A fixed point property characterizing inner amenable locally compact semigroups

B. Mohammadzadeh

R. Nasr-Isfahani*

Abstract

For a locally compact semigroup \mathfrak{S} , we study a fixed point property in terms of left Banach \mathfrak{S} -modules; we also use this property to give a characterization for inner amenability of \mathfrak{S} .

1 Introduction

Throughout this paper, $\mathfrak S$ denotes a *locally compact semigroup*; i.e., a semigroup with a locally compact Hausdorff topology whose binary operation is jointly continuous. Let $\mathfrak X$ be a *left Banach* $\mathfrak S$ -*module*, i.e. a Banach space $\mathfrak X$ equipped with a map from $\mathfrak S \times \mathfrak X$ into $\mathfrak X$, denoted by $(x,\xi) \longmapsto x.\xi$ $(x \in \mathfrak S, \xi \in \mathfrak X)$ such that

$$x.(y.\xi) = (xy).\xi$$

for all $x, y \in \mathfrak{S}$ and $\xi \in \mathfrak{X}$, the map $x \longmapsto x.\xi$ is continuous of \mathfrak{S} into \mathfrak{X} for all $\xi \in \mathfrak{X}$, the map $\xi \longmapsto x.\xi$ is a bounded linear operator on \mathfrak{X} for all $x \in \mathfrak{S}$, and there is a constant K > 0 with

$$||x.\xi|| \le K ||\xi||$$

for all $x \in \mathfrak{S}$ and $\xi \in \mathfrak{X}$. In this case, we define

$$(\xi^*.\mu)(\xi) = \int_{\mathfrak{S}} \xi^*(x.\xi) \ d\mu(x),$$

^{*}The research of the second author was in part supported by a grant from IPM (No. 81430032). Received by the editors May 2008.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification: 43A07, 43A10, 43A20, 46H05.

Key words and phrases : Fixed point property, inner amenability, inner invariant mean, left Banach modules, locally compact semigroup, weak* operator topology.

and

$$(\mu.\xi^{**})(\xi^{*}) = \xi^{**}(\xi^{*}.\mu);$$

also, we define the operator Λ_{μ} on \mathfrak{X}^{**} by

$$\Lambda_{\mu}\xi^{**}=\mu.\xi^{**}$$

for all $\xi \in \mathfrak{X}$, $\xi^* \in \mathfrak{X}^*$, $\xi^{**} \in \mathfrak{X}^{**}$ and $\mu \in M(\mathfrak{S})$, the Banach algebra of all complex Radon measures on \mathfrak{S} with the convolution product * and the total variation norm. Any left Banach \mathfrak{S} -module \mathfrak{X} equipped with the map $(\mu, \xi) \longmapsto \mu.\xi$ $(\xi \in \mathfrak{X}, \mu \in M(\mathfrak{S}))$ can be considered as a left Banach $M(\mathfrak{S})$ -module. Let $\mathcal{B}(\mathfrak{X}^{**})$ denote the Banach space of bounded linear operators on \mathfrak{X}^{**} . By the *weak* operator topology* on $\mathcal{B}(\mathfrak{X}^{**})$, we shall mean the locally convex topology of $\mathcal{B}(\mathfrak{X}^{**})$ determined by the family

$$\{q(\xi^{**}, \xi^{*}) : \xi^{**} \in \mathfrak{X}^{**}, \xi^{*} \in \mathfrak{X}^{*}\}$$

of seminorms on $\mathcal{B}(\mathfrak{X}^{**})$, where

$$q(\xi^{**}, \xi^*)(T) = |T\xi^{**}(\xi^*)|$$
 for all $T \in \mathcal{B}(\mathfrak{X}^{**})$.

The space of all measures $\mu \in M(\mathfrak{S})$ for which the maps $x \longmapsto \delta_x * |\mu|$ and $x \longmapsto |\mu| * \delta_x$ from \mathfrak{S} into $M(\mathfrak{S})$ are weakly continuous is denoted by $M_a(\mathfrak{S})$ (or $\widetilde{L}(\mathfrak{S})$ as in [2]), where δ_x denotes the Dirac measure at x. It is well-known that $M_a(\mathfrak{S})$ is a closed two-sided L-ideal of $M(\mathfrak{S})$; see [2] or [6].

We denote by $\mathcal{P}(M_a(\mathfrak{S}), \mathfrak{X}^{**})$ the closure of the set

$$\{\Lambda_{\mu}: \mu \in P_1(M_a(\mathfrak{S}))\}$$

in the weak* operator topology of $\mathcal{B}(\mathfrak{X}^{**})$, where $P_1(M_a(\mathfrak{S}))$ denotes the set of all probability measures in $M_a(\mathfrak{S})$. Let us remark that $P_1(M_a(\mathfrak{S}))$ with the convolution multiplication is a semigroup. In particular, the set $\{\Lambda_{\mu} : \mu \in P_1(M_a(\mathfrak{S}))\}$ is a subsemigroup of the semigroup $\mathcal{B}(\mathfrak{X}^{**})$ with the ordinary multiplication of linear operators, and as easily verified, so is its closure $\mathcal{P}(M_a(\mathfrak{S}),\mathfrak{X}^{**})$ in the weak* operator topology of $\mathcal{B}(\mathfrak{X}^{**})$.

Definition 1.1. Let \mathfrak{S} be a locally compact semigroup, \mathfrak{X} be a left Banach \mathfrak{S} -module, and $\mathcal{M} \subseteq M(\mathfrak{S})$. We say that \mathfrak{X} has the \mathcal{M} -fixed point property if there exists $\Lambda \in \mathcal{P}(M_a(\mathfrak{S}), \mathfrak{X}^{**})$ such that

$$\Lambda_{\mu}\Lambda = \Lambda\Lambda_{\mu} \qquad (\mu \in \mathcal{M}).$$

Our aim in this work is to study this property and its relation to inner amenability of locally compact semigroups.

2 The results

We commence with the following result.

Lemma 2.1. Let \mathfrak{S} be a locally compact semigroup and $\mathcal{M} \subseteq M(\mathfrak{S})$. Suppose that there exists a net $(\mu_{\alpha})_{\alpha \in A}$ in $P_1(M_a(\mathfrak{S}))$ such that $\|\mu * \mu_{\alpha} - \mu_{\alpha} * \mu\| \longrightarrow 0$ for all $\mu \in \mathcal{M}$. Then every left Banach \mathfrak{S} -module \mathfrak{X} has the \mathcal{M} -fixed point property.

Proof. First, note that the operator algebra $\mathcal{B}(\mathfrak{X}^{**})$ can be identified with the dual space $(\mathfrak{X}^{**}\widehat{\otimes}\mathfrak{X}^{*})^{*}$ of the projective tensor product $\mathfrak{X}^{**}\widehat{\otimes}\mathfrak{X}^{*}$ in a natural way; see for example Corollary VIII.2.2 of [5]. In particular, the weak* operator topology of $\mathcal{B}(\mathfrak{X}^{**})$ coincides with the weak* topology of $(\mathfrak{X}^{**}\otimes\mathfrak{X}^{*})^{*}$ on bounded subsets of $\mathcal{B}(\mathfrak{X}^{**})$, and therefore $\mathcal{P}(M_{a}(\mathfrak{S}),\mathfrak{X}^{**})$ is compact in the weak* operator topology of $\mathcal{B}(\mathfrak{X}^{**})$.

Next, we may find $\Lambda \in \mathcal{P}(M_a(\mathfrak{S}), \mathfrak{X}^{**})$ with $\|\Lambda\| \leq K$ and a subnet (μ_{δ}) of (μ_{α}) such that

$$\Lambda_{u_{\delta}} \longrightarrow \Lambda$$

in the weak* operator topology; where *K* is a constant satisfying

$$\parallel x.\xi \parallel \leq K \parallel \xi \parallel$$

for all $x \in \mathfrak{S}$ and $\xi \in \mathfrak{X}$. For each $\mu \in \mathcal{M}$, we therefore have

$$\Lambda_{\mu_{\delta}}\Lambda_{\mu} \longrightarrow \Lambda\Lambda_{\mu}$$
 and $\Lambda_{\mu}\Lambda_{\mu_{\delta}} \longrightarrow \Lambda_{\mu}\Lambda$

in the weak* operator topology. Also

$$|(\Lambda_{\mu_{\delta}}\Lambda_{\mu}\xi^{**} - \Lambda_{\mu}\Lambda_{\mu_{\delta}}\xi^{**})(\xi^{*})| \leq K \|\mu_{\delta}*\mu - \mu*\mu_{\delta}\| \|\xi^{**}\| \|\xi^{*}\| \longrightarrow 0,$$

for all $\xi^* \in \mathfrak{X}^*$ and $\xi^{**} \in \mathfrak{X}^{**}$, and hence

$$\Lambda_{u_{\delta}}\Lambda_{u} - \Lambda_{u}\Lambda_{u_{\delta}} \longrightarrow 0$$

in the weak* operator topology. Consequently, $\Lambda \Lambda_{\mu} = \Lambda_{\mu} \Lambda$. \square

Let us recall that $M_a(\mathfrak{S})^{**}$ with the first Arens product \odot defined by

$$(F \odot G)(f) = F(G f)$$

for $f \in M_a(\mathfrak{S})^*$ and $F, G \in M_a(\mathfrak{S})^{**}$, is a Banach algebra, where

$$(G f)(\mu) = G(f \mu)$$

and

$$(f\mu)(\nu) = f(\mu * \nu)$$

for all $\mu, \nu \in M_a(\mathfrak{S})$.

For each $\mu \in M_a(\mathfrak{S})$, let μ also denote the functional in $M_a(\mathfrak{S})^{**}$ defined by the formula $f \mapsto f(\mu)$ ($f \in M_a(\mathfrak{S})^*$). This defines a linear isometric embedding of $M_a(\mathcal{S})$ into $M_a(\mathfrak{S})^{**}$. In particular, $F \odot \mu$, $\mu \odot F$ and $\mu \odot \nu$ make sense as

elements of $M_a(\mathfrak{S})^{**}$ for all $\mu, \nu \in M_a(\mathfrak{S})$ and $F \in M_a(\mathfrak{S})^{**}$; moreover, $\mu \odot \nu = \mu * \nu$.

An element m in the second dual $M_a(\mathfrak{S})^{**}$ of $M_a(\mathfrak{S})$ is said to be a *mean* on $M_a(\mathfrak{S})^*$ if ||m|| = m(u) = 1, where $u \in M_a(\mathfrak{S})^*$ is defined by

$$u(\mu) = \mu(\mathfrak{S})$$

for all $\mu \in M_a(\mathfrak{S})$. The set of all means on $M_a(\mathfrak{S})^*$ is denoted by $P_1(M_a(\mathfrak{S})^{**})$. We say that a mean m on $M_a(\mathfrak{S})^*$ is \mathcal{M} -inner invariant if

$$m \odot \mu = \mu \odot m$$

for all $\mu \in \mathcal{M}$; or equivalently,

$$m(f\mu) = m(\mu f)$$

for all $\mu \in \mathcal{M}$ and $f \in M_a(\mathfrak{S})^*$, where

$$(\mu f)(\nu) = f(\nu * \mu)$$

for all $\nu \in M_a(\mathfrak{S})$; we also say that \mathfrak{S} is \mathcal{M} -inner amenable if there exists an \mathcal{M} -inner invariant mean on $M_a(\mathfrak{S})^*$. Finally, recall that \mathfrak{S} is called *foundation* if the set $\bigcup \{\sup(\mu) : \mu \in M_a(\mathfrak{S})\}$ is dense in \mathfrak{S} .

Proposition 2.2. Let \mathfrak{S} be a foundation semigroup with identity, and $\mathcal{M} \subseteq M(\mathfrak{S})$. If \mathfrak{S} is \mathcal{M} -inner amenable, then any left Banach \mathfrak{S} -module \mathfrak{X} has the \mathcal{M} -fixed point property.

Proof. Let m be an \mathcal{M} -inner invariant mean on $M_a(\mathfrak{S})^*$. Since \mathfrak{S} is a foundation semigroup with identity, it follows from [19] that $M_a(\mathfrak{S})$ can be considered as the predual of a C^* -algebra; see also [15]. Thus $P_1(M_a(\mathfrak{S}))$ is weak* dense in $P_1(M_a(\mathfrak{S}))^{**}$; see Lemma 2.1 in [9]. Thus, there is a net (ν_{β}) in $P_1(M_a(\mathfrak{S}))$ with

$$\mu * \nu_{\beta} - \nu_{\beta} * \mu \longrightarrow 0$$

in the weak topology of $M_a(\mathfrak{S})$ for all $\mu \in \mathcal{M}$.

Now, let X be the locally convex space $\Pi\{M_a(\mathfrak{S}): \mu \in \mathcal{M}\}$ under the product of the norm topology of $M_a(\mathfrak{S})$. Then the weak topology of X is the product of the weak topology of $M_a(\mathfrak{S})$. Following an idea due to Namioka [14], let $T: M_a(\mathfrak{S}) \longrightarrow X$ be defined by

$$T(\nu)(\mu) = \mu * \nu - \nu * \mu$$

for all $\nu \in M_a(\mathfrak{S})$ and $\mu \in \mathcal{M}$. Then T is well defined and linear. Since

$$T(\nu_{\beta}) \longrightarrow 0$$

in the weak topology of X, it follows that 0 lies in the weak closure of $T(P_1(M_a(\mathfrak{S})))$ in X. Now, the convexity of $T(P_1(M_a(\mathfrak{S})))$ implies that 0 lies in the closure of $T(P_1(M_a(\mathfrak{S})))$ in X with respect to the product of the norm topology of $M_a(\mathfrak{S})$. So there exists a net (μ_α) in $P_1(M_a(\mathfrak{S}))$ such that

$$\|(T(\mu_{\alpha}))(\mu)\| \longrightarrow 0$$

for all $\mu \in \mathcal{M}$. That is

$$\|\mu * \mu_{\alpha} - \mu_{\alpha} * \mu\| \longrightarrow 0$$

for all $\mu \in \mathcal{M}$. So, the result follows from Lemma 2.1.

Before we give the main result of this paper, let us remark that $M_a(\mathfrak{S})$ equipped with the map $(x, \mu) \longmapsto x.\mu$ defined by

$$x.\mu = \delta_x * \mu$$
 $(\mu \in M_a(\mathfrak{S}), x \in \mathfrak{S}),$

is a left Banach &-module; note that in this case we have

$$f.\mu = f\mu$$
 and $\nu.F = \nu \odot F$

for all $\mu \in M(\mathfrak{S})$, $\nu \in M_a(\mathfrak{S})$, $f \in M_a(\mathfrak{S})^*$, and $F \in M_a(\mathfrak{S})^{**}$.

Theorem 2.3. Let \mathfrak{S} be a foundation semigroup with identity and $\mathcal{M} \subseteq M(\mathfrak{S})$. Then the following assertions are equivalent.

- (a) \mathfrak{S} is \mathcal{M} -inner amenable.
- (b) Every left Banach \mathfrak{S} -module \mathfrak{X} has the \mathcal{M} -fixed point property.
- (c) $M_a(\mathfrak{S})$ has the \mathcal{M} -fixed point property.

Proof. That (a) implies (b) follows from Proposition 2.2; also, (b) implies (c) trivially.

Now, suppose that (c) holds, and choose an element Λ of $\mathcal{P}(M_a(\mathfrak{S}), M_a(\mathfrak{S})^{**})$ such that

$$\Lambda_u \Lambda = \Lambda \Lambda_u$$

for all $\mu \in \mathcal{M}$. To prove (a), we suppose that (μ_{α}) is a net in $P_1(M_a(\mathfrak{S}))$ such that

$$\Lambda_{\mu_{\alpha}} \longrightarrow \Lambda$$

in the weak* operator topology of $\mathcal{B}(M_a(\mathfrak{S})^{**})$. Since \mathfrak{S} is a foundation semigroup with identity, $M_a(\mathfrak{S})$ has a bounded approximate identity (e_γ) in $P_1(M_a(\mathfrak{S}))$; see [18]. Let E be a weak* cluster point of (e_γ) in $M_a(\mathfrak{S})^{**}$. Then E is a right identity for $M_a(\mathfrak{S})^{**}$ by the continuity properties of the first Arens product, and therefore for each $\mu \in \mathcal{M}$,

$$\mu * \mu_{\alpha} - \mu_{\alpha} * \mu = (\mu * \mu_{\alpha} - \mu_{\alpha} * \mu) \odot E$$

$$= (\mu.(\mu_{\alpha}.E)) - (\mu_{\alpha}.(\mu.E))$$

$$= \Lambda_{\mu}\Lambda_{\mu_{\alpha}}E - \Lambda_{\mu_{\alpha}}\Lambda_{\mu}E$$

$$\longrightarrow 0$$

in the weak topology of $M_a(\mathfrak{S})$. So, any weak* cluster point of (μ_{α}) in $M_a(\mathfrak{S})^{**}$ is an \mathcal{M} -inner invariant mean on $M_a(\mathfrak{S})^*$.

Let $\delta_{\mathfrak{S}} := \{\delta_x : x \in \mathfrak{S}\}$. We say that a left Banach \mathfrak{S} -module \mathfrak{X} has the *fixed point property* if it has the $\delta_{\mathfrak{S}}$ -fixed point property; we also say that \mathfrak{S} is *inner amenable* if there exists an inner invariant mean on $M_a(\mathfrak{S})^*$; that is, a $\delta_{\mathfrak{S}}$ -inner invariant mean on $M_a(\mathfrak{S})^*$; see [13].

The study of inner amenability was initiated by Efros [7] and pursued by Akemann [1], H. Choda and M. Choda [3], M. Choda [4], Kaniuth and Markfort [8], Paschke [16], Pier [17], and Watatani [22] for discrete groups, Lau and Paterson [10], Losert and Rindler [12], Stokke [20], Takahashi [21], Yuan [23] for locally compact groups, and by Ling [11] for discrete semigroups.

Our last result is the following consequence of Theorem 2.3 which is due to Lau and Paterson [10] in the case of locally compact groups \mathfrak{S} .

Corollary 2.4. Let \mathfrak{S} be a foundation semigroup with identity. Then the following assertions are equivalent.

- (a) S is inner amenable.
- (b) Every left Banach \mathfrak{S} -module \mathfrak{X} has the fixed point property.
- (c) $M_a(\mathfrak{S})$ has the fixed point property.

We end this work with some examples.

Example 2.5. (a) Let \mathfrak{S} be a locally compact commutative semigroup. Then \mathfrak{S} is $M(\mathfrak{S})$ -inner amenable, and $M_a(\mathfrak{S})$ has the $M(\mathfrak{S})$ -fixed point property trivially; indeed, any element Λ of $\mathcal{P}(M_a(\mathfrak{S}), M_a(\mathfrak{S})^{**})$ satisfies

$$\Lambda_{\mu}\Lambda = \Lambda\Lambda_{\mu}$$

for all $\mu \in M(\mathfrak{S})$. So, it follows from Proposition 2.2 that every left Banach \mathfrak{S} -module \mathfrak{X} has the fixed point property.

(b) Let S be the semigroup [0,1] with the operation $xy = \min\{x,y\}$ for all $x,y \in [0,1]$. Then S endowed with the topology induced from the real line is not a foundation semigroup; indeed,

$$M_a(\mathfrak{S}) = \mathbb{C} \, \delta_0.$$

Therefore,

$$\mathcal{P}(M_a(\mathfrak{S}), \mathfrak{X}^{**}) = \{\Lambda_{\delta_0}\}$$

for all left Banach \mathfrak{S} -module \mathfrak{X} , and for each $\mu \in M(\mathfrak{S})$,

$$\Lambda_{\mu}\Lambda_{\delta_0}=\Lambda_{\delta_0}=\Lambda_{\delta_0}\Lambda_{\mu}.$$

Acknowledgments. The authors thank the referee of the paper for a very careful reading and valuable comments. The second author thanks the Center of Excellence for Mathematics at the Isfahan University of Technology.

References

- [1] Akemann, C. A., Operator algebras associated with Fuchsian groups, Houston J. Math. 7 (1981) 295-301.
- [2] Baker, A. C., and J. W. Baker, *Algebra of measures on a locally compact semigroup III*, J. London Math. Soc. **4** (1972), 685-695.
- [3] Choda, H. and M. Choda, Fullness, simplicity and inner amenability, Math. Japon. 24 (1979) 235-246.

- [4] Choda, M., Effect of inner amenability on strong ergodicity, Math. Japon. 28 (1983) 109-115.
- [5] Diestel, J. and J. J. Uhl, *Vector measures*, Math. Surveys Monogr. **15**, Amer. Math. Soc., Providence, RI, 1977.
- [6] Dzinotyweyi, H. A., *The analogue of the group algebra for topological semigroups*, Pitman Research Notes in Mathematics Series, London, 1984.
- [7] Efros, E. G., Property Γ and inner amenability, Proc. Amer. Math. Soc. **47** (1975) 483-486.
- [8] Kaniuth, E. and A. Markfort, *The conjugation representation and inner amenability of discrete groups*, J. Reine Angew. Math. **432** (1992) 23-37.
- [9] Lau, A. T., *Uniformly continuous functionals on Banach algebras*, Colloq. Math. **LI** (1987) 195-205.
- [10] Lau, A. T. and A. L. Paterson, *Inner amenable locally compact groups*, Trans. Amer. Math. Soc. **325** (1991) 155-169.
- [11] Ling, J. M., Inner amenable semigroups I, J. Math. Soc. Japan 49 (1997) 603-616.
- [12] Losert, V. and H. Rindler, *Conjugate invariant means*, Colloq. Math. **15** (1987) 221-225.
- [13] B. Mohammadzadeh, and R. Nasr-Isfahani, *Inner invariant on locally compact topological semigroups*, Bull. Belg. Math. Soc., to appear.
- [14] Namioka, I., Følner's conditions for amenable semi-groups, Math. Scand. 15 (1964) 18-28.
- [15] Nasr-Isfahani, R., Factorization in some ideals of Lau algebras with applications to semigroup algebras, Bull. Belg. Math. Soc. 7 (2000) 429-433.
- [16] Paschke, W. L., *Inner amenability and conjugate operators*, Proc. Amer. Math. Soc. **71** (1978) 117-118.
- [17] Pier, J. P., *Quasi-invariance intrieure sur les groupes localement compacts*, Actualits Mathmatiques (1982) 431-436.
- [18] Sleijpen, G. L., Convolution Measure Algebras on Semigroups, Ph.D. Thesis, Katholieke Universiteit, The Netherlands, 1976.
- [19] Sleijpen, G. L., The dual of the space of measures with continuous translations, *Semigroup Forum* **22** (1981) 139-150.
- [20] Stokke, R., Quasi-central bounded approximate identities in group algebras of locally compact groups, Illinois J. Math. **48** (2004) 151-170.
- [21] Takahashi, Y., *Inner invariant means and conjugate operators*, Proc. Amer. Math. Soc. **124** (1996) 193-198.

- [22] Watatani, Y., *The character groups of amenable group C*-algebras*, Math. Japon. **24** (1979) 141-144.
- [23] Yuan, C. K., The existence of inner invariant means on $L^{\infty}(G)$, J. Math. Anal. Appl. 130 (1988) 514-524.

B. Mohammadzadeh, Department of Mathematics, Babol University of Technology, Babol, Iran, E-mail address: b.mohammad@math.ui.ac.ir.

R. Nasr-Isfahani, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran, *E-mail address*: isfahani@cc.iut.ac.ir

and

The Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran 19395, Iran