only if Secn−1(Vd) has smaller dimension than expected,
namely Vd is (n − 1)–defective.

Next we will use toric degenerations of the Veronese surfaces to study inter-
polation problems and secant varieties.

2 Toric degenerations

In this section we quickly recall a few basic facts about toric degenerations of
projective toric varieties that will be useful later. The interested reader is referred
to [29], [34] for more information on the subject and to [25] for relations with
tropical geometry.

Recall that the datum of a pair (X,L), where X is a projective, n–dimensional
toric variety and L is a base point free, ample line bundle on X, is equivalent to
the datum of an n dimensional integral compact convex polytope P in Rn, which
is determined up to translation. Thus we may assume all points of P have non–
negative coordinates (see [24], p. 72). If mi = (mi1, . . . , min), 0 ≤ i ≤ r, are the
integral points of P, we can consider the monomial map

φP : x ∈ (C
∗)n → [xm0 : . . . : xmr ] ∈ P

r

where x = (x1, . . . , xn) and

xmi := xmi1
1 · · · xmin

n .

The closure of the image of φP is the image XP of X via the morphism φL

determined by the line bundle L.
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For example, if P is the triangle

∆d := {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ d}

then X∆d
is the Veronese surface Vd.

If P is the rectangle

Ra,b := {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}

with a, b positive integers, then XRa,b
is F0 = P1 × P1 embedded in Pab+a+b via

the complete linear system L(a,b) of curves of bidegree (a, b).
If P is the trapezoid

Ta,b := {(x, y) : x ≥ 0, 0 ≤ y ≤ b, x + y ≤ a}

with a > b positive integers, then XTa,b
is F1, i.e. the plane blown up at a point p,

embedded in Pr, r = ab + a − b(b + 1)/2, via the proper transform of the linear
system of curves of degree a with a point of multiplicity a − b in p.

Now, consider a subdivision D of P into convex subpolytopes. This is a finite
family of n dimensional convex polytopes whose union is P and such that any
two of them intersect only along a face (which may be empty). Such a subdivision
is called regular if there is a piecewise linear, positive function F defined on P such
that:

(i) the polytopes of D are the orthogonal projections on the hyperplane z = 0
of Rn+1 of the n–dimensional faces of the graph polytope

G(F) := {(x, z) ∈ P × R : 0 ≤ z ≤ F(x)}

which are neither vertical, nor equal to P;

(ii) the function F is strictly convex, i.e., the hyperplanes determined by each of
the faces of G(F) intersect G(F) only along that face.

Once one has a regular subdivision D as above, one can construct a flat, pro-
jective degeneration of XP parametrized by the affine line C, to a reducible variety
X0 which is the union of the toric varieties XQ, with Q in D. The intersection of
the components XQ of X0 is dictated by the incidence relations of the correspond-
ing polytopes: if Q and Q′ have a common face R, then XQ intersects XQ′ along
the toric subvariety of both determined by the face R.

The degeneration can be described as follows. Consider the morphism

φD : (x, t) ∈ (C
∗)n × C

∗ → [tF(m0)xm0 : . . . : tF(mr)xmr ] ∈ P
r.

The closure of the image of (C∗)n × {t}, t 6= 0, is a variety Xt which is projec-
tively equivalent to XP. The flat limit of Xt when t tends to 0 is the variety X0. To
see that X0 is the union of the varieties XQ, with Q ∈ D, one argues as follows.
Suppose that F|Q is the linear function a1x1 + . . . + anxn + b. First act with the
torus in the following way:
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(x1, . . . , xn, t) ∈ (C
∗)n × C

∗ → (t−a1 x1, . . . , t−an xn, t) ∈ (C
∗)n × C

∗.

Then composing with φD, and get

(x1, . . . , xn, t) ∈ (C
∗)n × C

∗ → [. . . : tF(mi)t−a1mi1−...−anmin xmi : . . .] ∈ P
r.

Note that the point

[. . . : tF(mi)t−a1mi1−...−anmin xmi : . . .]

in Pr equals

t−b[. . . : tF(mi)t−a1mi1−...−anmin xmi : . . .]

i.e. the point

[. . . : tF(mi)−F|Q(mi)xmi : . . .].

Then by the definition of a regular subdivision, by letting t → 0 in the above
expression, we see that XQ sits in the flat limit X0 of Xt.

3 Degenerations of the Veronese

Recall that a rational normal scroll S(a, b), with 0 < a ≤ b, is a smooth scroll surface
of degree d = a + b in Pd+1, which is described by the lines joining corresponding
points of two rational normal curves of degrees a and b lying in two linearly
independent subspaces of dimensions a and b respectively. As an abstract surface,
S(a, b) is isomorphic to the Hirzebruch surface Fb−a.

First of all, the Veronese Vd degenerates to the union of Vd−1 and a scroll S(d−
1, d):

@
@

@
@

@
@

@
@
@

This is a toric degeneration: the subdivision of the triangle ∆d is clearly regular
in this case. However, this degeneration can also be described directly as follows.
In a trivial family X of P2’s parametrized by a disk ∆, blow up the central fibre
along a line R, thus getting a new family X ′. The general fibre of X ′ is still a
plane, whereas the central fibre consists of the old plane P and of the exceptional
divisor F, which is an F1, meeting P along the line R. Note that R is also the
(−1)–curve on F, meeting the ruling F in one point.
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Consider the line bundle which is the pull–back of OP2(d) to X . Call O(d)
the pull–back of this line bundle to X ′ and consider the bundle O(d) ⊗O(−F).
The restriction of it to the general fibre is still OP2(d), whereas its restriction
to P is OP2(d − 1) and to F is OF(dF + R)), which embeds F as S(d − 1, d).
The projective degeneration in question can be obtained by using the sections
of O(d) ⊗O(−F).

Similarly, S(d − 1, d) degenerates to a quadric and a scroll S(d − 2, d − 1):

@
@

@
@@

Again this is a toric degeneration. On the other hand one can easily figure out
how to imitate the previous construction in order to perform this degeneration in
a direct way: in the central fibre of a trivial family of F1’s one has to blow up a
ruling, thus creating an exceptional divisor which is an F0. We leave to the reader
the task of computing which twisting operation of line bundles has to be made in
order to finish the job.

The first construction can be iterated, and we thus see that Vd degenerates
to a union of a plane V1 and a sequence of scrolls S(1, 2), S(2, 3), . . . , S(d − 1, d)
(see Figure 1). Also the second construction can be iterated, and we have that
S(a − 1, a) degenerates to a − 1 quadrics and a plane (see Figure 2).

@
@

@
@

@
@

@
@
@

Figure 1:

@
@

@
@@

Figure 2:

These degenerations can be combined in order to give rise to a degeneration

of Vd to a union of d planes and (d
2) quadrics, which we illustrate below for d = 6:
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d = 6:

@
@

@
@

@
@

@
@
@

This is again a toric degeneration: one has to prove that the subdivision of ∆d

into d triangles and (d
2) squares is regular, which is not difficult to see: a suitable

strictly convex function F determining this subdivision is the function F(i, j) =
i2 + j2. Equivalently, one may translate the problem into the existence of the cor-
responding tropical curve (see [25]). Another way of proceeding is noticing that
the horizontal segments in Figure 1 correspond to rational normal curves of de-
grees 1, 2, . . . , d − 1, d lying in linearly independent subspaces. The rulings of the
scroll determine correspondences between these curves. The degeneration can be
performed by letting each of these curves simultaneously degenerate to chains of
lines (meanwhile also the correspondences between the curves degenerate). The
existence of the degeneration can be verified also directly, but more painfully,
verified by performing blow–up, blow-down and twist operations as illustrated
above. Since we are now interested in drawing geometrical consequences form
the existence of the degeneration, we skip these technical details and we leave
them to the interested reader.

Summing up, the vertices of the last configuration of planes and quadrics are
independent and therefore can be taken as the coordinate points of the ambi-

ent Pd(d+3)/2. Each double curve in the above degeneration, along which two
adjacent surfaces meet, is a line in the ambient space. We will refer to this degen-
eration as the quadrics degeneration of the Veronese.

Finally, each quadric can independently degenerate in its own space P3, to a
union of two planes, in two ways:

�
�

� or @
@

@

for each quadric.

Such a degeneration, which again can be understood from a toric, or tropical,
viewpoint, can be performed directly by moving the quadric in a pencil in its
embedding P3 and leaving the corresponding quadrilateral of double lines fixed.

If we degenerate each quadric to two planes, we obtain degenerations of Vd

to d2 planes; we will refer to these as planar degenerations of the Veronese. Again,
each double curve is a line in the ambient projective space, and the union of the
planes spans this space. Each plane contains exactly three of the coordinate points
of the projective space.

Since the vertices of these configurations are independent in the ambient pro-
jective space, any subset of n of the planes which are pairwise disjoint will span
a maximal dimensional space, of dimension 3n − 1. Any such subset of a given
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planar degeneration D of Vd will be called a skew n-set of planes of D, and we will
denote by νn(D), or simply by νn the number of such skew n–sets.

For the degenerations considered in this section and applications to secant
varieties as in §5, see also [39].

4 Double point interpolation problems

Consider a double point interpolation system Ld(2n), the linear system of plane
curves of degree d with n general double points. As noted above, this system

corresponds to the system of hyperplanes in P
d(d+3)/2 which are tangent to the

Veronese surface at n general points. A famous theorem of Alexander–Hirschowitz
(see [1], see also [28] and [2]) implies that Ld(2n) is non–special, unless d = 2, n =
2 and d = 4, n = 5. The standard proof is based on an infinitesimal deforma-
tion analysis of singular hypersurfaces, implicit in Terracini’s Lemma: it implies
that speciality of Lr,d(2n) forces the general element of this system to have non
isolated singularities at the double base points p1, . . . , pn (see [2], [11], [7]). Em-
ploying a planar degeneration of the Veronese, we are able to reduce this result
to a purely combinatorial property of the resulting configuration of planes.

Lemma 4.1. Suppose that there exists a planar degeneration D of Vd, and a skew n–set S
of planes of D. Then the linear system Ld(2n) has the expected dimension d(d + 3)/2 −
3n.

In particular, if there is a skew n–set of planes of D whose planes contain all of the
(d + 1)(d + 2)/2 coordinate points of the configuration, then 3n = (d + 1)(d + 2)/2
and the linear system Ld(2n) is empty.

Proof. Consider the degeneration D, and let the general points p1, . . . , pn on Vd

degenerate in such a way that each point goes to a general point of the planes in
the subset S. The limit of the system of hyperplanes tangent to Vd at the points
p1, . . . , pn is the system of hyperplanes tangent to the configuration D at each
limit point; but a hyperplane which is tangent to a plane at a point must con-
tain that plane. Therefore the limiting system of hyperplanes is the system that
contains the subset S of n planes in the configuration, which is the system of hy-
perplanes containing the span of S. Since S consists of pairwise disjoint planes, it
has maximal dimensional span, of dimension 3n − 1; and therefore this limiting
system of hyperplanes has codimension equal to 3n.

By semicontinuity, we conclude that the system Ld(2n) has codimension at
least 3n in Ld; but this is also the maximum possible codimension, since we are
imposing 3n linear conditions on the plane curves.

In particular, if one can find a skew n–set S of planes in D that contains all
of the coordinate points of the configuration, then S will span the ambient space.
Hence there can be no hyperplane that contains all of the planes of S, and we con-
clude, using the same argument as above, that the corresponding linear system
must be empty.

As a first application, we have:
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Lemma 4.2. L5(27) is empty, and dim(L6(29)) = 0, i.e. these systems have the ex-
pected dimensions.

Proof. We illustrate below a skew 7-subset (respectively 9-subset) for a planar
degeneration D5 of V5 (respectively D6 of V6):

D5:

@
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@
@

@
@

@
@
@

@
@

�
�

�
�

@
@

�
�

@
@

�
�

�
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�
�

�
�

x

x

x

x

x

x x

D6:

@
@

@
@

@
@

@
@

@
@@

@
@
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@
@

@
@

�
�

@
@

@
@

�
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�
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�
�

�
�

�
�

�
�

�
�

�
�

x

x

x
x

x

x

x

x

x

Figure 3:

Note that in the d = 5 case, the planes indicated by an ’x’ form both a spanning
7-subset and a skew 7-subset of the indicated total planar degeneration. In the
d = 6 example, the only vertex not covered by the 9-subset is the one at the upper
left.

Remark 4.3. In the above lemmas, the existence of a certain degeneration of the
Veronese was used to prove that certain linear systems have the expected dimen-
sion. This argument can be reversed, if one knows that linear systems do not
have the expected dimension. For example, the following union of four planes in
P5 is not a degeneration of the Veronese V2:

�
�

�
��

�����

HHHHH �����

HHHHH

If it were, then the pair of planes on the two ends forms a spanning 2-subset.
Therefore one could degenerate two points of V2 so that one point goes on each
end, and this would prove by the above Lemma that L2(22) is empty, which it is
not (for another, perhaps more conceptual explanation, see [5]).

On the other hand, it is clear that the above configuration of planes is a degen-
eration of the scroll S(2, 2).

As announced, the lemmas above enable us to reduce the problem of deter-
mining the dimension of Ld(2n) to a tractable combinatorial one.

Theorem 4.4. The linear system Ld(2n) has the expected dimension whenever d ≥ 5.

Proof. The proof will be by induction on the degree d. Fix n0 = ⌊(d + 1)(d + 2)/6⌋;
with this number of points, we see that the virtual dimension of Ld(2n0) is

v = d(d + 3)/2 − 3n0 =

{

−1 if d ≡ 1, 2 mod 3

0 if d ≡ 0 mod 3.
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Suppose that the theorem is true for this n = n0. Since the virtual dimension
of Ld(2n0) is at least −1, we conclude that the 3n0 conditions imposed by the
n0 double points are independent. Hence any fewer number of points will also
impose independent conditions, and so Ld(2k) will have the expected dimension
for any k < n0.

If k > n0, then we must show that the system Ld(2k) is empty; this is obvi-
ous if d is not divisible by three, since by the computation above we have that
Ld(2n0) is already empty. If 3|d, then we have that Ld(2n0) has dimension zero,
and so consists of a unique divisor; imposing any additional double points off
this divisor will make the system empty.

Therefore it will be sufficient to prove the theorem for Ld(2n0); and this we
will do by induction on d, employing Lemma (4.1). What we will show is that
there is a skew n0–subset S of planes for a certain planar degeneration D of Vd, if
there is one for Vd−6.

To get the induction started, we must illustrate such degenerations and sub-
sets for 5 ≤ d ≤ 10; the d = 5 and d = 6 cases have been done above in Lemma
(4.2). We leave to the reader the task of finding these for 7 ≤ d ≤ 10, by drawing
similar pictures to the ones in Lemma (4.2); it is not difficult at all, there are many
ways to do each one, and it is an amusing exercise (see also [4]).

By induction, we assume that a total planar degeneration Dd−6 and a maximal
skew subset S′ of it are available. The required total planar degeneration Dd and
the skew n0–subset S of it will be formed by grafting an appropriate strip onto
Dd−6, as the following diagram indicates:

@
@

@
@

@
@

Dd−6

@
@

@

strip

The strip is exactly 6 vertices high, and the configuration on the strip consists
of ⌊(d + 1)/2⌋ − 3 copies of the rectangle

��
��
��
��
��

��
��
��
��
��

x

x

x

x

· · ·

organized side by side; then on the far right of the strip, one has either the tri-
angle with 6 vertices on a side, or a 5 × 1 rectangle adjacent to such a triangle,
depending on the parity of d. These two pieces may be constructed using the con-
figurations D5 and D6 presented in Lemma (4.2): the D5 triangle configuration is
used as is; the D6 configuration is used after deleting the top vertex, creating the
5 × 1 rectangle adjacent to the triangle.

To be specific, we have the configurations
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x

d odd
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@
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Dd−6

D6

x

x

x

x

x

x

x

x

· · ·

x

x

x

x

d even

which show that if we have a solution for degree d− 6, then we can construct one
for d; this finishes the proof.

The above proof is similar to a recent one by J. Draisma in [19], which uses
tropical geometry rather than degenerations. These ideas have been exploited by
S. Brannetti in [4] in order to give a similar combinatorial proof of the Alexander–
Hirschowitz theorem in P3: the system L3,d(2n) has the expected dimension as
soon as d ≥ 5 (see also [40] and [37] for the classical approach of Terracini to this
result). A more general result in the planar case has been proved by J. Roé in [35].
It would be very nice to have a full proof of the Alexander–Hirschowitz theorem
using this technique.

5 Degree of secant varieties

In this section we want to indicate some enumerative applications of planar de-
generations of the Veronese surfaces. Our considerations here are close to the
ones in [39], where the Gröbner bases viewpoint is taken.

The general question we want to address is: given a projective, irreducible
variety X of dimension n in Pr, such that Seck(X) and has the expected dimension
nk + n + k, what is the degree sk(X) of Seck(X) and what is the number µk(X) of
(k + 1)–secant Pk to X passing through a general point of Seck(X)?

Note that νk(X) := sk(X) · µk(X) is the number of (k + 1)–secant Pk to X
intersecting a general subspace of codimension nk + n + k in Pr. By the results
in [7] and [8], one has µk(X) = 1, unless X is k-weakly defective, which is never
the case if X is a curve. The classification of weakly defective surfaces can be
found in [7]. In [8] one can find the classification of k–weakly defective, but not
k–defective, surfaces with µk(X) > 1.

Recent contributions to the problem of computing the degree of secant vari-
eties can be found in [17].

If X is smooth, ν1(X) coincides with the number of apparent double points of
a general projection of X to P2n (see [12], [17]), and one has the so–called double
point formula

2ν1(X) = d2 − cn(N f )
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where d is the degree of X and N f is the normal bundle to the projection mor-

phism f : X → P2n, defined by the exact sequence of vector bundles on X

0 → TX → f ∗(TP2n) → N f → 0;

hence cn(N) can be computed in terms of projective and birational invariants of
X.

In the curve case, this is nothing but Hurwitz formula, i.e.

d1(X) =

(

d − 1

2

)

− g

where d is the degree and g the genus of X. In the surface case one has

ν1(X) =
d(d − 5)

2
+ 6χ(OX)− 5(g − 1)− K2

X (5.1)

where d is the degree and g the sectional genus of X. This is also the degree of the
secant variety, unless X is weakly defective.

Similar, but more complicated, formulas are available for νk(X) in the case
of curves (see [3], chapter VIII) and in the case of surfaces for k ≤ 5 (see [31],
[41], [32]). The question of computing νk(X) is open in general, even in the sur-
face case and for Veronese surfaces. We devote this section to some speculations
showing how planar degenerations of Veronese surfaces may be used to attack
this problem.

Consider the Veronese surface Vd and set k0 = n0 − 1, where n0 was defined
at the beginning of the proof of Theorem 4.4. Note that Theorem 4.4 implies
that all secant varieties Seck(Vd) have the expected dimension unless (d, k) =
(2, 1), (4, 4). In particular, Seck0

(Vd) is a hypersurface if d ≡ 0 modulo 3, whereas
it fills up the ambient space if d ≡ 1, 2 modulo 3. Moreover, according to the
results of [7] (see also [2]), Vd is k–weakly defective but not defective only for
d = 6 and k = 8, and one has µ8(V6) = 2.

We wish to compute the numbers sd,k := sk(Vd), or equivalently the numbers
νd,k := νd,k(Vd), which make sense for 1 ≤ k ≤ k0. Note that if (d, k) 6= (2, 1), (4, 4)
one has νd,k = sd,k unless (d, k) = (6, 8) in which case ν6,8 = 2d6,8. Moreover it is
known that s2,1 = 3 and s4,4 = 6 (see [17], Example 5.12).

Proposition 5.2. Let D be a planar degeneration of Vd, for (d, k) 6= (2, 1), (4, 4). Then

νd,k ≥ νk+1(D). (5.3)

Proof. First, let us look at the cases d ≡ 0 modulo 3 and d ≡ 1, 2 modulo 3 and
k < k0, in which Seck(Vd) is a proper subvariety of the ambient space. The proof
of Theorem 4.4 implies that for any skew (k + 1)–subset S of planes of D, the span
Π of these planes sits in the flat limit of Seck(Vd). Moreover for the general point
of Π there is a unique subspace of dimension k meeting the k + 1 planes of S each
in one point. This proves the assertion in this case.

Similarly, if d ≡ 1, 2 modulo 3 and k = k0, given a planar degeneration D of
Vd, any skew n0–subset S of planes of D spans the whole space, and each such
subset contributes to the number νd,k0

.
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If one can find degenerations D for which equality holds in (5.3), the compu-
tation of νd,k would turn into a purely combinatorial problem. Following [39] one
may call these degeneration k–delightful. A degeneration which is k–delightful for
all k ≤ k0 can be simply called a delightful degeneration.

Next we discuss a few interesting examples concerning the computation of
νd,k0

.

Example 5.4. If d = 3, then n0 = 3 and s3,2 = µ3,2 = 4. In fact Sec2(V3) is
the hypersurface in P9 consisting of points corresponding to cubic curves which,
after a change of variables, can be written in the form x3

0 + x3
1 + x3

2 = 0. These
are the so–called equianharmonic cubics, i.e. the ones with J–invariant equal to 0.
It is a classical result of invariant theory due to Aronhold that the degree of this
hypersurface is 4 (see [22], p. 194). Note that this also follows by Le Barz formula
in [31] (see also [17]).

Consider the planar degeneration D3 of V3 corresponding to the picture:
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Figure 4:

This is 3–delightful. In fact there are four skew 3–sets of planes in this picture,
given by:
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Example 5.5. If d = 5, then n0 = 7 and Sec6(V5) fills up the whole space P
20. It is

a classical result which goes back to Hilbert that ν5,6 = 1 (see also [38] and [17]).
Consider the planar degeneration D5 of V5 shown in Figure 3. This is 6–

delightful. Indeed, it is not difficult to see that there is a unique skew 7–set of
planes in D5, i.e. the one indicated in Figure 3.

Example 5.6. If d = 6, then n0 = 9. As we said µ6,8 = 2. Consider the planar de-
generation D6 of V6 shown in Figure 3. This is not 8–delightful. Indeed, the skew
9–set of planes indicated in D6 indicated in the figure spans a linear space of the
correct dimension 26. However in order to have equality in (5.3), the same sub-
space should also be spanned by another skew 9–set of planes in D6. The reader
can easily verify this is not the case. On the other hand the fact that µ6,8 ≥ 2, and
therefore V6 is 8–weakly defective, can be read off from the following degenera-
tion:
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In fact the indicated planes form a skew 9–set D spanning a hyperplane in P27,
since they contain all the vertices but the central one indicated by • . The same
hyperplane is spanned by the 9–set of planes obtained from D with a reflection
with respect to the line x + y = 0. It would be interesting to see whether this
degeneration is 8–delightful.

Let us turn now to the other extreme case, i.e. to νd,1. For d ≥ 5 and d = 3, the
variety Sec(Vd) has dimension 5, one has sd,1 = νd,1 and, by (5.1), its degree is

sd,1 =
d4 − 10d2 + 15d

2
− 3. (5.7)

Is there some 1–delightful planar degeneration of Vd?
Surprisingly enough, the answer is no, in general. For instance, s3,1 = 15.

However, if we look at the planar degeneration D3 of V3 described in Figure 4,
one sees only 12 pairs of disjoint planes. Therefore the conclusion is that the
union of the twelve P

5’s generated by these skew 2–sets is only a part of the flat
limit of the secant variety of V3.

The reason for the discrepancy between (5.7) and the number of skew 2–sets of
planes in a degeneration can be understood as follows. As we said, if X a smooth
surface, ν1(X) computes the number of double points of a general projection X′

of X to P
4. These double points are the only non Cohen–Macaulay points of X′;

thus ν1(X) measures the length of the scheme of non Cohen–Macaulay points of
X′, if this has finite length.
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Now let us go back to Vd and more specifically to V3. When we project the
union of planes depicted in Figure 4 down to P4, we find a reducible surface
D which has 12 nodes corresponding to the pairs of planes which are disjoint
in D3, but whose projections meet in P4. There is however one further non
Cohen–Macaulay point, namely the central sextuple point •. This used to be
Cohen–Macaulay in P

9 (its original embedding dimension is 5), but it is no longer
Cohen–Macaulay in P4. We claim its Cohen–Macauliness defect is 3, i.e. it counts for
3 more nodes of X′. This restores the number 15 for ν3,1.

To give evidence to our claim, consider the following picture:
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The left hand sides shows a polytope P with horizontal and vertical sides of
length 1. The corresponding projective toric variety XP is a del Pezzo surface of
degree 6 in P6, i.e. the plane blown up at three distinct points anticanonically em-
bedded in P6. By (5.1), the degree of the secant variety to XP is 3. The right hand
side shows a regular subdivision of P, corresponding to a degeneration of XP to
6 planes, which forms a cone with vertex at • over a cycle of six lines spanning a
P5. Since there are no pairs of disjoint planes here, we see that the singularity at
• has to count with multiplicity 3 in the computation of the degree of the secant
variety.

Similarly, ν4,1 = 75. On the other hand in the planar degeneration of V4 corre-
sponding to the picture
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we see only 66 pairs of disjoint planes. However the three sextuple points con-
tribute each by three in this computation restoring the right degree 75 = 66 + 9.

Similar computations should be available for νd,k, with 1 ≤ k ≤ k0. However
the situation may turn out to be very complicated, and, in general, the question is:
how do the singularities of the configuration influence the lack of delightfulness
and in particular the combinatorial computation of νd,k?

Remark 5.8. The considerations we made in the present section can be more gen-
erally applied to toric varieties. As an example, consider S(2, 2). This is well
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known to be a OADP– variety, i.e. there is a unique secant line to S(2, 2) passing
through the general point of P5 (see [12]).

To see this combinatorially, look at the planar degeneration of S(2, 2) dis-
played in Remark 4.3 and note that there is here a unique skew 2–set of planes,
given by the two end planes of the configuration.

Similar considerations can be made for higher dimensional varieties. For in-
stance, look at the Segre embedding X of P1 × P1 × P1 in P7. Again this is an
OADP– variety (see [12]). The reader will be amused to rediscover this by look-
ing at the well known decomposition of the 3–dimensional cube in six tetrahedra.
This decomposition is regular and gives rise to a degeneration of X to a union of
six 3–spaces. This degeneration is delightful: indeed the decomposition of the
cube possesses a unique pair of disjoint tetrahedra, corresponding to two inde-
pendent 3-spaces in the limit of X.

The problem of studying the secant variety to a toric variety has been consid-
ered in [18].

6 Points of higher multiplicity

In this section we go back to interpolation and we want to use the planar degen-
erations of the Veronese surfaces in order to study multiple points interpolation
problems. We recall a basic fact.

Lemma 6.1. Let X be a variety, M a line bundle on X, and D an effective Cartier divisor
on X. Set M(D) = M ⊗OX(D). Suppose that H0(X, M) = H1(X, M) = 0. Then
the restriction map from H0(X, M(D)) to H0(X, M(D)|D) is an isomorphism.

This lemma applies in the following two cases:

Lemma 6.2.

(a) Let X be the blow up of P
2 at a point, with exceptional divisor E and line class H.

Let M = OX((m − 1)H − mE). Then H0(M) = H1(M) = 0.

(b) Let X be the blow up of P1 × P1 at two general points, with exceptional divisors
E1 and E2, and denote by V the vertical fiber class and by H the horizontal fiber
class. Let M = OX((m − 1)H + mV − mE1 − mE2) (or, symmetrically, M =
OX(mH + (m − 1)V − mE1 − mE2) ). Then H0(M) = H1(M) = 0.

Proof. In both cases, the systems are empty, so that H0 = 0, and by using Serre
Duality, H2 is also zero. Riemann-Roch gives χ = 0 as well, which implies H1 =
0.

We can apply the previous Lemmas to different divisors D. It is useful for our
applications, given the degeneration constructions we have introduced, that the
divisors D be subdivisors of the double curves of the planes or quadrics in the
degeneration.

In the planar case, this means that we will be applying the lemmas for a divi-
sor D consisting of a subdivisor of a triangle of lines L1 + L2 + L3. We have the
following list of M(D)’s in this case.
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Lemma 6.3. Let X be the blow up of P
2 at a point, with exceptional divisor E and line

class H. Let L1, L2, and L3 be a triangle T of lines not passing through the point. Let
M = OX((m − 1)H − mE). Then the restriction maps

(1) : H0(X,OX(mH − mE)) → H0(Li,OX(mH)|Li
)

(2) : H0(X,OX((m + 1)H − mE)) → H0(Li + Lj,OX((m + 1)H − mE)|Li+Lj
)

(3) : H0(X,OX((m + 2)H − mE)) → H0(T,OX((m + 2)H − mE)|T)

are isomorphisms.

We note that these three spaces have dimensions m + 1, 2m + 3, and 3m + 6,
respectively.

In the quadric case, we present the information in a table. Let X be the blow
up of P1 × P1 at two general points, with exceptional divisors E1 and E2, and
denote by V the vertical fiber class and by H the horizontal fiber class. We fix
two vertical fibers V1 and V2, and two horizontal fibers H1 and H2, not passing
through the two points; our divisor D will be a subdivisor of H1 + H2 + V1 + V2.
By Lemma 6.2, there are two possibilities for the line bundle M for each divisor
D; these are presented in the last two columns of the table.

Lemma 6.4. Using the above notation, the restriction map from H0(X, M(D)) to
H0(D, M(D)|D) is an isomorphism, for all D and M(D) in the following table:

Divisor D M(D)-a M(D)-b
1. 0 mV + (m − 1)H (m − 1)V + mH
2. V1 or V2 (m + 1)V + (m − 1)H mV + mH
3. H1 or H2 mV + mH (m − 1)V + (m + 1)H
4. Vi + Hj (m + 1)V + mH mV + (m + 1)H
5. V1 + V2 (m + 2)V + (m − 1)H (m + 1)V + mH
6. H1 + H2 mV + (m + 1)H (m − 1)V + (m + 2)H
7. H1 + H2 + Vi (m + 1)V + (m + 1)H mV + (m + 2)H
8. V1 + V2 + Hj (m + 2)V + mH (m + 1)V + (m + 1)H
9. V1 + V2 + H1 + H2 (m + 2)V + (m + 1)H (m + 1)V + (m + 2)H

(We abused notation and denoted the M(D)’s using the divisor classes only.)

m-1

m+2
5a, 6b

r

r m+1

m
5b, 6a

r

r m+1

m+1
7a, 8b

r

r m

m+2
7b, 8a

r

r m+2

m+1
9a, 9b

r

r

m-1

m
1a, 1b

r

r m-1

m+1
2a, 3b

r

r m

m
2b, 3a

r

r m

m+1
4a, 4b

r

r

We will apply these lemmas by constructing a degeneration of the d-fold Vero-
nese Vd to a union of planes and quadrics as described above. We will degenerate
the bundle O(d) to a bundle on the degenerate configuration which will have
certain degrees on the planes and bidegrees on the quadrics. The general multiple
points will degenerate either to one point on a plane or to two general points on
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a quadric. Our goal is to show that we may determine the dimension of the limit
system by analysing, via the above lemmas, the dimension on each surface of the
degeneration.

An example will illustrate the argument.
Consider the linear system of curves of degree 2m with 4 points of multiplicity

m. It is well known that this is a non–special system of dimension m, composed
with the pencil of conics through the four points; each element of the system
consists of m conics in the pencil. This is the expected dimension of the system
L2m(m4): v = 2m(2m + 3)/2 − 4m(m + 1)/2 = m. We want to exploit the de-
generation of the Veronese surface V2 to four planes to give a combinatorial proof
of non–speciality of L2m(m4). The degeneration to four planes P1, . . . , P4, may be
illustrated as below:

P4

P1

P2

L

P3
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@

@
@

@
@@

Lemma 6.5. The system L2m(m4) has the expected dimension m.

Proof. Since this is a degeneration of V2, the bundle O(m) (which has degree m
on each plane) corresponds to the bundle O(2m) on P

2. We degenerate the four
points to one in each plane.

We note that on each plane, we have curves of degree m with one point of
multiplicity m. Therefore we are in the situation of Lemma 6.3, and we see that
the linear system on any one of the planes is determined by the linear system re-
stricted to any one of the three lines on that plane indicated in the figure; indeed,
the map on global sections is an isomorphism.

Denote by Lj the line of intersection between the interior plane P1 and one of
the other three planes Pj.

To determine the space of sections on the entire configuration of four planes,
we choose any one of the other non-double lines, say the line L indicated in the
figure, on the plane P2. The restriction of the system to L has degree m, and the
vector space of sections has dimension m + 1.

By Lemma 6.3, any section restricted to L determines a section on the plane
P2. This then determines the section on the double line L2, via the corresponding
restriction isomorphism. Again by Lemma 6.3, the section on L2 determines the
section on the interior plane P1. Similarly, this determines sections on the two
other double lines L3 and L4. Finally Lemma 6.3 now implies that the sections on
the other two planes are determined as well.

All of these determinations are made via isomorphisms, and the result is that
the space of sections of O(m) on the configuration of four planes, with the four
multiple points, is isomorphic to the space of sections on the restriction to the line
L. We conclude that the limiting bundle has h0 = m + 1 as desired.
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Another phenomenon occurs when a configuration of surfaces meets in a cy-
cle, with an interior vertex. To fix notation, suppose that we have n surfaces
S1, . . . , Sn, meeting in a cycle with a common vertex. i.e., there is a smooth ratio-
nal curve Li = Si ∩ Si+1 (with indices taken modulo n) and a point v common to
all the curves Li. Therefore on the surface Si we have the two curves Li and Li−1,
meeting at v.

We assume that we have a linear system Mi on each surface Si, which re-
stricts to linear systems on both Li and Li−1. We assume that these are compatible
with the configuration, in the sense that the two linear systems on each Li (one
restricted from Mi on Si and one restricted from Mi+1 on Si+1) are the same, cor-
responding to a vector space Vi of sections. We assume that not every section in
Mi vanishes at the interior vertex v.

We further assume that these restriction maps from the vector space of sec-
tions corresponding to Mi to both Li−1 and Li are isomorphisms. The restriction
isomorphisms give a map gi : Vi−1 → Vi, as the composition of the inverse of the
restriction from Si to Li−1, followed by the restriction to Li. Since these restrictions
are assumed to be isomorphisms, each gi is an isomorphism. The composition of
these in sequence around the cycle of surfaces gives a map F : V1 → V1.

We have the following result.

Lemma 6.6. In the above settings, if the maps gi are general enough, then there is a
unique non–zero section of V1 (up to scalar) which does not vanish at v and is fixed by F.

Proof. The generality of the maps allows us to assume that the composition F,
which is an automorphism of V1, can be diagonalized. Consider the subspace
W ⊂ V1 of sections vanishing at the interior vertex v. Note that W has codi-
mension one in V1, by the assumption that not every section in M1 vanishes at v.
Furthermore, W is F-invariant: indeed, a section vanishing at v is mapped to a
section vanishing at v by all restriction maps, hence by all maps gi, and hence by
F.

Therefore there is exactly one eigenspace W1 ⊂ V1 such that V1 = W ⊕ W1.
We finish the proof by showing that the eigenvalue λ for the one–dimensional

eigenspace W1 is λ = 1. Choose a section s ∈ W1; note that s(v) 6= 0. We also have
F(s)(v) = s(v); that corresponding sections have the same value at v is true for
all restrictions, hence for all gi, and hence for F. We have F(s) = λs; evaluating at
v, and noting that s(v) 6= 0, we see that λ = 1.

We apply this to the following case.

Lemma 6.7. The system L3m(m9) has the expected dimension 0.

Proof. We make the total planar degeneration D3 of V3 to nine planes showed in
Figure 4. The line bundle O(m) which has degree m on each of the nine planes
of the degeneration of V3 is a degeneration of the bundle O(3m) on P2. Hence on
each plane we have curves of degree m with a general point of multiplicity m that
agree on the double lines; moreover there is exactly one interior vertex •.

In this configuration we see six planes adjacent to the interior vertex • and lin-
ear systems that satisfy the hypothesis of the Lemma 6.6, each being determined
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by the restriction to a line. Indeed, they each satisfy the conditions of the first case
in Lemma 6.3.

By Lemma 6.6, there is a unique non–zero section, up to scalar, on the six
middle planes, which does not vanish on the interior vertex • and agrees on all of
the double curves around the vertex. This gives a unique section on each of the
three double lines that meet the three corner planes in the configuration. Again
by the first case in Lemma 6.3, these sections lift uniquely to sections of O(m) on
the three corner planes.

On the other hand there is no non–zero section vanishing on the interior ver-
tex •. Any such section s, in fact, would vanish also on each of the 9 points of
multiplicity m located in each of the planes of D3. In particular the divisor of s
around v would consist of six general lines passing through v, one in each of the
six planes surrounding v. This however is clearly not a Cartier divisor on the
reducible surface D3, which gives a contradiction.

Hence the dimension of the linear system is zero, which is the expected di-
mension.

Note that the unique curve in the limit of L3m(m9) consists of the unique cubic
curve in L3(19) counted with multiplicity m.

Remark 6.8. Lemma 6.6 is useful when there are cyclical configurations of sur-
faces that overlap. In this case, in each of the cycles of surfaces, there is a unique
section up to scalar satisfying the matching conditions. However these two sec-
tions will not agree on the overlap. Hence we conclude that any section satisfying
the matching conditions must be zero.

We have seen in Lemmas 6.3, 6.5 and 6.7 that the linear system Lkm(mk2
) has

the expected dimension for k = 1, 2, 3. We can now prove the more general
statement, which is slightly better than Nagata’s conjecture in this case, but it
is weaker than Harbourne-Hirschowitz.

Theorem 6.9. The system Lkm(mk2
) has the expected dimension, in particular it is

empty for k ≥ 4.

Proof. As above, we consider the system associated to the line bundle O(m) on
the k-fold Veronese Vk. Degenerating, we form a total planar degeneration to k2

planes, and on each plane we have the linear system of curves of degree m. We
degenerate the k2 points by putting one in general position on each plane of the
degeneration; for example, a k = 5 example is illustrated below.
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The cases k = 1, 2 and 3 follow by the lemmas 6.3, 6.5 and 6.7 respectively.
For k ≥ 4, the system is expected to be empty. For k = 4, we have the following
configuration:
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By Lemma 6.6, there is a unique divisor satisfying the matching conditions
on the six planes adjacent to each of the three interior vertices. However for any
two of these interior vertices, there are adjacent planes in common. The divisors
will not agree on these common adjacent planes. Hence the system is empty as
expected.

Finally for k > 4, if we form the same type of configuration, by induction,
the top (k − 1)2 planes already cannot support a divisor. The system will thus be
empty.

7 Line bundles on quadrics degenerations of the Veronese

One can acquire some more flexibility in the limiting line bundle on the configu-
ration by using the quadrics degeneration of the Veronese that we introduced in

§3. Recall that this is the triangular configuration of (d
2) quadrics, meeting along

lines, with d planes on the ’hypotenuse’ of the configuration. Let us coordinatize
the configuration, and index the surfaces in the configuration as Tij, with i ≥ 1,
j ≥ 1, and i + j ≤ d + 1; the quadrics are the surfaces with i + j ≤ d, and the
planes are the surfaces Ti,d+1−i. We have that Tij meets Tkℓ along a line if and only
if either i = k and |j − ℓ| = 1 or j = ℓ and |i − k| = 1.

We can form a line bundle on this partial quadrics degeneration by putting
a line bundle on each surface such that on each double curve the restriction of
the two bundles agree. This can be done by choosing d integers r1, r2, . . . , rd, and
for i + j ≤ d putting the bundle of bidegree (ri, rd+1−j) on the quadric Tij; on
the plane Ti,d+1−i one puts the bundle of degree ri. This can be conveniently
visualized with the following picture referring to the case d = 5:
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One can prove that this line bundle is the limit of the line bundle OP2(r), with r =
r1 + r2 + . . . + rd. This can be seen by using the theory of toric degenerations (see
§2) but also by performing a series of blow–up, blow-down and twist operations
as indicated in §3. We leave the details to the reader.
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We want to illustrate the technique, invoking Lemmas 6.3 and 6.4, by proving
the following theorem:

Theorem 7.1. The system Lkm+1(mk2
) has the expected dimension. In particular, it is

empty for k ≥ 6.

Proof. First note that the expected dimension is v = mk(5 − k)/2 + 2. We will

degenerate Vk to a union of k planes and (k
2) quadrics placing one point on each

plane and two points on each quadric and the bundle degeneration is as indicated
above: for each value of k, we will see which values of r1, . . . , rk is convenient to
take. In particular, for k ≤ 4 we will take r1 = m + 1, r2 = . . . = rk = m.

The k = 1 case is proved by noting that the linear system Lm+1(m) has the ex-
pected dimension 2m + 2. This is easy to see in many ways, but let us use Lemma
6.3, to demonstrate the method. The second case of this lemma tells us that this
linear system is isomorphic to the linear system restricted to two general lines of
P2. This is a linear system on two lines, each of degree m + 1, which meet at one
point. The space of sections on each line has dimension m + 2, and the matching
of the sections at the point of intersection gives one condition, so that the space
of sections on the lines has dimension 2m + 3. Hence the projective dimension of
the linear system is 2m + 2 as expected.

Case k = 2. Here the expected dimension is v = 3m + 2. We claim that in this
case the linear system is determined by the restriction to the three lines L1, L2,
and L3 outlined in the picture below.
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k = 2

Indeed, consider first the upper plane T1,2. Applying case (2) of Lemma 6.3,
one gets a unique divisor in the linear system Lm+1(m) that restricts to the given
divisor on L1 + L2. For the lower quadric T1,1, invoking Lemma 6.4 (fourth case)
we conclude the existence of a unique divisor in L(m,m+1)(m2) that restricts to
the given divisor on L2 + L3. Similarly for the lower plane T2,1, using Lemma 6.3
again, we get a unique divisor restricting to the given divisor on L3.

This proves the claim that the divisor on the union of the three surfaces is
determined by the divisor on the union of the three lines. Hence the dimension
of L2m+1(m4) is given by the number of conditions imposed by fixing linear sys-
tems on three lines that agree at two points of intersection. The three systems
have degrees m + 1, m + 1, and m on L1, L2, and L3 respectively, and so we have
vector spaces on the three lines of dimension m + 2, m + 2, and m + 1; the two
points of intersection give two conditions, and hence the projective dimension is
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dim(L2m+1(m4)) = (m + 2) + (m + 2) + (m + 1) − 2 − 1 = 3m + 2 = v as ex-
pected.

Case k = 3. Here the expected dimension is again v = 3m + 2. We claim that
the linear system is determined by the restriction to the three lines L1, L2, and L3

as in the picture:
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k = 3

By the previous case is enough to prove that the divisor D in the upper three
surfaces determines a unique one on each of the three surfaces from the lowest
row. Indeed we get a unique divisor on the quadric T2,1 using Lemma 6.4 (third
case); then the restriction to the right line determines a unique divisor on the
plane T3,1 using Lemma 6.3 (second case), and the restriction to the left line to-
gether with the restriction of D determines the divisor on T1,1 using Lemma 6.4
(fourth case).

Case k = 4. The virtual dimension is v = 2m + 2. We want to determine a
unique divisor that restricts to the fixed two lines in the configuration below.
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k = 4

On the plane T1,4 the divisor is fixed by Lemma 6.3. On the six surfaces Tij

with i ≥ 2, we have a unique section, that agrees at the intersection point of T1,4

and T2,3, by Lemma 6.6 (see also the argument in the proof of Lemma 6.7). This
then determines the sections on the lines of intersection between T1,j and T2,j for
j = 1, 2, 3. At this point the divisor on T1,3 is determined by Lemma 6.4; then the
divisor on T1,2 is determined as well; and finally the divisor on T1,1 is determined.

Case k = 5. Here the virtual dimension is v = 2 and therefore we expect to
find three points in the configuration such that the values of the section at these
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three points determine the section uniquely. We fix the degrees on the planes as
indicated in the leftmost figure below, i.e. we take r1 = r2 = r4 = r5 = m, r3 =
m + 1:
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k = 5

First consider the union of the four quadrics that form the lower left square T1,1,
T1,2, T2,1 and T2,2; these are indicated in the middle picture of the figure. On each
quadric we have the linear system of curves of bidegree (m, m) with two points
of multiplicity m, each of which is determined by the restriction to a line. We are
therefore in the hypothesis of Lemma 6.6, and so we conclude that the space of
sections is one dimensional being determined by the value at the interior point.
Note that this section determines the section on the boundaries.

Next we analyse the union of the 4 surfaces T3,1, T3,2 T4,1 and T4,2. By the
above, we see that the section is determined on the two leftmost vertical lines.
This is indicated by the rightmost picture in the figure. We are again in the hy-
pothesis of Lemma 6.6 with these four surfaces; hence the section is uniquely
determined by its value at the interior point.

Similarly, the section on the four surfaces T1,3, T1,4, T2,3 and T2,4 (with the lower
two horizontal lines determined) is determined by the value at the interior point.

Finally the sections on the planes T1,5 T5,1 and T3,3 are now determined using
Lemma 6.3.

Case k = 6. This is the first case where we must show that the system is
empty. Here we depart from the above pattern a bit and consider the following
degeneration of the plane into six surfaces, three re-embedded quadrics and three
Veronese surfaces, with degrees indicated, that sum to 6m + 1:
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The number of points on each quadric is 8, while the number on each Veronese
is 4; note that the total number is 36 as required.

Focus on the lower left quadric T1,1, where we have the linear system of curves
of bidegree (2m, 2m) on a quadric, with 8 points of multiplicity m. This has a
space of sections of dimension one, namely a unique divisor, the m-fold curve in
the linear system of bidegree (2, 2) through the 8 points. The restriction of this
space of sections to both the right double curve and the top double curve has
dimension one.

Now consider the quadric T2,1 just to the right of this, and consider the re-
striction to the double curve on the left with T1,1. This restriction of sections is
onto (the sheaf is the sheaf of degree 2m on that vertical curve), and the kernel
has dimension one (as a vector space), with the similar analysis as above. There-
fore the space of sections here that could agree with an element of the dimension
one space of sections coming from T1,1 has dimension two, one coming from the
restriction and one coming from the kernel.

This same analysis holds for the quadric T1,2: there is a dimension two space of
sections there that restrict to some element of the dimension one space of sections
of the double curve where this quadric meets the lower left quadric.

The space of sections now on these three quadrics has dimension three: 2 each
on the two quadrics, but there is a condition that the sections agree at the point
of intersection, which is the interior point of the configuration.

Now look at one of the corner planes, e.g., T1,3. The system there is of degree
2m, with four m-fold points. We know that this is the linear system composed
with the pencil of conics through the four points. Therefore the restriction of this
system to the double line is the system (of vector space dimension m + 1) of the
intersections with the pencil of conics. If m ≥ 2, no element of the 2-dimensional
space of sections on the adjoining quadric will match with any such element on
the double line. (The ambient space has vector space dimension 2m + 1, and we
have the restriction of a 2-dimensional space from the quadric and the (m + 1)-
dimensional space from the plane, which will not intersect away from 0 if m ≥ 2.)

We conclude that the section must be zero on that corner plane, also by sym-
metry on the other corner plane; then it must be zero as well on the quadrics, and
finally on the center plane T2,2.

Case k ≥ 7. The virtual dimension is v < 0 and we must show the system is
empty. We use a degeneration with r1 = r2 = r3 = m, r4 = m + 1, and ri = m for
i ≥ 5:
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k ≥ 7

The sections on the 3k− 12 lower left quadrics must be zero, using the overlap-
ping interior vertices argument. Then on the eight surfaces just above these, we
must also have zero sections; this applies as well to all of the surfaces to the right
of these, except the final corner plane. This leaves only the two corner planes T1,k

and Tk,1, and the final plane T4,k−3; sections on these are now seen to be zero as
well.
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[36] J. Roé: Limit linear systems and applications, preprint, arXiv:math/0602213,
2006.
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