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Abstract

Let D be the open unit disk in C. In this article, we construct dense sub-
spaces of Hp(D), 1 ≤ p ≤ ∞, with certain barrelledness properties, such that
their nonzero elements cannot be extended holomorphically outside D.

1 Introduction and notation

Throughout this paper all linear spaces are assumed to be defined over the field C

of complex numbers. We write N for the set of positive integers. Given a complex
number z0 and ρ > 0, we put

D(z0; ρ) := {z ∈ C :| z − z0 |< ρ}

and write
D := D(0; 1).

For 1 ≤ p ≤ ∞, Hp(D) stands for the Hardy space, that is, H∞(D) is the linear
space formed by the bounded holomorphic functions in D with the norm ‖ · ‖∞

such that
‖ f ‖∞ = sup{| f (z) | : z ∈ D}, f ∈ H∞(D),

and, for 1 ≤ p < ∞, Hp(D) is the linear space of the holomorphic functions in D
such that

‖ f ‖p:= sup0≤r<1(
∫ π

−π
| f (reiθ) |p dθ)

1
p < ∞,

provided with the norm ‖ · ‖p.
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Let us now fix 1 ≤ p ≤ ∞. We take a countable dense subset {zn : n ∈ N} of
the unit circle. Given m, n, s ∈ N, we put

Am,n,s := { f ∈ Hp(D) : | f ′(z) |≤ m, z ∈ D ∩ D(zn; 1/s)}.

This subset of Hp(D) is closed and absolutely convex. It is not hard to find a func-
tion g which is continuous in the closure D of D, holomorphic in D and whose
derivative g′(z) is not bounded in D ∩ D(zn; 1/s). Since Am,n,s does not absorb g,
which is obviously in Hp(D), we have that Am,n,s is not a neighborhood of zero
in Hp(D), thus it has no interior points. Denoting by Mp the subset of Hp(D)
formed by those elements that cannot be extended holomorphically outside D,
we have that

⋃

{Am,n,s : m, n, s ∈ N} ⊃ Hp(D) \ Mp

from where we deduce that Mp is a set of the second category in the Banach space
Hp(D).

In [2], the authors construct a non-separable closed linear subspace Y of H∞(D)
such that every nonzero element of Y does not extend holomorphically outside
D. In this paper we are interested in constructing dense subspaces of Hp(D),
1 ≤ p ≤ ∞, which, except for the zero function, are contained in Mp, at the same
time possessing good barrelledness properties.

Let P be a subset of N. Given j in N, we write P(j) to denote the set of ele-
ments of P which are not greater than j. P is said to have zero density whenever

lim
j→∞

P(j)

j
= 0.

We say that a sequence (aj) of complex numbers has zero density whenever the
set

{j ∈ N : aj 6= 0}

has zero density. For 1 ≤ p < ∞, we write ℓ
p

(0)
to represent the subspace of ℓp

whose elements have zero density.
ℓ∞

0 will stand for the subspace of ℓ∞ formed by those sequences taking only
a finite number of values, or, equivalently, ℓ∞

0 is the linear span in ℓ∞ of the se-
quences which take only the values 0 and 1.

2 The space H∞(D)

The interpolation theorem in H∞(D) refers to the existence of sequences (zn) in D
such that, given an arbitrary bounded sequence of complex numbers (an), there
is an element f in H∞(D) such that

f (zn) = an, n ∈ N.

Whenever a sequence (zn) has such a property, we say that it is an interpolating
sequence.
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Working independently, L. Carleson [3], W. Hayman [8] and D. J. Newman
[11] dealt with this kind of problem. Carleson showed that a necessary and suf-
ficient condition for (zn) to be an interpolating sequence is that there exist δ > 0
such that

∏
n 6=k

|
zn − zk

1 − zn zk
| ≥ δ, k ∈ N. (1)

Newman showed that if a sequence (zn) of D satisfies that, for each f ∈ H1(D),

∞

∑
n=1

| f (zn) | ·(1− | zn |) < ∞ (2)

and besides condition (1) is also satisfied, then (zn) is an interpolating sequence.
Carleson’s result clearly yields that condition (1) implies condition (2). Hay-

man proved that condition (1) is a necessary condition for a sequence to be inter-
polating and also provided a condition stronger than (1) to achieve sufficiency.
This stronger condition enabled him to obtain an explicit interpolation formula
for the function f that takes the previously fixed values (an) at (zn). Hayman
also showed that if one can interpolate sequences of one’s and zero’s at the points
of (zn), then condition (1) is satisfied. By applying Carleson’s result, (zn) is then
an interpolating sequence. We shall obtain that (zn) is an interpolating sequence
without using Carleson’s theorem. To do so, we shall make use of the following
result, which is a particular case of [8, p. 296]: a) If T is a continuous linear map
from a Banach space E onto a barrelled normed space F, then F is a Banach space.

In [6, p. 145], A. Grothendieck shows that ℓ∞
0 is a barrelled space. In [14],

motivated by a problem of localization in an LF space of the values of a bounded
additive measure, we obtained the following result: b) If (En) is an increasing
sequence of subspaces of ℓ∞

0 such that its union is ℓ∞
0 , then there is a subspace

En0 which is barrelled and dense in ℓ∞
0 . After studying this localization problem

replacing the LF space by a webbed space of type C, [4], we conjecture that a
stronger property than that of b) will still hold. We shall study this property in
the next section and will later use it in the problem that we are interested in.

Theorem 1. If (zn) is a sequence in D such that, for every sequence (an) with an being
either zero or one, n ∈ N, there is f in H∞(D) such that f (zn) = an, n ∈ N, then (zn)
is an interpolating sequence.

Proof. Let T be the map from H∞(D) into ℓ∞ given by

T f := ( f (zn)), f ∈ H∞(D).

We have that F := T(H∞(D)) contains ℓ∞
0 . Since ℓ∞

0 is barrelled and dense in
ℓ∞, it follows that F is barrelled and dense in ℓ∞. Thus, T : H∞(D) → F is
continuous, linear and onto. We apply result a) and so we have that F is a Banach
space. Consequently, T(H∞(D)) = ℓ∞ and the conclusion follows.
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3 The space ℓ∞
0

We consider the following tree of infinitely many ramification points:

T∞ :=
⋃

{N
k : k ∈ N}.

An increasing web in a set E is a family

W = {Et : t ∈ T∞}

of subsets of E such that

E1 ⊂ E2 ⊂ ... ⊂ En ⊂ ..., ∪∞
n=1En = E,

and such that, for each t of T∞,

Et,1 ⊂ Et,2 ⊂ ... ⊂ Et,n ⊂ ..., ∪∞
n=1Et,n = Et.

If E is a linear space and Et is a linear subspace of E, t ∈ T∞, we say that W is an
increasing linear web.

A locally convex space E is said to be baireled whenever, for any increasing
linear web in E,

W = {Et : t ∈ T∞},

there is an infinite branch

γ = {(n1), (n1, n2), ..., (n1, n2, ..., nj), ...}

such that each Et, t ∈ γ, is dense in E and barrelled. It is shown in [10] that ℓ∞
0

is baireled and this property, in a more general way, is used to obtain some new
results on bounded additive measures, both scalar and vector-valued.

For the proof of the next proposition we shall make use of the following result,
[12]: c) Let F be a closed subspace of a locally convex space E and let T be the
canonical mapping from E onto E/F. Let A be a closed absolutely convex subset
of E. If there is an absolutely convex zero-neighborhood U of E such that U ∩ F ⊂

A and T(A ∩ U) is a zero-neighborhood in E/F, then A is a zero-neighborhood
in E.

Proposition 1. Let F be a closed subspace of the locally convex space E. If F and E/F
are both baireled, then E is also baireled.

Proof. Let
W = {Et : t ∈ T∞}

be an increasing linear web in E. It follows that

W ′ = {Et ∩ F : t ∈ T∞}

is an increasing linear web in F and so, since this space is baireled, T∞ has an
infinite branch

γ = {(n1), (n1, n2), ..., (n1, n2, ..., nj), ...}
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such that Et ∩ F is dense in F and barrelled, for t ∈ γ. If in W , for every k ∈ N,
we only consider the subindexes t of the form (j1, j2, ..., jk), with j1 ≥ n1, j2 ≥
n2,..., jk ≥ nk, we obtain a subset W1 of W such that, if we conveniently change
the subindexes of its elements, we have an increasing linear web such that the
intersection of each of its elements with F is dense in F and barrelled. Hence, we
may assume that W has the property that, for every t ∈ T∞, Et ∩ F is dense in F
and barrelled. On the other hand, we have that

W ′′ = {T(Et) : t ∈ T∞}

is an increasing linear web in E/F and, since this space is baireled, we can proceed
as before and assume that W has the property that, for every t ∈ T∞, T(Et) is
dense in E/F and barrelled.

Let us fix t ∈ T∞. Let B be a closed absolutely convex absorbing subset of
Et. Let A be the closure of B in E. We have that B ∩ F is a zero-neighborhood
in Et ∩ F and thus A ∩ F is a zero-neighborhood in F. We find an absolutely
convex zero-neighborhood U in E such that U ∩ F ⊂ A. It follows that B∩U is an
absolutely convex absorbing subset of Et and so T(B∩U) is an absolutely convex

absorbing subset of T(Et). Hence, if T(B ∩ U) denotes the closure of T(B ∩ U) in

E/F, T(B ∩ U) is a zero-neighborhood in this space. Since T(A ∩ U) contains

T(B ∩ U), we have that T(A ∩ U) is a zero-neighborhood in E/F. By applying
result c), we obtain that A is a zero-neighborhood in E, from which we deduce
that Et is barrelled and dense in E.

In the coming section, besides using the three-space property before stated, we
shall need the following result, [5]: d) Let F a subspace of countable codimension
of the locally convex space E. If E is baireled, then so is F.

For a given integer k ≥ 2, let M denote the subset of Nk such that (j1, j2, ..., jk) ∈
M if and only if j1 < j2 < ... < jk. We write

Hj1,j2,...,jk := {(aj) ∈ ℓ
∞
0 : aj1 = aj2 = ... = ajk}.

Then Hj1,j2,...,jk is a closed subspace of ℓ∞
0 with codimension k − 1. We also have

that
⋃

{Hj1,j2,...,jk : (j1, j2, ..., jk) ∈ M} = ℓ
∞
0 ,

from where it follows that ℓ∞
0 is not a Baire space.

In [15], a locally convex space E is said to be totally barrelled whenever, for an
arbitrary countable cover of E by subspaces {En : n ∈ N}, there is an integer n0

such that En0 is barrelled and its closure has finite codimension. Noticing that, for
any m ∈ N, ℓ∞

0 may be covered by a countable collection of closed subspaces with
codimension m, one may wonder whether ℓ∞

0 is totally barrelled. The answer to
this is found in [1], where the following is shown: e) There is a sequence (Fn) of
closed subspaces of ℓ∞

0 , with infinite codimension, which covers ℓ∞
0 .

In the proof of the next proposition we shall need the following result, to be
found in [15]: f) Let {En : n ∈ N} be a sequence of subspaces of a locally convex
space E which covers E. If E is totally barrelled, then there is a positive integer n0

such that En0 is totally barrelled and its closure has finite codimension.
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Proposition 2. Let E be a locally convex space. If E is totally barrelled, then it is baireled.

Proof. Let
W := {Et : t ∈ T∞}

be a linear increasing web in E. The sequence (En) covers E, hence there is a
positive integer n1 such that En1

is totally barrelled and its closure has finite codi-
mension. Since (En) is increasing, we may take En1

being dense in E. Now, the
sequence (En1,n) is increasing and covers En1

. Thus, we may find n2 ∈ N such
that En1,n2 is dense in En1

, therefore dense in E, and totally barrelled. Proceeding
in this way, we obtain a branch in T∞

γ = {(n1), (n1, n2), ..., (n1, n2, ..., nj), ...}

in such a way that Et is barrelled and dense in E for every t ∈ γ.

Since ℓ∞
0 is baireled, result e) and the former proposition tell us that being

totally barrelled is a property which is strictly stronger than that of being baireled.

4 On certain dense subspaces of H∞(D)

Theorem 2. There exists in H∞(D) a dense subspace G which is baireled and such that
every non-zero element f of G does not extend holomorphically outside D.

Proof. We choose in D an interpolating sequence (zn) such that its closure
coincides with the unit circle. Let T be the map from H∞(D) into ℓ∞ such that

T f := ( f (zn)), f ∈ H∞(D).

Let F denote the subspace of H∞(D) given by the kernel of T. We put E :=
T−1(ℓ∞

0 ). Since ℓ∞
0 is dense in ℓ∞, we have that E is dense in H∞(D) and so ℓ∞

0
identifies canonically with E/F. Since F is the kernel of a continuous operator, it
is automatically a closed, hence Banach, subspace. Thus F is baireled. E/F is also
baireled. Proposition 1 applies yielding that E is baireled.

We take an element g of E such that it extends holomorphically outside D. We
find u0 in the unit circle and ρ > 0 for which there exists a function h holomorphic
in D(u0; ρ) and coinciding with g in D ∩ D(u0; ρ). Since (g(zn)) takes only a finite
number of distinct values, we have that h is constant in D(u0; ρ) and so g is also
constant. If k is the element of H∞(D) such that k(z) = 1, z ∈ D, it follows that k
belongs to E. Let G be a hyperplane dense in E with k /∈ G. Then after result d),
G is baireled. Besides, G is dense in H∞(D) and each non-zero element of G does
not extend holomorphically outside D.

Let us now consider a simply connected domain Ω of C, distinct from C. Let
H∞(Ω) be the linear space formed by the bounded holomorphic functions in Ω.
If f is in H∞(Ω), we put

‖ f ‖∞:= sup{| f (z) | : z ∈ Ω}.

We consider H∞(Ω) provided with the norm ‖ · ‖∞.
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Theorem 3. There is in H∞(Ω) a dense subspace G which is baireled and such that each
non-zero element f of G does not extend holomorphically outside Ω.

Proof. We apply Riemann’s theorem and obtain a function ϕ holomorphic in
Ω, which defines a homeomorphism onto D. We find a sequence (zn) in Ω such
that its closure coincides with the boundary ∂Ω of Ω and so that (ϕ(zn)) is an
interpolating sequence in H∞(D). Let T be the map from H∞(Ω) into ℓ∞ such
that

T f := ( f (zn)), f ∈ H∞(Ω).

We have that T is linear and bounded. We show that it is also onto. If (an) ∈ ℓ∞,
we find an element g of H∞(D) such that

g(ϕ(zn)) = an, n ∈ N.

It follows that g ◦ ϕ ∈ H∞(Ω) and

(g ◦ ϕ)(zn) = g(ϕ(zn)) = an, n ∈ N.

Proceeding as in the proof of the previous theorem, the conclusion follows.

5 The spaces ℓ
p

(0)
, 1 ≤ p < ∞.

In [9, p. 369], the space ℓ1
(0)

is shown to be barrelled and, in [15], it is proved to

be totally barrelled. We shall see in this section that the spaces ℓ
p

(0)
, 1 < p < ∞

also possess these properties. Moreover, we prove that ℓ
p

(0)
, 1 ≤ p < ∞ enjoys a

strictly stronger property than that of being totally barrelled.
We put B(ℓp) for the closed unit ball of ℓp and en := (aj), with aj = 0, j 6= n,

an = 1. Given a positive integer r, we write Br(ℓp) to denote the set of elements
(aj) of B(ℓp) such that aj = 0, j = 1, 2, ..., r. If s is an integer such that 0 ≤ s < r,
by Br

s(ℓ
p) we represent the set of the elements (aj) of Br(ℓp) for which

aj = 0, j /∈ {rm + s : m ∈ N}.

Following [17], we say that a subset A of a locally convex space E is sum-absorbing
whenever there exists λ > 0 such that λ(A + A) is contained in A.

Lemma 1. Let (An) be a sequence of closed balanced sum-absorbing subsets of ℓp such
that they cover ℓ

p

(0)
. Then there are positive integers n0 and r0 such that the linear span

of An0 contains the closed linear span of {ej : j = r0, r0 + 1, ...}.

Proof. Without loss of generality, we may assume that the homethetics of An,
with ratio a positive integer, that is, all sets of the form rAn, r ∈ N, are contained
in (An). We proceed by contradiction assuming that the property does not hold.
It is clear that the linear span of An coincides with ∪∞

j=1 j An. Hence, for every

pair of positive integers n, r, An does not absorb Br(ℓp).
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We put r1 = 2. Proceeding inductively, let us assume that, for a positive
integer i, we have obtained an integer ri > 1. Since Ai is balanced and sum-
absorbing and

Br2
i (ℓp) ⊂

r2
i −1

∑
s=0

B
r2

i
s (ℓp),

there exists si, 0 ≤ si < r2
i , such that Ai does not absorb B

r2
i

si
(ℓp). We find (b

(i)
j ) in

B
r2

i
si

(ℓp) such that

(b
(i)
j ) /∈ Ai.

Since Ai is closed in ℓp, there is an integer ri+1 > r2
i with the form

·

r2
i + si, i.e.,

ri+1 congruent with si modulo r2
i , such that, if

bj,i :=

{

b
(i)
j , j = 1, 2, ..., ri+1,

0, j = ri+1 + 1, ri+1 + 2, ...,

then
(bj,i) /∈ Ai. (3)

This concludes the complete induction procedure. We write

P := { j ∈ N : bj,i 6= 0, f or some i ∈ N}.

We take an element h in P. Let i ∈ N be such that bh,i 6= 0. This integer i is clearly
unique and we have that

r2
i < h ≤ ri+1.

There is a positive integer q such that h = qr2
i + si. Now, the elements j ∈ N such

that j ≤ h and bj,i 6= 0 belong to one of the following sets

{lr2
i : l = 2, 3, ..., q}, i f si = 0, {lr2

i + si : l = 1, 2, ..., q}, i f si 6= 0.

If i = 1, then
P(h) ≤ q.

If i > 1, and i′, k are in N such that i′ 6= i, k < h and bk,i′ 6= 0, then i′ < i and so

k ≤ ri′+1 ≤ ri,

from where we have
P(h) ≤ ri + q.

In any case we obtain that
P(h) ≤ ri + q

and thus
P(h)

h
≤

ri + q

qr2
i + si

≤
1

qri
+

1

r2
i

,

so

lim
h→∞

P(h)

h
= 0,
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that is, P has zero density. We now put ℓp(P) to denote the closed linear span
of {ej : j ∈ P} in ℓp. Then ℓp(P) is a Banach space which is contained in ℓ

p

(0)
.

Since (An) covers ℓp(P), there is a positive integer n0 such that An0 ∩ ℓp(P) has
non-empty interior in ℓp(P), and, since An0 is balanced and sum-absorbing, it
follows that An0 ∩ ℓp(P) is a zero-neighborhood in ℓp(P). Consequently, there is
a positive integer s such that

B(ℓp) ∩ ℓ
p(P) ⊂ s An0 .

Since the sequence (An) contains all the homothetics of An0 with ratio a positive
integer, there is m ∈ N such that sAn0 ⊂ Am. Hence

(bj,m) ∈ B(ℓp) ∩ ℓ
p(P) ⊂ Am,

which is in contradiction with (3).
In [16], the following definition is given: A locally convex space E is semi-

Baire whenever, for every sequence (Aj) of closed balanced sum-absorbing sub-
sets of E covering E, there is j0 ∈ N such that Aj0 is a zero-neighborhood in its
linear hull L(Aj0), and this space has finite codimension in E.

Note. Notice that, if in ℓ
p

(0)
we put Hj to denote the closed linear span of

{en : n ∈ N \ {j}},

then (Hj) is a sequence of closed hyperplanes of ℓ
p

(0)
which covers ℓ

p

(0)
.

Theorem 4. The space ℓ
p

(0)
is semi-Baire.

Proof. In ℓ
p

(0)
, let (Bn) be a sequence of closed balanced and sum-absorbing

subsets which covers ℓ
p

(0)
. Let An be the closure of Bn in ℓp. It is quite clear that An

is balanced and sum-absorbing. By applying the former lemma, we obtain two
positive integers n0, r0 such that L(An0) contains the closed linear span in ℓp of
{ej : j = r0, r0 + 1, ...}. Hence, L(An0) is closed and has finite codimension in ℓp,

thus yielding that An0 is a zero-neighborhood in L(An0). Since Bn0 = An0 ∩ ℓ
p

(0)

and L(Bn0) = L(An0) ∩ ℓ
p

(0)
, it follows that Bn0 is a zero-neighborhood in L(Bn0)

and this space has finite codimension in ℓ
p

(0)
.

Corollary 1. ℓ
p

(0)
is barrelled.

Corollary 2. ℓ
p

(0)
is totally barrelled.

Corollary 1 may be found in [9, p. 369] for p = 1 and Corollary 2 is proved in
[14] for p = 1.

The example given in [16, pp. 154-155] shows that there exist locally convex
spaces which are totally barrelled but not semi-Baire.

Proposition 3. Let E be a semi-Baire locally convex space. If (En) is a sequence of
subspaces of E which covers E, then there is a positive integer n0 such that En0 is semi-
Baire and whose closure has finite codimension.
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Proof. Assuming the property is not true, let (En) be a sequence of subspaces
covering E and not satisfying the statement. We have that (En) is a sequence of
closed balanced sum-absorbing subsets of E covering E. Hence, one of them has
finite codimension. Let M be the subset of N consisting of all integers n such that
En has finite codimension. Thus, since none of the subspaces En, n ∈ N \ M, has
finite codimension, it follows that {En : n ∈ N \ M} does not cover E. We take

x ∈ E \ ∪{En : n ∈ N \ M}.

Let us assume that {En : n ∈ M} does not cover E. Then, we may take

y ∈ E \ ∪{En : n ∈ M}.

We have that x and y are distinct from zero and x 6= y. Let

L := { x + λ y : λ ∈ R }.

The sequence (En) covers L and each En meets L in at most one point, which is a
contradiction. Therefore, (En)n∈M covers E. We may thus assume to finish with
the proof that all En, n ∈ N, have finite codimension.

Let us now assume that each En is covered by a sequence of subspaces (En,i)i∈N

such that En,i does not have finite codimension in E, n, i ∈ N. Recalling that

E = ∪{ En,i : n, i ∈ N}

we obtain a contradiction. Arguing as before, we may assume that, for each
n ∈ N, for an arbitrary sequence (En,i)i∈N of subspaces of En which covers En,
there is i0 ∈ N such that En,i0 has finite codimension in E.

Since En is not semi-Baire, we may take in En a sequence (An,i)i∈N of closed
balanced sum-absorbing subsets covering En and such that, if for i ∈ N the set

An,i is a zero-neighborhood in L(An,i), then L(An,i) does not have finite codimen-

sion in E. Proceeding as before, we may assume that, for every i ∈ N, L(An,i)
has finite codimension in E, n ∈ N. It follows now that the sets An,i, n, i ∈ N, are
closed balanced sum-absorbing subsets of E which cover E. Consequently, there
are positive integers m, s such that Am,s is a zero-neighborhood in L(Am,s). Given
that

Am,s = Am,s ∩ L(Am,s),

we have that Am,s is a zero-neighborhood in L(Am,s), which is a contradiction.

Proposition 4. If F is a countable codimensional subspace of a semi-Baire space E, then
F is semi-Baire.

Proof. Let us assume first that F is a hyperplane. Let (An) be a sequence of
closed balanced and sum-absorbing subsets of F. We also assume that the ho-
mothetics of each An, with ratio a positive integer, are contained in (An). We
put Bn := An, n ∈ N. We then have that Bn is closed balanced and sum-
absorbing in E. If ∪∞

n=1Bn = E, there is a positive integer n0 such that Bn0 is a
zero-neighborhood in L(Bn0) and this space has finite codimension in E. Hence,
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An0 = Bn0 ∩ L(An0) and so An0 is a zero-neighborhood in L(An0). Also this space
has finite codimension in F. Assume now that

∪{ Bn : n ∈ N } 6= E.

Then, there is x in E such that

{ λx : λ ∈ C, λ 6= 0}

does not intersect Bn, n ∈ N. Let

B := { λx : λ ∈ C, | λ |≤ 1}.

We set
Bn,m := Bn + m B.

In E, Bn,m is closed balanced and sum-absorbing. We take y ∈ E. Then

y = z + µ x, z ∈ F, µ ∈ C.

We find r in N such that z ∈ Ar and choose s ∈ N such that | µ |≤ s. Thus

y ∈ Br + s B = Br, s.

Therefore {Bn,m : n, m ∈ N} covers E and so there are n0, m0 ∈ N such that Bn0,m0

is a zero-neighborhood in L(Bn0,m0) and this space has finite codimension in E. It
follows that

Bn0,m0 ∩ L(Bn0) = Bn0 ,

from where we get that Bn0 is a zero-neighborhood in L(Bn0) and this space has
finite codimension in E. Thus, since

An0 = Bn0 ∩ L(An0),

it follows that An0 is a zero-neighborhood in L(An0) and this space has finite
codimension in F.

From what was said before, if F has finite codimension in E, we have that F is
semi-Baire.

Let us assume now that F has countably infinite codimension in E. Let {xj :
j ∈ N} be a cobasis of F in E. We denote by En the linear span of F∪{x1, x2, ..., xn},
n ∈ N. Hence, E = ∪∞

n=1En and, from Proposition 3, there is n0 ∈ N such that
En0 is a semi-Baire space. Now, since F has finite codimension in En0 , we obtain
that F is also semi-Baire.

For the proof of our next proposition, we shall need the following result which
is found in [17]: g) Let F be a closed subspace of a locally convex space E and let
T be the canonical mapping from E onto E/F. Let A be a closed balanced sum-
absorbing subset of E. If there is an absolutely convex zero-neighborhood U in E

such that U ∩ F ⊂ A and T(A ∩ U) is a zero-neighborhood in E/F, then A is a
zero-neighborhood in E.

Proposition 5. Let F be a closed subspace of a locally convex space E. If F and E/F are
semi-Baire spaces, then E is also a semi-Baire space.
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Proof. Let (An) be a sequence of closed balanced sum-absorbing subsets of E
which covers E. We also assume the homothetics, with positive ratio, of each An,
n ∈ N, are also contained in the sequence. It follows that the sequence (An ∩ F)
is formed by closed balanced sum-absorbing subsets of F which cover F.

Let us define the set M ⊂ N, such that n ∈ M if and only if An ∩ F is a zero-
neighborhood in L(An ∩ F) and this space has finite codimension in F. We show
that the family L(An), n ∈ N \ M, does not cover F. Otherwise, since

∪{j An : j ∈ N} = L(An),

we would have that the family An ∩ F, n ∈ N \ M, would cover F. So there
would be a positive integer n0 in N \ M such that An0 ∩ F is a zero-neighborhood
in L(An0 ∩ F) and this space has finite codimension in F. Hence n0 ∈ M, which is
a contradiction.

Proceeding similarly as in the proof of the former proposition, we obtain that

∪{L(An) : n ∈ M}

covers E and thus (An)n∈M also covers E. We may thus assume that, for each
n ∈ N, An ∩ F is a zero-neighborhood in L(An ∩ F) and that this space has finite
codimension in F.

Let us assume now that Gn is a topological complement of L(An ∩ F) in F
and let Kn be a compact balanced absolutely convex subset of Gn which is a zero-
neighborhood in Gn. We put Bn := An + Kn. Then Bn ∩ F is a zero-neighborhood
in F. We have that Bn ∩ L(An) = An and L(An) has finite codimension in L(Bn).
Therefore it suffices to find a positive integer s such that Bs is a zero-neighborhood
in L(Bs) and this space has finite codimension in E. So, in order to prove this
proposition, we may assume that An ∩ F is a zero-neighborhood in F. Then
L(An) ⊃ F.

Let T denote the canonical mapping from E onto E/F. Since E/F is semi-Baire
and the sequence (T(L(An))) covers E/F, after Proposition 3, we have that there
is a positive integer n0 for which T(L(An0)) is a semi-Baire subspace of E/F and

its closure T(L(An0)) has finite codimension in E/F. Let T1 be the mapping from
L(An0) onto T(L(An0)) such that

T1x = T x, x ∈ L(An0).

We have that F is the kernel of T1. We find an absolutely convex zero-neighborhood
U in L(An0) such that U ∩ F ⊂ An0 . It follows that T1(U ∩ An0) is a balanced ab-
sorbing and sum-absorbing subset of T(L(An0)). If Mn0 stands for the closure of
T1(U ∩ An0) in T(L(An0)), we have that the sequence (j Mn0)

∞
j=1 covers T(L(An0))

and, since these sets are balanced and sum-absorbing, we obtain that Mn0 is a
zero-neighborhood in T(L(An0)). Applying result g) we have that An0 is a zero-
neighborhood in L(An0) and, since An0 is closed in E, it follows that L(An0) is
closed in E. Then

L(An0) = T−1(T(L(An0 ))),

from where we deduce that L(An0) has finite codimension in E.
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6 On certain dense subspaces of Hp(D), 1 ≤ p < ∞

The weighted interpolation problem in Hp(D), 1 ≤ p < ∞, refers to the existence
of sequences (zn) in D such that, given an arbitrary sequence (an) in ℓp, there is
an element f ∈ Hp(D) satisfying that

f (zn) ( 1 − | zn | )1/p = an, n ∈ N,

and also that, for each g ∈ Hp(D),

(g(zn)(1− | zn |)1/p) ∈ ℓ
p.

Whenever (zn) satisfies these conditions, we shall say that it is a weight interpo-
lating sequence for Hp(D).

In [13], it is shown that a sequence (zn) in D is a weight interpolating sequence
for every Hp(D) if and only if condition (1) is satisfied.

Theorem 5. In Hp(D), there is a dense subspace E which is semi-Baire and such that
every non-zero element of E cannot be extended holomorphically outside D.

Proof. We take a weight interpolating sequence (vn) in D such that the set
of all its cluster points coincides with the unit circle Γ. We choose a sequence
(un) in Γ such that each ur, r ∈ N, appears infinitely many times in the sequence
(un) and the elements of this sequence form a dense subset of Γ. We consider an
element tn1

in (vn) such that | tn1
− u1 |< 1/2.

Proceeding inductively, let us assume that, for a positive integer r, we have
found a positive integer nr and a term tnr of (vn). We choose a finite subsequence
tnr+1, tnr+2, ..., tnr+1

of (vn) such that nr+1 > 2nr, the term tnr+1 is posterior to tnr

in the sequence (vn) and

| tj − ur+1 | <
1

2j+1
, j = nr + 1, nr + 2, ..., nr+1. (4)

We write the sequence

tn1
, tn1+1, ..., tn2, ..., tnr , ..., tnr+1, tnr+2, ..., tnr+1

, ...

in the form (zj). Clearly, (zj) is a weight interpolating sequence for Hp(D). Let T
be the map from Hp(D) into ℓp such that

T f := ( f (zn)(1− | zn |)1/p), f ∈ Hp(D).

Then, T is an onto bounded linear map. Setting E := T−1(ℓ
p

(0)
), we apply Theo-

rem 4 and Proposition 5 to obtain that E is a semi-Baire space. Let us now assume
there is a non-zero element f of E admitting continuation outside D. We find
positive integers m, s such that there is a holomorphic function h in D(us; 1/m)
which coincides with f in D ∩ D(us; 1/m) and so that h(z) 6= 0, z ∈ D(us; 1/m).
For an arbitrary positive integer q, we find r > q such that

ur+1 = us,
1

2nr
<

1

m
.
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It follows from (4) that f (tj) 6= 0 for those values of j. Consequently, if j0 is the
positive integer for which zj0 = tnr+1, we have that

P(j0)

j0
≥

nr+1 − nr

nr+1
= 1 −

nr

nr+1
>

1

2
,

from where we obtain that the sequence ( f (zj)) does not have zero density, which
is a contradiction.
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