On analytic continuation in Hardy spaces

Manuel Valdivia*

Abstract

Let D be the open unit disk in C . In this article, we construct dense subspaces of $H^{p}(D), 1 \leq p \leq \infty$, with certain barrelledness properties, such that their nonzero elements cannot be extended holomorphically outside D.

1 Introduction and notation

Throughout this paper all linear spaces are assumed to be defined over the field \mathbb{C} of complex numbers. We write \mathbb{N} for the set of positive integers. Given a complex number z_{0} and $\rho>0$, we put

$$
D\left(z_{0} ; \rho\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\rho\right\}
$$

and write

$$
D:=D(0 ; 1)
$$

For $1 \leq p \leq \infty, H^{p}(D)$ stands for the Hardy space, that is, $H^{\infty}(D)$ is the linear space formed by the bounded holomorphic functions in D with the norm $\|\cdot\|_{\infty}$ such that

$$
\|f\|_{\infty}=\sup \{|f(z)|: z \in D\}, \quad f \in H^{\infty}(D)
$$

and, for $1 \leq p<\infty, H^{p}(D)$ is the linear space of the holomorphic functions in D such that

$$
\|f\|_{p}:=\sup _{0 \leq r<1}\left(\int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}}<\infty
$$

provided with the norm $\|\cdot\|_{p}$.

[^0]Let us now fix $1 \leq p \leq \infty$. We take a countable dense subset $\left\{z_{n}: n \in \mathbb{N}\right\}$ of the unit circle. Given $m, n, s \in \mathbb{N}$, we put

$$
A_{m, n, s}:=\left\{f \in H^{p}(D):\left|f^{\prime}(z)\right| \leq m, z \in D \cap D\left(z_{n} ; 1 / s\right)\right\} .
$$

This subset of $H^{p}(D)$ is closed and absolutely convex. It is not hard to find a function g which is continuous in the closure \bar{D} of D, holomorphic in D and whose derivative $g^{\prime}(z)$ is not bounded in $D \cap D\left(z_{n} ; 1 / s\right)$. Since $A_{m, n, s}$ does not absorb g, which is obviously in $H^{p}(D)$, we have that $A_{m, n, s}$ is not a neighborhood of zero in $H^{p}(D)$, thus it has no interior points. Denoting by M_{p} the subset of $H^{p}(D)$ formed by those elements that cannot be extended holomorphically outside D, we have that

$$
\bigcup\left\{A_{m, n, s}: m, n, s \in \mathbb{N}\right\} \supset H^{p}(D) \backslash M_{p}
$$

from where we deduce that M_{p} is a set of the second category in the Banach space $H^{p}(D)$.

In [2], the authors construct a non-separable closed linear subspace Y of $H^{\infty}(D)$ such that every nonzero element of Y does not extend holomorphically outside D. In this paper we are interested in constructing dense subspaces of $H^{p}(D)$, $1 \leq p \leq \infty$, which, except for the zero function, are contained in M_{p}, at the same time possessing good barrelledness properties.

Let P be a subset of \mathbb{N}. Given j in \mathbb{N}, we write $P(j)$ to denote the set of elements of P which are not greater than $j . P$ is said to have zero density whenever

$$
\lim _{j \rightarrow \infty} \frac{P(j)}{j}=0
$$

We say that a sequence $\left(a_{j}\right)$ of complex numbers has zero density whenever the set

$$
\left\{j \in \mathbb{N}: a_{j} \neq 0\right\}
$$

has zero density. For $1 \leq p<\infty$, we write $\ell_{(0)}^{p}$ to represent the subspace of ℓ^{p} whose elements have zero density.
ℓ_{0}^{∞} will stand for the subspace of ℓ^{∞} formed by those sequences taking only a finite number of values, or, equivalently, ℓ_{0}^{∞} is the linear span in ℓ^{∞} of the sequences which take only the values 0 and 1 .

2 The space $H^{\infty}(D)$

The interpolation theorem in $H^{\infty}(D)$ refers to the existence of sequences $\left(z_{n}\right)$ in D such that, given an arbitrary bounded sequence of complex numbers $\left(a_{n}\right)$, there is an element f in $H^{\infty}(D)$ such that

$$
f\left(z_{n}\right)=a_{n}, \quad n \in \mathbb{N}
$$

Whenever a sequence $\left(z_{n}\right)$ has such a property, we say that it is an interpolating sequence.

Working independently, L. Carleson [3], W. Hayman [8] and D. J. Newman [11] dealt with this kind of problem. Carleson showed that a necessary and sufficient condition for $\left(z_{n}\right)$ to be an interpolating sequence is that there exist $\delta>0$ such that

$$
\begin{equation*}
\prod_{n \neq k}\left|\frac{z_{n}-z_{k}}{1-\overline{z_{n}} z_{k}}\right| \geq \delta, \quad k \in \mathbb{N} \tag{1}
\end{equation*}
$$

Newman showed that if a sequence $\left(z_{n}\right)$ of D satisfies that, for each $f \in H^{1}(D)$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|f\left(z_{n}\right)\right| \cdot\left(1-\left|z_{n}\right|\right)<\infty \tag{2}
\end{equation*}
$$

and besides condition (1) is also satisfied, then $\left(z_{n}\right)$ is an interpolating sequence.
Carleson's result clearly yields that condition (1) implies condition (2). Hayman proved that condition (1) is a necessary condition for a sequence to be interpolating and also provided a condition stronger than (1) to achieve sufficiency. This stronger condition enabled him to obtain an explicit interpolation formula for the function f that takes the previously fixed values $\left(a_{n}\right)$ at $\left(z_{n}\right)$. Hayman also showed that if one can interpolate sequences of one's and zero's at the points of $\left(z_{n}\right)$, then condition (1) is satisfied. By applying Carleson's result, $\left(z_{n}\right)$ is then an interpolating sequence. We shall obtain that $\left(z_{n}\right)$ is an interpolating sequence without using Carleson's theorem. To do so, we shall make use of the following result, which is a particular case of [8, p. 296]: a) If T is a continuous linear map from a Banach space E onto a barrelled normed space F, then F is a Banach space.

In [6, p. 145], A. Grothendieck shows that ℓ_{0}^{∞} is a barrelled space. In [14], motivated by a problem of localization in an $L F$ space of the values of a bounded additive measure, we obtained the following result: b) If $\left(E_{n}\right)$ is an increasing sequence of subspaces of ℓ_{0}^{∞} such that its union is ℓ_{0}^{∞}, then there is a subspace $E_{n_{0}}$ which is barrelled and dense in ℓ_{0}^{∞}. After studying this localization problem replacing the $L F$ space by a webbed space of type \mathcal{C}, [4], we conjecture that a stronger property than that of b) will still hold. We shall study this property in the next section and will later use it in the problem that we are interested in.

Theorem 1. If $\left(z_{n}\right)$ is a sequence in D such that, for every sequence $\left(a_{n}\right)$ with a_{n} being either zero or one, $n \in \mathbb{N}$, there is f in $H^{\infty}(D)$ such that $f\left(z_{n}\right)=a_{n}, n \in \mathbb{N}$, then $\left(z_{n}\right)$ is an interpolating sequence.

Proof. Let T be the map from $H^{\infty}(D)$ into ℓ^{∞} given by

$$
T f:=\left(f\left(z_{n}\right)\right), \quad f \in H^{\infty}(D)
$$

We have that $F:=T\left(H^{\infty}(D)\right)$ contains ℓ_{0}^{∞}. Since ℓ_{0}^{∞} is barrelled and dense in ℓ^{∞}, it follows that F is barrelled and dense in ℓ^{∞}. Thus, $T: H^{\infty}(D) \rightarrow F$ is continuous, linear and onto. We apply result a) and so we have that F is a Banach space. Consequently, $T\left(H^{\infty}(D)\right)=\ell^{\infty}$ and the conclusion follows.

3 The space ℓ_{0}^{∞}

We consider the following tree of infinitely many ramification points:

$$
T_{\infty}:=\bigcup\left\{\mathbb{N}^{k}: k \in \mathbb{N}\right\}
$$

An increasing web in a set E is a family

$$
\mathcal{W}=\left\{E_{t}: t \in T_{\infty}\right\}
$$

of subsets of E such that

$$
E_{1} \subset E_{2} \subset \ldots \subset E_{n} \subset \ldots, \cup_{n=1}^{\infty} E_{n}=E
$$

and such that, for each t of T_{∞},

$$
E_{t, 1} \subset E_{t, 2} \subset \ldots \subset E_{t, n} \subset \ldots, \quad \cup_{n=1}^{\infty} E_{t, n}=E_{t} .
$$

If E is a linear space and E_{t} is a linear subspace of $E, t \in T_{\infty}$, we say that \mathcal{W} is an increasing linear web.

A locally convex space E is said to be baireled whenever, for any increasing linear web in E,

$$
\mathcal{W}=\left\{E_{t}: t \in T_{\infty}\right\}
$$

there is an infinite branch

$$
\gamma=\left\{\left(n_{1}\right),\left(n_{1}, n_{2}\right), \ldots,\left(n_{1}, n_{2}, \ldots, n_{j}\right), \ldots\right\}
$$

such that each $E_{t}, t \in \gamma$, is dense in E and barrelled. It is shown in [10] that ℓ_{0}^{∞} is baireled and this property, in a more general way, is used to obtain some new results on bounded additive measures, both scalar and vector-valued.

For the proof of the next proposition we shall make use of the following result, [12]: c) Let F be a closed subspace of a locally convex space E and let T be the canonical mapping from E onto E / F. Let A be a closed absolutely convex subset of E. If there is an absolutely convex zero-neighborhood U of E such that $U \cap F \subset$ A and $\overline{T(A \cap U)}$ is a zero-neighborhood in E / F, then A is a zero-neighborhood in E.

Proposition 1. Let F be a closed subspace of the locally convex space E. If F and E / F are both baireled, then E is also baireled.

Proof. Let

$$
\mathcal{W}=\left\{E_{t}: t \in T_{\infty}\right\}
$$

be an increasing linear web in E. It follows that

$$
\mathcal{W}^{\prime}=\left\{E_{t} \cap F: t \in T_{\infty}\right\}
$$

is an increasing linear web in F and so, since this space is baireled, T_{∞} has an infinite branch

$$
\gamma=\left\{\left(n_{1}\right),\left(n_{1}, n_{2}\right), \ldots,\left(n_{1}, n_{2}, \ldots, n_{j}\right), \ldots\right\}
$$

such that $E_{t} \cap F$ is dense in F and barrelled, for $t \in \gamma$. If in \mathcal{W}, for every $k \in \mathbb{N}$, we only consider the subindexes t of the form $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, with $j_{1} \geq n_{1}, j_{2} \geq$ $n_{2}, \ldots, j_{k} \geq n_{k}$, we obtain a subset \mathcal{W}_{1} of \mathcal{W} such that, if we conveniently change the subindexes of its elements, we have an increasing linear web such that the intersection of each of its elements with F is dense in F and barrelled. Hence, we may assume that \mathcal{W} has the property that, for every $t \in T_{\infty}, E_{t} \cap F$ is dense in F and barrelled. On the other hand, we have that

$$
\mathcal{W}^{\prime \prime}=\left\{T\left(E_{t}\right): t \in T_{\infty}\right\}
$$

is an increasing linear web in E / F and, since this space is baireled, we can proceed as before and assume that \mathcal{W} has the property that, for every $t \in T_{\infty}, T\left(E_{t}\right)$ is dense in E / F and barrelled.

Let us fix $t \in T_{\infty}$. Let B be a closed absolutely convex absorbing subset of E_{t}. Let A be the closure of B in E. We have that $B \cap F$ is a zero-neighborhood in $E_{t} \cap F$ and thus $A \cap F$ is a zero-neighborhood in F. We find an absolutely convex zero-neighborhood U in E such that $U \cap F \subset A$. It follows that $B \cap U$ is an absolutely convex absorbing subset of E_{t} and so $T(B \cap U)$ is an absolutely convex absorbing subset of $T\left(E_{t}\right)$. Hence, if $\overline{T(B \cap U)}$ denotes the closure of $T(B \cap U)$ in $E / F, \overline{T(B \cap U)}$ is a zero-neighborhood in this space. Since $\overline{T(A \cap U)}$ contains $\overline{T(B \cap U)}$, we have that $\overline{T(A \cap U)}$ is a zero-neighborhood in E / F. By applying result c), we obtain that A is a zero-neighborhood in E, from which we deduce that E_{t} is barrelled and dense in E.

In the coming section, besides using the three-space property before stated, we shall need the following result, [5]: d) Let F a subspace of countable codimension of the locally convex space E. If E is baireled, then so is F.

For a given integer $k \geq 2$, let M denote the subset of \mathbb{N}^{k} such that $\left(j_{1}, j_{2}, \ldots, j_{k}\right) \in$ M if and only if $j_{1}<j_{2}<\ldots<j_{k}$. We write

$$
H_{j_{1}, j_{2}, \ldots, j_{k}}:=\left\{\left(a_{j}\right) \in \ell_{0}^{\infty}: a_{j_{1}}=a_{j_{2}}=\ldots=a_{j_{k}}\right\} .
$$

Then $H_{j_{1}, j_{2}, \ldots, j_{k}}$ is a closed subspace of ℓ_{0}^{∞} with codimension $k-1$. We also have that

$$
\bigcup\left\{H_{j_{1}, j_{2}, \ldots, j_{k}}:\left(j_{1}, j_{2}, \ldots, j_{k}\right) \in M\right\}=\ell_{0}^{\infty}
$$

from where it follows that ℓ_{0}^{∞} is not a Baire space.
In [15], a locally convex space E is said to be totally barrelled whenever, for an arbitrary countable cover of E by subspaces $\left\{E_{n}: n \in \mathbb{N}\right\}$, there is an integer n_{0} such that $E_{n_{0}}$ is barrelled and its closure has finite codimension. Noticing that, for any $m \in \mathbb{N}, \ell_{0}^{\infty}$ may be covered by a countable collection of closed subspaces with codimension m, one may wonder whether ℓ_{0}^{∞} is totally barrelled. The answer to this is found in [1], where the following is shown: e) There is a sequence $\left(F_{n}\right)$ of closed subspaces of ℓ_{0}^{∞}, with infinite codimension, which covers ℓ_{0}^{∞}.

In the proof of the next proposition we shall need the following result, to be found in [15]: f) Let $\left\{E_{n}: n \in \mathbb{N}\right\}$ be a sequence of subspaces of a locally convex space E which covers E. If E is totally barrelled, then there is a positive integer n_{0} such that $E_{n_{0}}$ is totally barrelled and its closure has finite codimension.

Proposition 2. Let E be a locally convex space. If E is totally barrelled, then it is baireled.
Proof. Let

$$
\mathcal{W}:=\left\{E_{t}: t \in T_{\infty}\right\}
$$

be a linear increasing web in E. The sequence $\left(E_{n}\right)$ covers E, hence there is a positive integer n_{1} such that $E_{n_{1}}$ is totally barrelled and its closure has finite codimension. Since $\left(E_{n}\right)$ is increasing, we may take $E_{n_{1}}$ being dense in E. Now, the sequence $\left(E_{n_{1}, n}\right)$ is increasing and covers $E_{n_{1}}$. Thus, we may find $n_{2} \in \mathbb{N}$ such that $E_{n_{1}, n_{2}}$ is dense in $E_{n_{1}}$, therefore dense in E, and totally barrelled. Proceeding in this way, we obtain a branch in T_{∞}

$$
\gamma=\left\{\left(n_{1}\right),\left(n_{1}, n_{2}\right), \ldots,\left(n_{1}, n_{2}, \ldots, n_{j}\right), \ldots\right\}
$$

in such a way that E_{t} is barrelled and dense in E for every $t \in \gamma$.
Since ℓ_{0}^{∞} is baireled, result e) and the former proposition tell us that being totally barrelled is a property which is strictly stronger than that of being baireled.

4 On certain dense subspaces of $H^{\infty}(D)$

Theorem 2. There exists in $H^{\infty}(D)$ a dense subspace G which is baireled and such that every non-zero element f of G does not extend holomorphically outside D.

Proof. We choose in D an interpolating sequence $\left(z_{n}\right)$ such that its closure coincides with the unit circle. Let T be the map from $H^{\infty}(D)$ into ℓ^{∞} such that

$$
T f:=\left(f\left(z_{n}\right)\right), \quad f \in H^{\infty}(D)
$$

Let F denote the subspace of $H^{\infty}(D)$ given by the kernel of T. We put $E:=$ $T^{-1}\left(\ell_{0}^{\infty}\right)$. Since ℓ_{0}^{∞} is dense in ℓ^{∞}, we have that E is dense in $H^{\infty}(D)$ and so ℓ_{0}^{∞} identifies canonically with E / F. Since F is the kernel of a continuous operator, it is automatically a closed, hence Banach, subspace. Thus F is baireled. E / F is also baireled. Proposition 1 applies yielding that E is baireled.

We take an element g of E such that it extends holomorphically outside D. We find u_{0} in the unit circle and $\rho>0$ for which there exists a function h holomorphic in $D\left(u_{0} ; \rho\right)$ and coinciding with g in $D \cap D\left(u_{0} ; \rho\right)$. Since $\left(g\left(z_{n}\right)\right)$ takes only a finite number of distinct values, we have that h is constant in $D\left(u_{0} ; \rho\right)$ and so g is also constant. If k is the element of $H^{\infty}(D)$ such that $k(z)=1, z \in D$, it follows that k belongs to E. Let G be a hyperplane dense in E with $k \notin G$. Then after result d), G is baireled. Besides, G is dense in $H^{\infty}(D)$ and each non-zero element of G does not extend holomorphically outside D.

Let us now consider a simply connected domain Ω of \mathbb{C}, distinct from \mathbb{C}. Let $H^{\infty}(\Omega)$ be the linear space formed by the bounded holomorphic functions in Ω. If f is in $H^{\infty}(\Omega)$, we put

$$
\|f\|_{\infty}:=\sup \{|f(z)|: z \in \Omega\} .
$$

We consider $H^{\infty}(\Omega)$ provided with the norm $\|\cdot\|_{\infty}$.

Theorem 3. There is in $H^{\infty}(\Omega)$ a dense subspace G which is baireled and such that each non-zero element f of G does not extend holomorphically outside Ω.

Proof. We apply Riemann's theorem and obtain a function φ holomorphic in Ω, which defines a homeomorphism onto D. We find a sequence $\left(z_{n}\right)$ in Ω such that its closure coincides with the boundary $\partial \Omega$ of Ω and so that $\left(\varphi\left(z_{n}\right)\right)$ is an interpolating sequence in $H^{\infty}(D)$. Let T be the map from $H^{\infty}(\Omega)$ into ℓ^{∞} such that

$$
T f:=\left(f\left(z_{n}\right)\right), \quad f \in H^{\infty}(\Omega)
$$

We have that T is linear and bounded. We show that it is also onto. If $\left(a_{n}\right) \in \ell^{\infty}$, we find an element g of $H^{\infty}(D)$ such that

$$
g\left(\varphi\left(z_{n}\right)\right)=a_{n}, \quad n \in \mathbb{N}
$$

It follows that $g \circ \varphi \in H^{\infty}(\Omega)$ and

$$
(g \circ \varphi)\left(z_{n}\right)=g\left(\varphi\left(z_{n}\right)\right)=a_{n}, n \in \mathbb{N} .
$$

Proceeding as in the proof of the previous theorem, the conclusion follows.

5 The spaces $\ell_{(0)}^{p}, 1 \leq p<\infty$.

In [9, p. 369], the space $\ell_{(0)}^{1}$ is shown to be barrelled and, in [15], it is proved to be totally barrelled. We shall see in this section that the spaces $\ell_{(0)}^{p}, 1<p<\infty$ also possess these properties. Moreover, we prove that $\ell_{(0)}^{p}, 1 \leq p<\infty$ enjoys a strictly stronger property than that of being totally barrelled.

We put $B\left(\ell^{p}\right)$ for the closed unit ball of ℓ^{p} and $e_{n}:=\left(a_{j}\right)$, with $a_{j}=0, j \neq n$, $a_{n}=1$. Given a positive integer r, we write $B^{r}\left(\ell^{p}\right)$ to denote the set of elements $\left(a_{j}\right)$ of $B\left(\ell^{p}\right)$ such that $a_{j}=0, j=1,2, \ldots, r$. If s is an integer such that $0 \leq s<r$, by $B_{s}^{r}\left(\ell^{p}\right)$ we represent the set of the elements $\left(a_{j}\right)$ of $B^{r}\left(\ell^{p}\right)$ for which

$$
a_{j}=0, \quad j \notin\{r m+s: m \in \mathbb{N}\} .
$$

Following [17], we say that a subset A of a locally convex space E is sum-absorbing whenever there exists $\lambda>0$ such that $\lambda(A+A)$ is contained in A.

Lemma 1. Let $\left(A_{n}\right)$ be a sequence of closed balanced sum-absorbing subsets of ℓ^{p} such that they cover $\ell_{(0)}^{p}$. Then there are positive integers n_{0} and r_{0} such that the linear span of $A_{n_{0}}$ contains the closed linear span of $\left\{e_{j}: j=r_{0}, r_{0}+1, \ldots\right\}$.

Proof. Without loss of generality, we may assume that the homethetics of A_{n}, with ratio a positive integer, that is, all sets of the form $r A_{n}, r \in \mathbb{N}$, are contained in $\left(A_{n}\right)$. We proceed by contradiction assuming that the property does not hold. It is clear that the linear span of A_{n} coincides with $\cup_{j=1}^{\infty} j A_{n}$. Hence, for every pair of positive integers n, r, A_{n} does not absorb $B^{r}\left(\ell^{p}\right)$.

We put $r_{1}=2$. Proceeding inductively, let us assume that, for a positive integer i, we have obtained an integer $r_{i}>1$. Since A_{i} is balanced and sumabsorbing and

$$
B^{r_{i}^{2}}\left(\ell^{p}\right) \subset \sum_{s=0}^{r_{i}^{2}-1} B_{s}^{r_{i}^{2}}\left(\ell^{p}\right)
$$

there exists $s_{i}, 0 \leq s_{i}<r_{i}^{2}$, such that A_{i} does not absorb $B_{s_{i}}^{r_{i}^{2}}\left(\ell^{p}\right)$. We find $\left(b_{j}^{(i)}\right)$ in $B_{s_{i}}^{r_{i}^{2}}\left(\ell^{p}\right)$ such that

$$
\left(b_{j}^{(i)}\right) \notin A_{i} .
$$

Since A_{i} is closed in ℓ^{p}, there is an integer $r_{i+1}>r_{i}^{2}$ with the form $\overline{r_{i}^{2}}+s_{i}$, i.e., r_{i+1} congruent with s_{i} modulo r_{i}^{2}, such that, if

$$
b_{j, i}:=\left\{\begin{array}{l}
b_{j}^{(i)}, j=1,2, \ldots, r_{i+1} \\
0, j=r_{i+1}+1, r_{i+1}+2, \ldots
\end{array}\right.
$$

then

$$
\begin{equation*}
\left(b_{j, i}\right) \notin A_{i} \tag{3}
\end{equation*}
$$

This concludes the complete induction procedure. We write

$$
P:=\left\{j \in \mathbb{N}: b_{j, i} \neq 0, \text { for some } i \in \mathbb{N}\right\}
$$

We take an element h in P. Let $i \in \mathbb{N}$ be such that $b_{h, i} \neq 0$. This integer i is clearly unique and we have that

$$
r_{i}^{2}<h \leq r_{i+1}
$$

There is a positive integer q such that $h=q r_{i}^{2}+s_{i}$. Now, the elements $j \in \mathbb{N}$ such that $j \leq h$ and $b_{j, i} \neq 0$ belong to one of the following sets

$$
\left\{l r_{i}^{2}: l=2,3, \ldots, q\right\}, \text { if } s_{i}=0,\left\{l r_{i}^{2}+s_{i}: l=1,2, \ldots, q\right\}, \text { if } s_{i} \neq 0
$$

If $i=1$, then

$$
P(h) \leq q .
$$

If $i>1$, and i^{\prime}, k are in \mathbb{N} such that $i^{\prime} \neq i, k<h$ and $b_{k, i^{\prime}} \neq 0$, then $i^{\prime}<i$ and so

$$
k \leq r_{i^{\prime}+1} \leq r_{i}
$$

from where we have

$$
P(h) \leq r_{i}+q .
$$

In any case we obtain that

$$
P(h) \leq r_{i}+q
$$

and thus

$$
\frac{P(h)}{h} \leq \frac{r_{i}+q}{q r_{i}^{2}+s_{i}} \leq \frac{1}{q r_{i}}+\frac{1}{r_{i}^{2}}
$$

so

$$
\lim _{h \rightarrow \infty} \frac{P(h)}{h}=0
$$

that is, P has zero density. We now put $\ell^{p}(P)$ to denote the closed linear span of $\left\{e_{j}: j \in P\right\}$ in ℓ^{p}. Then $\ell^{p}(P)$ is a Banach space which is contained in $\ell_{(0)}^{p}$. Since $\left(A_{n}\right)$ covers $\ell^{p}(P)$, there is a positive integer n_{0} such that $A_{n_{0}} \cap \ell^{p}(P)$ has non-empty interior in $\ell^{P}(P)$, and, since $A_{n_{0}}$ is balanced and sum-absorbing, it follows that $A_{n_{0}} \cap \ell^{p}(P)$ is a zero-neighborhood in $\ell^{p}(P)$. Consequently, there is a positive integer s such that

$$
B\left(\ell^{p}\right) \cap \ell^{p}(P) \subset s A_{n_{0}} .
$$

Since the sequence $\left(A_{n}\right)$ contains all the homothetics of $A_{n_{0}}$ with ratio a positive integer, there is $m \in \mathbb{N}$ such that $s A_{n_{0}} \subset A_{m}$. Hence

$$
\left(b_{j, m}\right) \in B\left(\ell^{p}\right) \cap \ell^{p}(P) \subset A_{m},
$$

which is in contradiction with (3).
In [16], the following definition is given: A locally convex space E is semiBaire whenever, for every sequence $\left(A_{j}\right)$ of closed balanced sum-absorbing subsets of E covering E, there is $j_{0} \in \mathbb{N}$ such that $A_{j_{0}}$ is a zero-neighborhood in its linear hull $L\left(A_{j_{0}}\right)$, and this space has finite codimension in E.
Note. Notice that, if in $\ell_{(0)}^{p}$ we put H_{j} to denote the closed linear span of

$$
\left\{e_{n}: n \in \mathbb{N} \backslash\{j\}\right\}
$$

then $\left(H_{j}\right)$ is a sequence of closed hyperplanes of $\ell_{(0)}^{p}$ which covers $\ell_{(0)}^{p}$.
Theorem 4. The space $\ell_{(0)}^{p}$ is semi-Baire.
Proof. In $\ell_{(0)}^{p}$, let $\left(B_{n}\right)$ be a sequence of closed balanced and sum-absorbing subsets which covers $\ell_{(0)}^{p}$. Let A_{n} be the closure of B_{n} in ℓ^{p}. It is quite clear that A_{n} is balanced and sum-absorbing. By applying the former lemma, we obtain two positive integers n_{0}, r_{0} such that $L\left(A_{n_{0}}\right)$ contains the closed linear span in ℓ^{p} of $\left\{e_{j}: j=r_{0}, r_{0}+1, \ldots\right\}$. Hence, $L\left(A_{n_{0}}\right)$ is closed and has finite codimension in ℓ^{p}, thus yielding that $A_{n_{0}}$ is a zero-neighborhood in $L\left(A_{n_{0}}\right)$. Since $B_{n_{0}}=A_{n_{0}} \cap \ell_{(0)}^{p}$ and $L\left(B_{n_{0}}\right)=L\left(A_{n_{0}}\right) \cap \ell_{(0)}^{p}$, it follows that $B_{n_{0}}$ is a zero-neighborhood in $L\left(B_{n_{0}}\right)$ and this space has finite codimension in $\ell_{(0)}^{p}$.

Corollary 1. $\ell_{(0)}^{p}$ is barrelled.
Corollary 2. $\ell_{(0)}^{p}$ is totally barrelled.
Corollary 1 may be found in [9, p. 369] for $p=1$ and Corollary 2 is proved in [14] for $p=1$.

The example given in [16, pp. 154-155] shows that there exist locally convex spaces which are totally barrelled but not semi-Baire.

Proposition 3. Let E be a semi-Baire locally convex space. If $\left(E_{n}\right)$ is a sequence of subspaces of E which covers E, then there is a positive integer n_{0} such that $E_{n_{0}}$ is semiBaire and whose closure has finite codimension.

Proof. Assuming the property is not true, let $\left(E_{n}\right)$ be a sequence of subspaces covering E and not satisfying the statement. We have that $\left(\overline{E_{n}}\right)$ is a sequence of closed balanced sum-absorbing subsets of E covering E. Hence, one of them has finite codimension. Let M be the subset of \mathbb{N} consisting of all integers n such that $\overline{E_{n}}$ has finite codimension. Thus, since none of the subspaces $E_{n}, n \in \mathbb{N} \backslash M$, has finite codimension, it follows that $\left\{E_{n}: n \in \mathbb{N} \backslash M\right\}$ does not cover E. We take

$$
x \in E \backslash \cup\left\{E_{n}: n \in \mathbb{N} \backslash M\right\}
$$

Let us assume that $\left\{E_{n}: n \in M\right\}$ does not cover E. Then, we may take

$$
y \in E \backslash \cup\left\{E_{n}: n \in M\right\} .
$$

We have that x and y are distinct from zero and $x \neq y$. Let

$$
L:=\{x+\lambda y: \lambda \in \mathbb{R}\} .
$$

The sequence $\left(E_{n}\right)$ covers L and each E_{n} meets L in at most one point, which is a contradiction. Therefore, $\left(E_{n}\right)_{n \in M}$ covers E. We may thus assume to finish with the proof that all $\overline{E_{n}}, n \in \mathbb{N}$, have finite codimension.

Let us now assume that each E_{n} is covered by a sequence of subspaces $\left(E_{n, i}\right)_{i \in \mathbb{N}}$ such that $\overline{E_{n, i}}$ does not have finite codimension in $E, n, i \in \mathbb{N}$. Recalling that

$$
E=\cup\left\{E_{n, i}: n, i \in \mathbb{N}\right\}
$$

we obtain a contradiction. Arguing as before, we may assume that, for each $n \in \mathbb{N}$, for an arbitrary sequence $\left(E_{n, i}\right)_{i \in \mathbb{N}}$ of subspaces of E_{n} which covers E_{n}, there is $i_{0} \in \mathbb{N}$ such that $\overline{E_{n, i_{0}}}$ has finite codimension in E.

Since E_{n} is not semi-Baire, we may take in E_{n} a sequence $\left(A_{n, i}\right)_{i \in \mathbb{N}}$ of closed balanced sum-absorbing subsets covering E_{n} and such that, if for $i \in \mathbb{N}$ the set $A_{n, i}$ is a zero-neighborhood in $L\left(A_{n, i}\right)$, then $\overline{L\left(A_{n, i}\right)}$ does not have finite codimension in E. Proceeding as before, we may assume that, for every $i \in \mathbb{N}, \overline{L\left(A_{n, i}\right)}$ has finite codimension in $E, n \in \mathbb{N}$. It follows now that the sets $\overline{A_{n, i}}, n, i \in \mathbb{N}$, are closed balanced sum-absorbing subsets of E which cover E. Consequently, there are positive integers m, s such that $\overline{A_{m, s}}$ is a zero-neighborhood in $L\left(\overline{A_{m, s}}\right)$. Given that

$$
A_{m, s}=\overline{A_{m, s}} \cap L\left(A_{m, s}\right)
$$

we have that $A_{m, s}$ is a zero-neighborhood in $L\left(A_{m, s}\right)$, which is a contradiction.
Proposition 4. If F is a countable codimensional subspace of a semi-Baire space E, then F is semi-Baire.

Proof. Let us assume first that F is a hyperplane. Let $\left(A_{n}\right)$ be a sequence of closed balanced and sum-absorbing subsets of F. We also assume that the homothetics of each A_{n}, with ratio a positive integer, are contained in $\left(A_{n}\right)$. We put $B_{n}:=\overline{A_{n}}, n \in \mathbb{N}$. We then have that B_{n} is closed balanced and sumabsorbing in E. If $\cup_{n=1}^{\infty} B_{n}=E$, there is a positive integer n_{0} such that $B_{n_{0}}$ is a zero-neighborhood in $L\left(B_{n_{0}}\right)$ and this space has finite codimension in E. Hence,
$A_{n_{0}}=B_{n_{0}} \cap L\left(A_{n_{0}}\right)$ and so $A_{n_{0}}$ is a zero-neighborhood in $L\left(A_{n_{0}}\right)$. Also this space has finite codimension in F. Assume now that

$$
\cup\left\{B_{n}: n \in \mathbb{N}\right\} \neq E
$$

Then, there is x in E such that

$$
\{\lambda x: \lambda \in \mathbb{C}, \lambda \neq 0\}
$$

does not intersect $B_{n}, n \in \mathbb{N}$. Let

$$
B:=\{\lambda x: \lambda \in \mathbb{C},|\lambda| \leq 1\} .
$$

We set

$$
B_{n, m}:=B_{n}+m B .
$$

In $E, B_{n, m}$ is closed balanced and sum-absorbing. We take $y \in E$. Then

$$
y=z+\mu x, z \in F, \mu \in \mathbb{C} .
$$

We find r in \mathbb{N} such that $z \in A_{r}$ and choose $s \in \mathbb{N}$ such that $|\mu| \leq s$. Thus

$$
y \in B_{r}+s B=B r, s .
$$

Therefore $\left\{B_{n, m}: n, m \in \mathbb{N}\right\}$ covers E and so there are $n_{0}, m_{0} \in \mathbb{N}$ such that $B_{n_{0}, m_{0}}$ is a zero-neighborhood in $L\left(B_{n_{0}, m_{0}}\right)$ and this space has finite codimension in E. It follows that

$$
B_{n_{0}, m_{0}} \cap L\left(B_{n_{0}}\right)=B_{n_{0}}
$$

from where we get that $B_{n_{0}}$ is a zero-neighborhood in $L\left(B_{n_{0}}\right)$ and this space has finite codimension in E. Thus, since

$$
A_{n_{0}}=B_{n_{0}} \cap L\left(A_{n_{0}}\right),
$$

it follows that $A_{n_{0}}$ is a zero-neighborhood in $L\left(A_{n_{0}}\right)$ and this space has finite codimension in F.

From what was said before, if F has finite codimension in E, we have that F is semi-Baire.

Let us assume now that F has countably infinite codimension in E. Let $\left\{x_{j}\right.$: $j \in \mathbb{N}\}$ be a cobasis of F in E. We denote by E_{n} the linear span of $F \cup\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, $n \in \mathbb{N}$. Hence, $E=\cup_{n=1}^{\infty} E_{n}$ and, from Proposition 3, there is $n_{0} \in \mathbb{N}$ such that $E_{n_{0}}$ is a semi-Baire space. Now, since F has finite codimension in $E_{n_{0}}$, we obtain that F is also semi-Baire.

For the proof of our next proposition, we shall need the following result which is found in [17]: g) Let F be a closed subspace of a locally convex space E and let T be the canonical mapping from E onto E / F. Let A be a closed balanced sumabsorbing subset of E. If there is an absolutely convex zero-neighborhood U in E such that $U \cap F \subset A$ and $\overline{T(A \cap U)}$ is a zero-neighborhood in E / F, then A is a zero-neighborhood in E.

Proposition 5. Let F be a closed subspace of a locally convex space E. If F and E / F are semi-Baire spaces, then E is also a semi-Baire space.

Proof. Let $\left(A_{n}\right)$ be a sequence of closed balanced sum-absorbing subsets of E which covers E. We also assume the homothetics, with positive ratio, of each A_{n}, $n \in \mathbb{N}$, are also contained in the sequence. It follows that the sequence ($\left.A_{n} \cap F\right)$ is formed by closed balanced sum-absorbing subsets of F which cover F.

Let us define the set $M \subset \mathbb{N}$, such that $n \in M$ if and only if $A_{n} \cap F$ is a zeroneighborhood in $L\left(A_{n} \cap F\right)$ and this space has finite codimension in F. We show that the family $L\left(A_{n}\right), n \in \mathbb{N} \backslash M$, does not cover F. Otherwise, since

$$
\cup\left\{j A_{n}: j \in \mathbb{N}\right\}=L\left(A_{n}\right),
$$

we would have that the family $A_{n} \cap F, n \in \mathbb{N} \backslash M$, would cover F. So there would be a positive integer n_{0} in $\mathbb{N} \backslash M$ such that $A_{n_{0}} \cap F$ is a zero-neighborhood in $L\left(A_{n_{0}} \cap F\right)$ and this space has finite codimension in F. Hence $n_{0} \in M$, which is a contradiction.

Proceeding similarly as in the proof of the former proposition, we obtain that

$$
\cup\left\{L\left(A_{n}\right): n \in M\right\}
$$

covers E and thus $\left(A_{n}\right)_{n \in M}$ also covers E. We may thus assume that, for each $n \in \mathbb{N}, A_{n} \cap F$ is a zero-neighborhood in $L\left(A_{n} \cap F\right)$ and that this space has finite codimension in F.

Let us assume now that G_{n} is a topological complement of $L\left(A_{n} \cap F\right)$ in F and let K_{n} be a compact balanced absolutely convex subset of G_{n} which is a zeroneighborhood in G_{n}. We put $B_{n}:=A_{n}+K_{n}$. Then $B_{n} \cap F$ is a zero-neighborhood in F. We have that $B_{n} \cap L\left(A_{n}\right)=A_{n}$ and $L\left(A_{n}\right)$ has finite codimension in $L\left(B_{n}\right)$. Therefore it suffices to find a positive integer s such that B_{s} is a zero-neighborhood in $L\left(B_{s}\right)$ and this space has finite codimension in E. So, in order to prove this proposition, we may assume that $A_{n} \cap F$ is a zero-neighborhood in F. Then $L\left(A_{n}\right) \supset F$.

Let T denote the canonical mapping from E onto E / F. Since E / F is semi-Baire and the sequence $\left(T\left(L\left(A_{n}\right)\right)\right)$ covers E / F, after Proposition 3, we have that there is a positive integer n_{0} for which $T\left(L\left(A_{n_{0}}\right)\right)$ is a semi-Baire subspace of E / F and its closure $\overline{T\left(L\left(A_{n_{0}}\right)\right)}$ has finite codimension in E / F. Let T_{1} be the mapping from $L\left(A_{n_{0}}\right)$ onto $T\left(L\left(A_{n_{0}}\right)\right)$ such that

$$
T_{1} x=T x, \quad x \in L\left(A_{n_{0}}\right) .
$$

We have that F is the kernel of T_{1}. We find an absolutely convex zero-neighborhood U in $L\left(A_{n_{0}}\right)$ such that $U \cap F \subset A_{n_{0}}$. It follows that $T_{1}\left(U \cap A_{n_{0}}\right)$ is a balanced absorbing and sum-absorbing subset of $T\left(L\left(A_{n_{0}}\right)\right)$. If $M_{n_{0}}$ stands for the closure of $T_{1}\left(U \cap A_{n_{0}}\right)$ in $T\left(L\left(A_{n_{0}}\right)\right)$, we have that the sequence $\left(j M_{n_{0}}\right)_{j=1}^{\infty}$ covers $T\left(L\left(A_{n_{0}}\right)\right)$ and, since these sets are balanced and sum-absorbing, we obtain that $M_{n_{0}}$ is a zero-neighborhood in $T\left(L\left(A_{n_{0}}\right)\right)$. Applying result g) we have that $A_{n_{0}}$ is a zeroneighborhood in $L\left(A_{n_{0}}\right)$ and, since $A_{n_{0}}$ is closed in E, it follows that $L\left(A_{n_{0}}\right)$ is closed in E. Then

$$
L\left(A_{n_{0}}\right)=T^{-1}\left(\overline{T\left(L\left(A_{n_{0}}\right)\right)}\right),
$$

from where we deduce that $L\left(A_{n_{0}}\right)$ has finite codimension in E.

6 On certain dense subspaces of $H^{p}(D), 1 \leq p<\infty$

The weighted interpolation problem in $H^{p}(D), 1 \leq p<\infty$, refers to the existence of sequences $\left(z_{n}\right)$ in D such that, given an arbitrary sequence $\left(a_{n}\right)$ in ℓ^{p}, there is an element $f \in H^{p}(D)$ satisfying that

$$
f\left(z_{n}\right)\left(1-\left|z_{n}\right|\right)^{1 / p}=a_{n}, \quad n \in \mathbb{N},
$$

and also that, for each $g \in H^{p}(D)$,

$$
\left(g\left(z_{n}\right)\left(1-\left|z_{n}\right|\right)^{1 / p}\right) \in \ell^{p} .
$$

Whenever $\left(z_{n}\right)$ satisfies these conditions, we shall say that it is a weight interpolating sequence for $H^{p}(D)$.

In [13], it is shown that a sequence $\left(z_{n}\right)$ in D is a weight interpolating sequence for every $H^{p}(D)$ if and only if condition (1) is satisfied.

Theorem 5. In $H^{p}(D)$, there is a dense subspace E which is semi-Baire and such that every non-zero element of E cannot be extended holomorphically outside D.

Proof. We take a weight interpolating sequence $\left(v_{n}\right)$ in D such that the set of all its cluster points coincides with the unit circle Γ. We choose a sequence $\left(u_{n}\right)$ in Γ such that each $u_{r}, r \in \mathbb{N}$, appears infinitely many times in the sequence $\left(u_{n}\right)$ and the elements of this sequence form a dense subset of Γ. We consider an element $t_{n_{1}}$ in $\left(v_{n}\right)$ such that $\left|t_{n_{1}}-u_{1}\right|<1 / 2$.

Proceeding inductively, let us assume that, for a positive integer r, we have found a positive integer n_{r} and a term $t_{n_{r}}$ of $\left(v_{n}\right)$. We choose a finite subsequence $t_{n_{r}+1}, t_{n_{r}+2}, \ldots, t_{n_{r+1}}$ of $\left(v_{n}\right)$ such that $n_{r+1}>2 n_{r}$, the term $t_{n_{r}+1}$ is posterior to $t_{n_{r}}$ in the sequence $\left(v_{n}\right)$ and

$$
\begin{equation*}
\left|t_{j}-u_{r+1}\right|<\frac{1}{2^{j+1}}, \quad j=n_{r}+1, n_{r}+2, \ldots, n_{r+1} . \tag{4}
\end{equation*}
$$

We write the sequence

$$
t_{n_{1}}, t_{n_{1}+1}, \ldots, t_{n_{2}}, \ldots, t_{n_{r}}, \ldots, t_{n_{r}+1}, t_{n_{r}+2}, \ldots, t_{n_{r+1}}, \ldots
$$

in the form $\left(z_{j}\right)$. Clearly, $\left(z_{j}\right)$ is a weight interpolating sequence for $H^{p}(D)$. Let T be the map from $H^{p}(D)$ into ℓ^{p} such that

$$
T f:=\left(f\left(z_{n}\right)\left(1-\left|z_{n}\right|\right)^{1 / p}\right), \quad f \in H^{p}(D)
$$

Then, T is an onto bounded linear map. Setting $E:=T^{-1}\left(\ell_{(0)}^{p}\right)$, we apply Theorem 4 and Proposition 5 to obtain that E is a semi-Baire space. Let us now assume there is a non-zero element f of E admitting continuation outside D. We find positive integers m, s such that there is a holomorphic function h in $D\left(u_{s} ; 1 / m\right)$ which coincides with f in $D \cap D\left(u_{s} ; 1 / m\right)$ and so that $h(z) \neq 0, z \in D\left(u_{s} ; 1 / m\right)$. For an arbitrary positive integer q, we find $r>q$ such that

$$
u_{r+1}=u_{S}, \quad \frac{1}{2^{n_{r}}}<\frac{1}{m} .
$$

It follows from (4) that $f\left(t_{j}\right) \neq 0$ for those values of j. Consequently, if j_{0} is the positive integer for which $z_{j_{0}}=t_{n_{r}+1}$, we have that

$$
\frac{P\left(j_{0}\right)}{j_{0}} \geq \frac{n_{r+1}-n_{r}}{n_{r+1}}=1-\frac{n_{r}}{n_{r+1}}>\frac{1}{2}
$$

from where we obtain that the sequence $\left(f\left(z_{j}\right)\right)$ does not have zero density, which is a contradiction.

References

[1] ARIAS DE REYNA, J.: $\ell_{0}^{\infty}(\Sigma)$ no es totalmente tonelado, Rev. Real Acad. Cienc. Exact. Fis. Natur., Madrid 79, 77-78 (1980).
[2] ARON, R., GARCIA, D., MAESTRE, M.: Linearity in non-linear problems, Rev. R. Acad. Cienc., Serie A. Mat., 95(1), 7-12 (2001).
[3] CARLESON, L.: An interpolation problem for bounded analytic functions, Amer. J. of Math. 80, 921-930 (1958).
[4] De WILDE, M.: Closed Graph Theorem and Webbed Spaces, Pitman, London, 1978.
[5] FERRANDO, J. C., SANCHEZ RUIZ, L. M.: A maximal class of spaces with strong barrelledness conditions, Proc. Roy. Irish Acad., Sect. A 92, 69-75 (1992).
[6] GROTHENDIECK, A.: Espaces vectoriels topologiques, Departamento de Matematica da Universidade di Sao Paulo, Brasil, 1954.
[7] HAYMAN, W.: Interpolation by bounded functions, Ann. Inst. Fourier, Grenoble, 13, 277-290 (1958).
[8] HORVATH, J.: Topological Vector spaces and Distributions I, AddisonWesley, Reading, Massachussets, 1966.
[9] KÖTHE, G.: Topological Vector Spaces I, Springer-Verlag, Berlin-Heidelberg-New York, 1984.
[10] LOPEZ PELLICER, M.: Webs and bounded additive measures, J. of Math. Anal. and App., Vol. 210, 257-267 (1997).
[11] NEWMAN, D. J.: Interpolation in H^{∞}, Trans. Amer. Math. Soc., 92, 501-507 (1959).
[12] ROELCKE, W., DIEROLF, S.: On the three-space problem for topological vector spaces, Collect. Math. , Vol. XXXII, 87-106 (1972).
[13] SHAPIRO, H.S., SHIELDS, A.L.: On some interpolation problems for analytic functions, Amer. J. Math., 83, 513-532 (1961).
[14] VALDIVIA, M.: On certain barrelled normed spaces, Ann. Inst. Fourier, 29, 39-56 (1979).
[15] VALDIVIA, M., PEREZ CARRERAS, P.: On totally barrelled spaces, Math. Z., 178, 263-269 (1981).
[16] VALDIVIA, M.: On certain spaces of holomorphic functions, Proceedings of the Second International School. Advanced Courses of Mathematical Analysis II, World Scientific Publishing Co. Pte. Ltd., 151-173 (2007).
[17] VALDIVIA, M.: The space $\mathcal{H}\left(\Omega,\left(z_{j}\right)\right)$ of holomorphic functions, J. of Math. Anal. and App., Vol. 337/2, 821-839 (2008).

Departamento de Análisis Matemático
Universidad de Valencia
Dr. Moliner, 50
46100 Burjasot (Valencia)
Spain

[^0]: *The author has been partially supported by MICINN Project MTM2008-03211.
 Received by the editors March 2008.
 Communicated by F. Bastin.
 1991 Mathematics Subject Classification : 46E10.
 Key words and phrases: Analytic continuation, barrelled spaces, interpolation.

