
An approach to Gelfand theory for arbitrary

Banach algebras∗

F. Behrouzi G.A. Bagheri-Bardi

Abstract

Let A be a Banach algebra. We say that a pair (G,U) is a (topologically
Gelfand theory ) Gelfand theory for A if the following hold: (G1) U is a C*-
algebra and G : A → U is a homomorphism which induces the (homeomor-

phism ) bijection π 7→ π ◦ G from Û onto Â; (G2) for every maximal modular
left ideal L, G(A) 6⊆ L. We show that this definition is equivalent to the
usual definition of gelfand theory in the commutative case. We prove that
many properties of Gelfand theory of commutative Banach algebras remain
true for Gelfand theories of arbitrary Banach algebras. We show that uni-
tal homogeneous Banach algebras and postliminal C*-algebras have unique
Gelfand theories (up to an appropriate notion of uniqueness ).

1 Introduction

Let A be a commutative Banach algebra with the character space ΦA (the set of
characters) and the maximal ideal space MA (the set of maximal modular ideals).
The Gelfand transform GA maps A into the commutative C*-algebra C0(ΦA) as
follows:

GA : A −→ C0(ΦA),

GA(a)(h) = h(a).

The triple (A,GA, C0(ΦA)) shows that the Gelfand transform establishes a con-
nection between the abstract commutative Banach algebra A and the concrete
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commutative C*-algebra C0(ΦA). Moreover, the Gelfand transform induces a bi-
jection between MA and MC◦(A) as follows:

MC◦(ΦA) −→ MA,

L 7→ G−1
A (L).

Let A be an arbitrary Banach algebra. The maximal ideal space is replaced by
the set of maximal modular left ideals, which is again denoted by MA. Based on
these facts, the following notion of a Gelfand theory was introduced in [3]:

A pair (G,U) is called a Gelfand theory for a Banach algebra A if it satisfies
the following set of axioms

(G1) U is a C*-algebra and G : A −→ U is a homomorphism.
(G2) The assignment L 7→ G−1(L) is a bijection from MU onto MA.
(G3) For each L ∈ MU , the linear map GL : A/G−1(L) −→ U/L induced by G

has dense range.

It is well known that in the commutative case, characters are exactly the irre-
ducible representations. We rise this fact to give a new definition of the Gelfand
theory for arbitrary Banach algebras. We show that most results of [3] are also
proved with our axioms.

2 preliminaries

We denote by B(X) (K(X) ), the algebra of all bounded linear operators (compact
operators) on the Banach space X. Let A be Banach algebra. A representation of
A on X is a homomorphism form A into B(X). The representation π : A −→
B(X) is called irreducible if {0} and X are the only invariant subspaces for π.
A representation π : A −→ B(X) is called topologically representation if {0}
and X are the only closed invariant subspaces of. We recall that representations
π1 : A −→ B(X1) and π2 : A −→ B(X2) are equivalent (π1

∼= π2) if there exists
an isomorphism T : X1 −→ X2 such that for all a ∈ A, Tπ1(a) = π2(a)T. The
relation ∼= defines an equivalent relation on the set of representations of A. The

set of all classes of irreducible representations of A is denoted by Â. For given
L ∈ MA, we denote by πL, its corresponding regular representation. That is,

πL : A −→ B(
A

L
),

πL(a)(b + L) = ab + L.

Also, for each irreducible representation π, there exists L ∈ MA such that π ∼= πL

[5, Corollary 5.14].
We denote by Prim(A), the set of all primitive ideals of A. A primitive ideal

is the kernel of an irreducible representation of A. In fact, a primitive ideal I has
the form

(L : A) = {a ∈ A : aA ⊆ L}

where L is a maximal modular left ideal of A. We recall that an ideal I is modular
if there exists e ∈ A such that ea − a, and ae − a ∈ I, for each a ∈ A.
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The topology of Prim(A) is given by means of the closure operation. Given
a subset W of Prim(A), the closure of W, W, is defined as the set of all elements
of Prim(A) containing

⋂
I∈W I. It follows that the closure operation defines a

topology on Prim(A), which is called the Jacobson topology or the hull-kernel
topology.

The spectrum of A is the set Â endowed with the topology induced by the
inverse image of the Jacobson topology, under the map

θ : Â −→ Prim(A),

θ(π) = ker(π).

By this definition, θ is an open and closed map. Therefore, each closed subset of

Â has the form

{π ∈ Â : ker(π) ⊇ I},

where I is a closed ideal of A [8, Theorems 5.4.7 ].

3 definition of the Gelfand theory and its properties

Let A be a commutative Banach algebra. The Gelfand transform induces a bijec-
tion between the character spaces ΦA and ΦC0(ΦA) given by

ΦC◦(ΦA) −→ ΦA,

h 7→ h ◦ GA.

According to this fact and the arguments mentioned in the pervious section, we
arrange our new axioms.

Definition 3.1. Let A be a Banach algebra. A (topological) Gelfand theory for A
is a pair (G,U) which satisfies the following set of axioms:

(G1) U is a C*-algebra and G : A → U is a homomorphism which induces a
(homeomorphism) bijection as follows:

Û −→ Â,

π 7→ π ◦ G.

(G2) For every L ∈ MU , G(A) 6⊆ L.

For simplicity, we abbreviate ‘topological Gelfand theory’ (resp. ‘Gelfand the-
ory’) with TGT ( resp. GT ).

Proposition 3.2. Let A be a commutative Banach algebra and (G,U) be a GT for A.
There is an isomorphism γ : C◦(ΦA) → U such that G = γ ◦ GA.
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Proof. Since A is commutative, every element of Û is one dimensional. Then
semisimplicity of U implies that U is commutative. Therefore, U can be identified
with C◦(ΦU ). Since A and U are commutative, G is automatically continuous and
so the bijection

ΦU −→ ΦA,

h 7→ h ◦ G

will be continuous, for it is the restriction of G∗ to ΦU . Moreover, if U is unital,
then G∗ is homeomorphism

In the non-unital case, one may consider the unitization of A and U to deduce
that G∗ is a homeomorphism. Therefore, the map

γ : C◦(ΦA) −→ C◦(ΦU ),

γ( f ) = f ◦ G∗

is a *-isomorphism which satisfies G = γ ◦ GA.

Definition 3.3. The Gelfand theories (G1,U1) and (G2,U2) for A are called equiv-
alent if there exists a *-isomorphism γ : U2 → U1 such that G1 = γ ◦ G2. If any two
Gelfand theories of A are equivalent, we say that A has a unique Gelfand theory.

Remark 3.4. (i) The proposition 3.2 shows that any commutative Banach alge-
bra has a unique Gelfand theory which is also topological.

(ii) One can see that if A has a GT, then any irreducible representation of A can
be considered on a Hilbert space.

(iii) The continuity of the Gelfand transform GA of a commutative Banach al-
gebra A is well-known. The closed graph theorem and the continuity of
irreducible representations guarantees that G is continuous.

Theorem 3.5. Let (G,U) be a GT for A. Then

(i) the inverse image of each element of MU (Prim (U)) under G is an element of MA

(Prim(A)),

(ii) if A is unital then so is U ,

(iii) if A is unital, then σ(a) = σ(G(a)), for each a ∈ A.

Proof. (i) Let L ∈ MU and J be a left ideal of A containing strictly G−1(L). Since
{G(a) + L : a ∈ J} is a non-zero invariant subspace of πL ◦ G, {G(a) + L :

a ∈ J} = U
L . So, there exists ẽ ∈ J such that G(ẽ) = e + L, where e is a unit

modular for L. It is easy to see that ẽ is a unit modular for J and hence J = A.
Suppose that I ∈ Prim(U) and let L ∈ MU such that I = (L : U). Let x

be an element of G−1((L : U)). Then G(x)U ⊆ L and hence xA ⊆ G−1(L).
Conversely, suppose that xA is a subset of G−1(L). Then πL ◦ G(x) vanishes on

{G(a) + L : a ∈ A} = U
L . It means that G(x) is in ker πL = (L : U).

(ii) Let e be the unit of A. Let L ∈ MU and x ∈ U . Since {G(a) + L :
a ∈ A} = U

L , G(e)x − x and xG(e) − x are in ker πL. Then G(e) is the unit of
U by semi-simplicity.
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(iii)By [1, Theorem 4.2] and (G1),

σ(a) =
⋃
{σ(π̃(a)) : π̃ ∈ Â} =

⋃
{σ(π ◦ G(a)) : π ∈ U} = σ(G(a)).

Remark 3.6. The converse of theorem 3.5(ii) is not true in general, even in the
commutative case. There exist some non-unital commutative Banach algebras
with compact nonempty maximal ideal space. For example, suppose that B is a
commutative Banach algebra with MB = ∅. Let A = B ⊕ C(X), where X is a
compact Hausdorff space. Then A is non-unital with MA = X.

4 Existence of Gelfand theory

As mentioned in remark 3.4, if A has a GT, then each irreducible representation of
A can be considered on a Hilbert space. It is proved in [2] that there is no one-to-
one bounded linear map from X onto ℓ2 when X is c◦ or ℓp with p ∈ (1, +∞) \ {2}.
Since the identity map id: B(X) −→ B(X) is an irreducible representation, then
B(X) has no GT.

We obtain a condition under which (τA, C∗(A)) is a GT for A. Here τA is the
canonical map from A into the enveloping C*-algebra C∗(A). Let A be a Banach *-
algebra. Recall that A is hermitian if each self-joint element of A has real spectrum
in A.

Lemma 4.1. Let A be a unital Banach *-algebra. Then A is hermitian if and only if every
irreducible representation of A is equivalent to a *-representation on some Hilbert space.

Proof. Assume A is hermitian. Each irreducible representation π of A is equiva-
lent to πL for some maximal modular left ideal L. By [6, IV.6.12], there exists a
pure state f on A such that L = {a ∈ A : f (a∗a) = 0} . So A

L is a Hilbert space
and πL is a *-representation for some Hilbert space. Conversely, suppose a = a∗.
Since

σ(a) = ∪{σ(π(a)) : π ∈ Â}

and every element in Â is equivalent to a *-representation on some Hilbert space,
we have σ(a) ⊆ R.

Theorem 4.2. Suppose that A is a unital Banach *-algebra. The pair (τA, C∗(A)) is
a GT (TGT) for A if and only if A is hermitian and any topologically irreducible *-
representation of A is a (algebraically ) irreducible representation.

Proof. Let (τA, C∗(A)) be a GT for A. Let π′ be a topologically *-representation
of A. By [4, 2.7.4], there exist a irreducible representation π of C∗(A) such that
π′ = π ◦ τA. By assumption, π′ is irreducible representation. Let A be a self-
adjoint element in A. Since σ(a) = σ(τA(a)) (3.5 ), σ(a) ⊆ R. Conversely, By
lemma 4.1 and [4, 2.7.4] the map defined by

η : Ĉ∗(A) −→ Â,

η(π) = π ◦ τA
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is a bijection. Let Ĩ be a closed ideal of A. Since τA(A) is dense in C∗(A), τA( Ĩ)
is a closed ideal of C∗(A). Therefore, the continuity of η is obtained from the
following equality:

η−1({π̃ ∈ Â : ker π̃ ⊇ Ĩ}) = {π ∈ Ĉ∗(A) : ker π ⊇ τA( Ĩ)}.

For the continuity of η−1, it is enough to consider the following equality

η({π ∈ Ĉ∗(A) : ker π ⊇ I}) = {π̃ ∈ Â : ker π̃ ⊇ τ−1
A (I)},

where I is a closed ideal of C∗(A). By density of τA(A) in C∗(A), (G2) follows.

Remark 4.3. It is well-known that for any element x in a C*-algebra U , we have:

‖ x ‖= sup{‖ π(x) ‖: π ∈ Û}.

Thus C∗(A) is the smallest C∗-algebra that constructs a Gelfand theory for a her-
mitian semisimple Banach *-algebra A. It means that, if (U ,G) is any Gelfand
theory for A, then C∗(A) is embedded in U .

Let n be a natural number. A Banach algebra A satisfies the standard polyno-
mial identity Sn = 0 if for all a1, ....an in A

Sn(a1, ..., an) = ∑ sgn(τ)aτ(1) , ..., aτ(n) = 0

where the sum runs over the symmetric group on n symbols. It is proved in
[7, p. 338] and [10, 1.4.5] that Mn(C) satisfies the polynomial identity S2n = 0. A

Banach algebra A is called n-homogeneous if for every π ∈ Â, dim(π) = n.

Proposition 4.4. Every unital n-homogeneous Banach algebra has a unique GT.

Proof. Let U be the C*-direct sum of Mn(C). That is,

U = ℓ
∞ −⊕Mn(C)

where direct sum is taken on the set Â. We define

G : A −→ U ,

G(a) = (π̃(a))
π̃∈Â

.

It is enough to check that (G1) holds. Let π be an irreducible representation of U .
The simplicity of Mn(C), implies that ker π has the form

ℓ
∞ −⊕Iπ̃,

where Iπ̃ = Mn(C) or zero. The C*-algebra U satisfies the polynomial identity

S2n = 0. Therefore, dim(π) = n [10, 1.4.5]. Hence there is π̃0 ∈ Â such that

Iπ̃ =

{
0 π̃ = π̃0

Mn(C) π̃ 6= π̃0.
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Let Ππ̃0
be the projection on π̃0-th component. Since Ππ̃0

and π are irreducible
representations with the same kernel and finite dimension, Ππ̃0

∼= π. Therefore,

every irreducible representation of U has the form Ππ̃ for some π̃ ∈ Â. These
show that (G1) holds.

Assume (G1,V) is a GT for A and γ : V → U is the universal representation
of V . Then, γ(V) is a rich *-subalgebra of U . Since U is postliminal, γ(V) = U .
Hence, γ is an isomorphism and G = γ ◦ G1

Proposition 4.5. Let I be a closed ideal of A. If A has a TGT, then I and A
I have TGT.

Proof. Let (G,U) be a TGT for A and set

J =
⋂
{ker π : π ∈ Û , ker π ⊇ G(I)}.

Note that J is a closed two sided ideal of U and G|I : I → J is homomorphism.

Set K̃ = {π̃ ∈ Â : ker π̃ 6⊇ I} and K = {π ∈ Û : ker π 6⊇ J }. By (G1) and the

definition of J , the map π → π ◦ G from K onto K̃ is bijection. By [4, 3.2.1] and
the following commutative diagram,

Ĵ //

��

Î

��

K // K̃

this map is a homeomorphism.

For (G2), let G(I) ⊆ L̂, where L̂ ∈ MJ . There exists L ∈ MU such that L̂ =
L ∩ J and J 6⊆ L. Since G(I) ⊆ ker πL, L contains J . But that is a contradiction.

Let G̃ be the following map

G̃ :
A

I
→

U

J
,

G̃(a + I) = G(a) + J .

By [4, 3.2.1] and the following commutative diagram

(̂ UJ ) //

��

(̂ A
I )

��

K0
// K̃0

the map π → π ◦ G̃ is a homeomorphism, where K0 = {π ∈ Û : ker π ⊇ J } and

K̃0 = {π̃ ∈ Â : ker π̃ ⊇ I}. It is easy to see that (G2) holds.

5 Gelfand theory for C∗-algebras

Let A be a unital C*-algebra and u be an invertible element of A. Then (Gu, A) is
a TGT for A, where

Gu : A −→ A : Gu(a) = uau−1.

If u is not unitary, then Gu will not be *-isomorphism. We say that the Gelfand
theory (G, A) is a *-GT (*-TGT) if G is *-homomorphism.
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Theorem 5.1. Let A be a C*-algebra and (G,U) be a *-GT for A. Then
(i) G is an isometry,
(ii) for any L ∈ MU , A

G−1(L)
∼= U

L .

Proof. (i) Let a ∈ A. we have

||G(a)|| = sup{||π(G(a))|| : π ∈ Û}

= sup{||π̃(a)|| : π̃ ∈ Â}

= ||a||.

(ii) Let GL : A
G−1(L)

−→ U
L be the induced map by G. It is easy to check that GL is

an algebraic isomorphism. For the continuity of GL, suppose that a ∈ A. Then

||a + G−1(L)|| = inf
x∈G−1(L)

||a + x||

= inf
x∈G−1(L)

||G(a) + G(x)||

≥ inf
y∈L

||G(a) + y|| = ||G(a) + L||

= ||GL(a)||.

Therefore, GL is continuous and by the open mapping theorem, G−1
L is also con-

tinuous.

We recall that a C*-algebra A is called postliminal (liminal) if K(H) ⊆ π(A)
(π(A) = K(H)) for every irreducible representation π : A −→ B(H). For
more details about postliminal and liminal C*-algebras, see [4, Chapter 4]. A
C*-subalgebra B of a C*-algebra A is rich, if the following conditions are satisfied:

(i) For every π ∈ Â, π|B ∈ B̂.
(ii) If π and π′ are inequivalent representations of A then π|B and π′|B are in-
equivalent.

It is proved in [4, Poroposition 11.1.6] any postliminal C*-algebra has no proper
rich subalgebra. For any C∗-algebra A, the pair (IdA, A) is a trivial *-TGT. We will
show that every postliminal C*-algebra has a unique *-Gelfand theory.

Let A be a C*-algebra and I be the set of all x ∈ A such that π(x) is compact
for every irreducible representation π : A −→ B(H). It is proved in [4, Proposi-
tion 4.2.6] that I is the largest liminal two-sided ideal of A.

Proposition 5.2. Let A be a C*-algebra and (G,U) be a GT for A. If A is postliminal
(liminal), then so is U .

Proof. Suppose A is postliminal and π : U −→ B(H) is an irreducible representa-
tion. Since π ◦ G is irreducible,

K(H) ⊆ π ◦ G(A) ⊆ π(U).

Assume that A is liminal and I is the largest liminal two-sided ideal of U . By (G1),

π ◦ G(A) = K(H) for each π ∈ Û . By definition of I , G(A) ⊆ I . If I 6= U , there
exists L ∈ MU such that I ⊆ L. Therefore, G(A) ⊆ L which is a contradiction.
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Theorem 5.3. Every postliminal C*-algebra has a unique *-GT.

Proof. Let A be a C*-algebra and (G,U) be a *-GT for A. Since A is semi-simple, G
is one-to-one. Since the range of G is closed and the map π 7→ π ◦ G is bijection,
G(A) is a rich C*-subalgebra of U . Therefore, G(A) = U , because U is postliminal.
So G is a *-isomorphism and G−1 ◦ G = IdA. Then the two Gelfand theories
(IdA, A) and (G,U) are equivalent.

Remark 5.4. We claim that the two following are equivalent:
(i) Every C*-algebra has a unique *-Gelfand theory.
(ii) Let A be a C*-algebra and B be a rich C*-subalgebra of A. Then B = A.

Let A be a C*-algebra. Suppose that B is a rich C*-subalgebra for A. It is
proved in [4, Poroposition 11.1.2] that if π is an irreducible representation of B,
then there exists an irreducible representation π′ of A such that π = π′|B. Thus

the map π 7→ π|B from Â to B̂ is onto. Also, the second condition of the definition

of a rich C*-subalgebra implies that the map π 7→ π|B from Â to B̂ is one-to-
one. Therefore, the pair (i, A) is a *-Gelfand theory for B, where i is the inclusion
map. Since B has a unique *-Gelfand theory, there is an isomorphism γ such that
i = γ ◦ idB and hence, B = A.

Conversely, let A be a C*-algebra. If (G,U) is a *-Gelfand theory for A, then
G(A) is a rich C*-subalgebra of U . Thus G(A) = U . It means that G is a
*-isomorphism and idA = G−1 ◦ G. Therefore, A has a unique *-Gelfand theory.

The non-commutative version of the Stone-Weierstrass theorem (which is an
open problem) says that: does there exist a proper rich *-subalgebra in a given
C*-algebra A? As claimed above, this problem is equivalent to the existence of a
C*-algebra with (at least) two different *-Gelfand theories.

Acknowledgement. The authors are grateful to the referee for careful reading
of the paper, and for providing several helpful suggestions for improvement in
the article.
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