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Abstract

For a given class A and a set D the sets
⋂

f∈A f (D) and
⋃

f∈A f (D) are
called the Koebe set and the covering set for A over D, respectively. These
sets are found for the class H of close-to-star functions f of the form f (z) =

z
1−z2 p(z), where Re p(z) > 0, p(0) = 1. Analogous results concerning some
other subclasses of close-to-star functions are established too.

1 Introduction

Let A denote the class of all functions f which are analytic in the unit disk ∆,
normalized by f (0) = f ′(0) − 1 = 0, and let A be a fixed non-empty subset of A.
In [6] the following definitions of the generalized Koebe set and the generalized
covering set, both over a given set D ⊂ ∆ containing 0, were introduced:

KA(D) =
⋂

f∈A

f (D) and LA(D) =
⋃

f∈A

f (D) .

The natural choice of D is ∆r = {z ∈ C : |z| < r}, r ∈ (0, 1). In this case we
are able to estimate the real and imaginary parts or modulus of level curves for
functions in the class A.

The problem of determining such sets is usually easy when A is invariant
under the rotation, i.e.

∀ f ∈ A ∀ϕ ∈ R e−iϕ f (zeiϕ) ∈ A . (1)

It is clear that if A satisfies (1) and D = ∆r, r ∈ (0, 1), then

LA(∆r) = ∆M(r) , where M(r) = max{| f (z)| : f ∈ A, z ∈ ∂∆r} .
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If, additionally, each f ∈ A is univalent in ∆r then

KA(∆r) = ∆m(r) , where m(r) = min{| f (z)| : f ∈ A, z ∈ ∂∆r} .

Remark. If a function is not univalent then its level curves for sufficiently big
r ∈ (0, 1) have ”loops” directed inside the image of ∆r under this function. This
is the reason why the envelope of the level curves for functions in a given family
A may be entirely included in a set f (∆r) for some f ∈ A, and in consequence, in
the Koebe set for A over ∆r.

The condition (1) is not fulfilled by classes of functions with real coefficients.
Some results established in [6, 7, 8] were concerned with the class T of typically

real functions, i.e. T = { f ∈ A : Im z Im f (z) ≥ 0, z ∈ ∆}, and its subclass T(2)

consisted of odd functions.
We want to turn to the class of functions for which coefficients are not real and

(1) is not satisfied.
Denote by CS⋆ the class of functions f ∈ A for which there exist a real number

β ∈ (0, π) and a function g of the class S⋆ of normalized, starlike functions such
that

Re

{

f (z)

eiβg(z)

}

≥ 0 , z ∈ ∆ . (2)

Because of the similarity to the definition of close-to-convex functions, the func-
tions defined above are called close-to-star. Certainly, the full class CS⋆ satisfies
(1), so in view of the inequalities

r(1 − r)

(1 + r)3
≤ | f (z)| ≤ r(1 + r)

(1 − r)3
for r = |z|

which hold for f ∈ CS⋆ we obtain immediately that LCS⋆(∆r) = ∆ r(1+r)

(1−r)3

. Analo-

gous conclusion about the Koebe set is not so obvious because there are func-
tions in CS⋆ which are not univalent. We have only KCS⋆(∆r) = ∆ r(1−r)

(1+r)3

for

r ≤ rS(CS⋆), where rS(CS⋆) means the radius of univalence of CS⋆. The num-
ber rS(CS⋆) = 2 −

√
3 was found by Sakaguchi in [9].

In this paper we are mainly interested in a special subclass of CS⋆. Similarly
as in the class of close-to-convex functions, it is difficult to describe the subclass
of CS⋆ consisting of functions with real coefficients. However, it is possible to
establish other restrictions.

We take into account the class of functions f satisfying (2) with two additional
assumptions: β = 0 and g ∈ S⋆

R, i.e. g is a starlike function with real coefficients.
We denote the class defined in such a way by CS⋆

R. It it obvious that there are
functions in CS⋆

R which do not have real coefficients.
If f ∈ CS⋆

R then it can be written in the form

f (z) = g(z)p(z) , where Re p(z) > 0 . (3)

Due to the normalization of f and g we have p(0) = 1, so p is in the Caratheodory
class P.
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We claim that CS⋆

R is not invariant under the rotation. Consider the function

f0(z) = z(1+z)
(1−z)3 which is extremal for example in the result of Sakaguchi or in the

distorsion problem, both mentioned above.

Denote by fϕ a function e−iϕ f0(zeiϕ) = z(1+zeiϕ)
(1−zeiϕ)3 for a fixed ϕ ∈ R. Then

f ′′ϕ (0) = 8eiϕ. Assuming p(z) = 1 + b1z + b2z2 + · · · ∈ P and g(z) = z + a2z2 +

· · · ∈ S⋆

R, we have 8eiϕ = 2(a2 + b1). Consequently, for ϕ such that eiϕ /∈ R, there

is |b1| = |4eiϕ − a2| > 2 because −2 ≤ a2 ≤ 2. This contradicts the estimation
|b1| ≤ 2 for p ∈ P. It means fϕ /∈ CS⋆

R for suitably chosen ϕ. Hence (1) does not
hold for CS⋆

R.
We concentrate our research on some subclasses of CS⋆

R. Choosing g(z) =
z

(1−z)2 or g(z) = z
1−z2 in (3) we obtain the classes denoted by Q and H respectively.

Therefore,

f ∈ Q ⇔ f (z) =
z

(1 − z)2
p(z) , p ∈ P , (4)

and
f ∈ H ⇔ f (z) =

z

1 − z2
p(z) , p ∈ P . (5)

The class Q will be helpful in determining the covering sets for CS⋆

R over ∆r. The
class H is closely related to the class T of typically real functions. Recall that

f ∈ T ⇔ f (z) =
z

1 − z2
p(z) , p ∈ PR , (6)

where PR means the set of all functions from P which have real coefficients. A
similar generalization of the class of typically real functions was discussed by
Hengartner and Schober in [3, 4].

From the above definition it follows that H is a proper superclass of T. Hence
for a given set D

KT(D) ⊃ KH(D) and LT(D) ⊂ LH(D) .

In case D = ∆r the sets KT(D) and LT(D) are known (see, [6]). We shall find anal-
ogous sets for the class H and compare these sets with with KT(D) and LT(D).

2 Basic tools

In this section we establish the general theorem which will be applied to obtain
some particular results.
The following notation is useful: for a fixed z0 ∈ C , r ∈ R+ , λ ∈ R and for
a given set D let D(z0, r) denote the disk |z − z0| < r and let λD denote the set
{λz : z ∈ D}. For a fixed A ⊂ A and z ∈ ∆ let ΩA(z) = { f (z) : f ∈ A} be the
set of values for A at a point z. Since the region ΩP(z) coincides with the disk

D(1+r2

1−r2 , 2r
1−r2 ) we conclude

Lemma 1. If z = reiϕ ∈ ∆ , z 6= 0 and g ∈ S⋆

R are fixed then for the class Ag =

{g(z)p(z) : p ∈ P} the region ΩAg
(z) coincides with the disk g(z) · D(1+r2

1−r2 , 2r
1−r2 ).
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Each boundary point of this set corresponds to a suitable function fg,θ(z) = g(z) · 1+ze−iθ

1−ze−iθ

of the class Ag.

By this lemma, if g ∈ S⋆

R and r ∈ (0, 1) then

max{| f (z)| : f ∈ Ag, z ∈ ∂∆r} =

max{| fg,θ(z)| : θ ∈ R, z ∈ ∂∆r} = max{| fg,θ(reiϕ)| : θ, ϕ ∈ R} (7)

and

min{| f (z)| : f ∈ Ag, z ∈ ∂∆r} =

min{| fg,θ(z)| : θ ∈ R, z ∈ ∂∆r} = min{| fg,θ(reiϕ)| : θ, ϕ ∈ R} . (8)

Discuss the function

F(θ, ϕ) ≡ g(reiϕ) · 1 + rei(ϕ−θ)

1 − rei(ϕ−θ)
, θ, ϕ ∈ R . (9)

The boundaries of the Koebe set and the covering set for the class Ag over ∆r

are contained in the set F(R × R). For each interior point (θ0, ϕ0) of either the
Koebe set or the covering set we have JF(θ0, ϕ0) 6= 0. Hence the boundaries of
KAg

(∆r) and LAg
(∆r) are subsets of {F(θ, ϕ) : JF(θ, ϕ) = 0}. This is the reason

why both these sets can be derived simultaneously.

Theorem 1. For a fixed g ∈ S⋆

R and r ∈ (0, 1) the jacobian of F given by (9) is zero in

the set B =

{

(θ, ϕ) : tan(ϕ − θ) = 1−r2

1+r2 ·
Im Tg(reiϕ)

Re Tg(reiϕ)

}

, where Tg(z) =
zg′(z)
g(z)

.

Remark. By starlikeness of g, there is Re Tg(z) > 0 for z ∈ ∆.
Proof.

The equation JF(θ, ϕ) = 0 is equivalent to
∣

∣

∣

∣

∣

∂ Re F
∂θ

∂ Re F
∂ϕ

∂ Im F
∂θ

∂ Im F
∂ϕ

∣

∣

∣

∣

∣

(θ, ϕ) = 0 ,

and further, to

Im

(

∂F

∂θ
· ∂F

∂ϕ

)

(θ, ϕ) = 0 . (10)

Substituting reiϕ = z, e−iθ = ζ we can write

∂F

∂θ
= g(z) · 2z

(1 − zζ)2
(−iζ)

∂F

∂ϕ
=

[

g′(z) · 1 + zζ

1 − zζ
+ g(z) · 2ζ

(1 − zζ)2

]

iz .

Short calculation gives that (10) holds if and only if

Im

(

zg′(z)

g(z)
· (zζ − |zζ|2zζ)

)

= 0 ,

which in terms of θ, ϕ becomes

−r(1 + r2) sin(ϕ − θ) Re Tg(reiϕ) + r(1 − r2) cos(ϕ − θ) Im Tg(reiϕ) = 0 .

From this equation the assertion immediately follows.
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3 Koebe and covering sets for H

In order to determine the Koebe set for H over ∆r, r ∈ (0, 1) we need to know
the set of univalence, or at least the radius of univalence, for H. This number was

derived by Koczan in [5] and is equal to rS(H) = 1+
√

5
2 −

√

1+
√

5
2 = 0.346 . . . . The

related result was established by Bogowski and Burniak in [1].
Let functions FK and FL be defined as follows

FK : R ∋ ϕ 7→ reiϕ

1 − r2e2iϕ

1 − reiα(ϕ)

1 + reiα(ϕ)
, (11)

FL : R ∋ ϕ 7→ reiϕ

1 − r2e2iϕ

1 + reiα(ϕ)

1 − reiα(ϕ)
, (12)

where

α : R ∋ ϕ 7→ arctan

(

sin(2ϕ)

m + 1

)

and m =
(

1/r2 + r2
)

/2 . (13)

From α(−ϕ) = −α(ϕ) and α(ϕ + π) = α(ϕ) it follows that FK(−ϕ) = FK(ϕ)

and FK(ϕ + π) = −FK(ϕ). Hence, FK(π − ϕ) = −FK(ϕ). It means that if FK takes
a value w (i.e. there is ϕ0 ∈ R such that FK(ϕ0) = w), then FK takes also values:
w, −w and −w. It is still true if we replace FK by FL. Hence we have proved

Lemma 2. The curves FK([0, 2π]) and FL([0, 2π]) are symmetric with respect to both
axes of the complex plane.

We describe other properties of FK and FL in the three following lemmas.

Lemma 3. For a fixed r ∈ (0, 1) the function |FK | decreases on [0, π/2] and the function
arg FK increases on [0, π/2].

Proof.
Define a function g(ϕ) = log(FK(ϕ)), ϕ ∈ [0, π/2]. After rather long but not
complicated calculation we obtain

g′(ϕ) =
m + 1

(m − cos 2α(ϕ))[(m + 1)2 + (sin 2ϕ)2]
×

(

m + cos 2ϕ − 2
√

2(m + 1) cos 2ϕ
√

(m + 1)2 + (sin 2ϕ)2

)

(

− sin 2ϕ + i
√

m2 − 1
)

.

It is easy to check that the expression m + cos 2ϕ− 2
√

2(m+1) cos 2ϕ√
(m+1)2+(sin 2ϕ)2

is positive for

all ϕ ∈ [0, π/2]. This means that for all ϕ ∈ (0, π/2)

d

dϕ
Re g(ϕ) < 0 and

d

dϕ
Im g(ϕ) > 0 ,

which proves the assertion.
Hence, taking into account that arg FK(0) = 0 and arg FK(π/2) = π/2, we get

FK([0, 2π]) ∩ {w : Re w ≥ 0, Im w ≥ 0} = FK([0, π/2]) . (14)
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Lemma 4. Let r1 = 0.455 . . . be the only solution of the equation r6 − r4 − 8r3 − r2 +
1 = 0 in [0, 1]. Then

1. If 0 < r ≤ r1 then |FL| decreases on [0, π/2] and arg FL increases on [0, π/2].

2. If r1 < r < 1 then there exists a number ϕ0 ∈ (0, π/2) such that

(a) |FL| decreases on [0, ϕ0] and increases on [ϕ0, π/2],

(b) arg FL increases on [0, ϕ0] and decreases on [ϕ0, π/2].

Proof.
Analogously to the previous proof we discuss a function h(ϕ) = log(FL(ϕ)),
ϕ ∈ [0, π/2] and get

h′(ϕ) =
m + 1

(m − cos 2α(ϕ))[(m + 1)2 + (sin 2ϕ)2]
×

(

m + cos 2ϕ +
2
√

2(m + 1) cos 2ϕ
√

(m + 1)2 + (sin 2ϕ)2

)

(

− sin 2ϕ + i
√

m2 − 1
)

.

Observe that the equation h′(ϕ) = 0 has only one solution in [0, π/2]. Indeed,
this equation is equivalent to

m + x +
2x
√

2(m + 1)
√

(m + 1)2 + 1 − x2
= 0 , where x = cos 2ϕ . (15)

It obviously has no solutions for x ∈ [0, 1]. For −1 ≤ x < 0 the equation (15)
takes the form

(m − x)Pm(x) = 0 ,

where Pm(x) = (m + x)3 + 6(m + 1)(m + x)− 4m(m + 1). Consequently, the only
solution of (15) is given by

x0 =
3

√

2(m + 1)(m +
√

(m + 1)2 + 1)− 2(m + 1)

3

√

2(m + 1)(m +
√

(m + 1)2 + 1)
− m .

(16)
If x0 ∈ [−1, 0) then there exists a corresponding ϕ0 ∈ [0, π/2] satisfying cos 2ϕ0 =
x0. It is possible only when the right hand side of (16) is not less then −1, i.e. if
m3 − m2 − m − 7 ≤ 0 or equivalently r6 − r4 − 8r3 − r2 + 1 ≥ 0.

We conclude from the above that if 0 < r ≤ r1 then for all ϕ ∈ (0, π/2)

d

dϕ
Re h(ϕ) < 0 and

d

dϕ
Im h(ϕ) > 0 .

Moreover, if r1 < r < 1 then

d

dϕ
Re h(ϕ)

{

< 0 for ϕ ∈ (0, ϕ0),

> 0 for ϕ ∈ (ϕ0, π/2)
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and
d

dϕ
Im h(ϕ)

{

> 0 for ϕ ∈ (0, ϕ0),

< 0 for ϕ ∈ (ϕ0, π/2) .

From this the assertion follows.
Furthermore, from (12) it immediately follows that Im FL(ϕ) = 0 iff sin ϕ = 0.

Taking into account this fact and arg FL(0) = 0, arg FL(π/2) = π/2, we obtain

FL([0, 2π]) ∩ {w : Re w ≥ 0, Im w ≥ 0} =

{

FL([0, π/2]) for 0 < r ≤ r1 ,

FL([0, ϕ1]) for r1 < r < 1 ,

(17)
where ϕ1 is the only solution of Re FL(ϕ) = 0 in (0, π/2).
This equation can be written in the form

r(1 − r2)2 cos ϕ − 2r2(1 + r2) sin ϕ sin α(ϕ) = 0 .

Hence ϕ = π/2 or

2x

m − 1
=

√

(m + 1)2 + 4x(1 − x)

2(m + 1)
, where x = sin2 ϕ .

Therefore, if m3 − m2 − m − 7 ≤ 0 then

x1 =
(m − 1)

(

m − 1 +
√

(m − 1)2 + (m + 1)2(m3 + 3)
)

2(m2 + 3)
. (18)

is the only solution of the above equation, and x1 ∈ [0, 1]. Hence there exists
ϕ1 ∈ (0, π/2) such that

cos ϕ1 = x1 . (19)

Lemma 5. FK([0, 2π]) ∩ FL([0, 2π]) = ∅ for a fixed r ∈ (0, 1).

Proof.
From (11-13)

|FK(ϕ)|2 =
1

2(m − cos 2ϕ)

M − cos α(ϕ)

M + cos α(ϕ)
and |FL(ϕ)|2 =

1

2(m − cos 2ϕ)

M + cos α(ϕ)

M − cos α(ϕ)
,

where M =
√

(m + 1)/2 = (1/r + r)/2.
By Lemma 2, Lemma 3 and (14)

max
{

|FK(ϕ)|2 : ϕ ∈ [0, 2π]
}

= |FK(0)|2 =
1

2(m − 1)

M − 1

M + 1
.

For ϕ ∈ [0, 2π] we have cos α(ϕ) ≥ 2M2√
4M4+1

>
2√
5
. Therefore,

M+cos α(ϕ)
M−cos α(ϕ)

>

m−cos 2ϕ
m+1 and then

|FL(ϕ)|2 >
1

2(m + 1)
.

Since 1
2(m−1)

M−1
M+1 <

1
2(m+1)

we have eventually proved that

|FK(φ)| < |FL(ψ)| , for all φ, ψ ∈ [0, 2π] ,

which completes the proof.
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Theorem 2. Let r1 = 0.455 . . . be defined in Lemma 4 and ϕ1 be given by (19) and (18).
Then

1. The Koebe domain KH(∆r), r ∈
(

0, 1+
√

5
2 −

√

1+
√

5
2

)

is symmetric with respect

to both axes and bounded. Its boundary is the curve FK([0, 2π]).

2. The covering domain LH(∆r), r ∈ (0, 1) is symmetric with respect to both axes and
bounded. Its boundary in the first quadrant of the complex plane is FL([0, π/2])
for 0 < r ≤ r1 and FL([0, ϕ1]) for r1 < r < 1.

Proof.
Let K and L denote the Koebe set and the covering set for H over ∆r respectively.
It is easily seen that p ∈ P if and only if p(−z) ∈ P and p ∈ P if and only if

p(z) ∈ P. Consequently, f ∈ H if and only if − f (−z) ∈ H and f ∈ H if and only

if f (z) ∈ H. From this K and L are symmetric with respect to both axes. It is a
reason why we can derive the boundaries of K and L only in the first quadrant.

For g(z) = z
1−z2 we have Tg(z) = 1+z2

1−z2 . By Theorem 1, the jacobian of F given

by (9), with z = reiϕ, is zero if

tan(ϕ − θ) =
2r2 sin 2ϕ

(1 + r2)2
. (20)

Hence ∂K and ∂L are included in the set {F(θ, ϕ) : (θ, ϕ) satisfy (20)}, i.e. in
{FK(ϕ) : ϕ ∈ R} ∪ {FL(ϕ) : ϕ ∈ R}, where FK and FL are defined by (11) and (12).
In fact, the condition ϕ ∈ R can be replaced by ϕ ∈ [0, 2π].

By Lemma 5, the closed curves FK([0, 2π]) and FL([0, 2π]) are disjoint. Since

FK(0) =
r

(1 + r)2
<

r

(1 − r)2
= FL(0)

we conclude that ∂K ⊂ FK([0, 2π]) and ∂L ⊂ FL([0, 2π]). The proof is completed
by applying the radius of univalence for H and the properties of FK and FL de-
scribed in the above lemmas.

-0,1

0

-0,2

-0,1-0,2 0,2

0,2

0,1

0,1
0

0,8

0,6

0,4
0

-0,4

-0,6

0

0,2

-0,2

-0,4

-0,8

0,4

The Koebe sets and the covering sets for H and T over ∆r, r = 1+
√

5
2 −

√

1+
√

5
2 ;

KH(∆r) ⊂ KT(∆r) LH(∆r) ⊃ LT(∆r)
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4 Koebe and covering sets for H(2)

Let H(2) be the class of functions f ∈ H which are odd. Similarly to (5) we have
the representation

f ∈ H(2) ⇔ f (z) =
z

1 − z2
p(z2) , p ∈ P . (21)

It is a consequence of (5) and the representation of even functions from P. Namely,

{p ∈ P : p(−z) = p(z)} = {p(z2) : p ∈ P} .

Obviously, H(2) is closely related to T(2), i.e. the class of typically real odd func-

tions. In fact, if f ∈ T(2) then f ∈ H(2).
In order to determine both the Koebe and the covering sets we need informa-

tion about univalence and the set of values at z for H(2).

Lemma 6. rS(H(2)) =
√

2 − 1.

Proof.

Let f ∈ H(2). Then f (z) = z
1−z2 p(z2) , p ∈ P and

z f ′(z)

f (z)
=

1 + z2

1 − z2
+

2z2p
′
(z2)

p(z2)
.

Hence

Re
z f ′(z)

f (z)
≥ 1 − r2

1 + r2
− 4r2

1 − r4
,

with equality for p0(z) = 1+z
1−z and z = ir. If r ≤

√
2 − 1 then Re

z f ′(z)
f (z)

≥ 0,

which means that f is starlike, hence univalent, in ∆√
2−1. The extremal function

is f0(z) = z(1+z2)
(1−z2)2 and f0 ∈ T(2). It is known (see for example [2]) that f0 is

univalent in the set {z ∈ ∆ : |1 + z2| > 2|z|}, called the Goluzin lens. The greatest

disk contained in this lens has the radius
√

2 − 1. Hence the number
√

2 − 1
cannot be increased.

Note that we have actually proved that
√

2− 1 is the radius of starlikeness for

H(2).
The set {p(z2) : p ∈ P} coincides with the disk D(1+r4

1−r4 , 2r2

1−r4 ). Thus for a fixed

z = reiϕ ∈ ∆, z 6= 0 we have ΩH(2)(z) = z
1−z2 D(1+r4

1−r4 , 2r2

1−r4 ). Each boundary point

of this set corresponds to a suitable function fθ(z) = z
1−z2 · 1+z2e−iθ

1−z2e−iθ of the class

H(2).
Let functions GK and GL be defined as follows

GK : R ∋ ϕ 7→ reiϕ

1 − r2e2iϕ

1 − r2eiβ(ϕ)

1 + r2eiβ(ϕ)
, (22)

GL : R ∋ ϕ 7→ reiϕ

1 − r2e2iϕ

1 + r2eiβ(ϕ)

1 − r2eiβ(ϕ)
, (23)
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where

β : R ∋ ϕ 7→ arctan

(

sin(2ϕ)

m

)

and m =
(

1/r2 + r2
)

/2 . (24)

In a similar way to the one used in proving Theorem 2 we can obtain

Theorem 3. Let r2 = (
√

3 − 1)/
√

2 = 0.517 . . . and ϕ2 be the only solution of the

equation sin2 ϕ = m2(m−1)
2(m2−2m+2)

in (0, π/2). Then

1. The Koebe domain KH(2)(∆r), r ∈ (0,
√

2 − 1) is symmetric with respect to both
axes and bounded. Its boundary is of the form GK([0, 2π]).

2. The covering domain LH(2)(∆r), r ∈ (0, 1) is symmetric with respect to both
axes and bounded. Its boundary in the first quadrant of the complex plane is
GL([0, π/2]) for 0 < r ≤ r2 and GL([0, ϕ2]) for r2 < r < 1.

-0,6

0,4

0
0,6

-0,4

0,40,20-0,2-0,4

0,2

-0,2

The covering sets for H(2) and T(2) over ∆r, r =
√

2 − 1;
LH(2)(∆r) ⊃ LT(2)(∆r)

5 Koebe and covering sets for Q and CS⋆

R

As it was said in Introduction, the radius of univalence in the class of close-to-star
functions was found by Sakaguchi [9] in 1964 and is equal to 2 −

√
3. In fact, he

proved that this number is the radius of starlikeness of this class. The extremal

function f (z) = z+z2

(1−z)3 belongs to Q, and then to CS⋆

R. Hence 2 −
√

3 is also the

radius of univalence as well as the radius of starlikeness in both classes Q and
CS⋆

R.

By Lemma 1, for z = reiϕ ∈ ∆ , z 6= 0 we have ΩQ(z) = z
(1−z)2 · D(1+r2

1−r2 , 2r
1−r2 ).

Each boundary point of this set corresponds to a suitable function fθ(z) = z
(1−z)2 ·

1+ze−iθ

1−ze−iθ of the class Q.
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Let functions HK and HL be defined as follows

HK : R ∋ ϕ 7→ reiϕ

(1 − reiϕ)2

1 − reiγ(ϕ)

1 + reiγ(ϕ)
, (25)

HL : R ∋ ϕ 7→ reiϕ

(1 − reiϕ)2

1 + reiγ(ϕ)

1 − reiγ(ϕ)
, (26)

where

γ : R ∋ ϕ 7→ arctan

(

sin(ϕ)

M

)

and M = (1/r + r) /2 . (27)

In a similar way to the one used in proving Theorem 2 we can obtain

Theorem 4. Let r3 = 1+
√

5
2 −

√

1+
√

5
2 = 0.346 . . . and ϕ3 be the only solution of the

equation M cos ϕ − 1 = sin2 ϕ√
M2+sin2 ϕ

in (0, π/2). Then

1. The Koebe domain KQ(∆r), r ∈ (0, 2 −
√

3) is symmetric with respect to the real
axis and bounded. Its boundary coincides with HK([0, 2π]).

2. The covering domain LQ(∆r), r ∈ (0, 1) is symmetric with respect to the real
axis and bounded. Its boundary in the first quadrant of the complex plane is
HL([0, π/2]) for 0 < r ≤ r3 and HL([0, ϕ3]) for r3 < r < 1.

In [6] it was proved that LT(∆r) = k1(∆r) ∪ k−1(∆r), where k1(z) = z
(1−z)2 ,

k−1(z) = z
(1+z)2 . From the properties of covering domains it follows that LS⋆

R
(∆r) ⊂

LT(∆r) because S⋆

R ⊂ T. Since k1 and k−1 are starlike, there is LS⋆

R
(∆r) = k1(∆r)∪

k−1(∆r) and consequently for each g ∈ S⋆

R:

g(∆r) ⊂ k1(∆r) ∪ k−1(∆r).

It leads to
g(∆r) ∩ {w : Re w ≥ 0} ⊂ k1(∆r) ∩ {w : Re w ≥ 0} .

From this we conclude that for a fixed a ∈ [0, 2π]

max{| f (z)| : f (z) = g(z)p(z), g ∈ S⋆

R, p ∈ P, z ∈ ∆r, arg f (z) = a} =

max{| f (z)| : f (z) = k1(z)p(z), p ∈ P, z ∈ ∆r, arg f (z) = a} (28)

and then

LS⋆

R
(∆r) ∩ {w : Re w ≥ 0} = LQ(∆r) ∩ {w : Re w ≥ 0} .

We have proved

Theorem 5. Let r3 and ϕ3 be the same as in Theorem 4. Then the covering domain
LCS⋆

R
(∆r), r ∈ (0, 1) is symmetric with respect to both axes and bounded. Its boundary

in the first quadrant of the complex plane is of the form HL([0, π/2]) for 0 < r ≤ r3 and
HL([0, ϕ3]) for r3 < r < 1.
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