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Abstract

In the note we give an uniform bound for the multiple point Seshadri
constants on P1 × P1, improving the bound from [3].

1 Introduction

In this paper we improve the bounds on multiple points Seshadri constants on
P1 × P1, obtained in [3].
For X, a smooth projective variety (over C) with an ample line bundle L and for
P1, ..., Pr, different points on X, we define the Seshadri constant of L in P1, ..., Pr as
follows ( cf [2]).

Definition 1. The Seshadri constant of L in P1, ..., Pr is defined as the number

ε(L, P1, ..., Pr) := inf { LC

multP1
C + ... + multPr C

| C is a curve on X},

or, equivalently

ε(L, P1, ..., Pr) := sup {ε | π∗L − ε(E1 + ... + Er) is numerically effective},

where π : X̃ −→ X is the blow-up of X in P1, ..., Pr.

As we are interested only in case of surfaces, from now on we assume that
dimX = 2.
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Remark 2. 1. It follows from the definition that for an ample line bundle L on X,

0 < ε(L, P1, ..., Pr) ≤
√

L2

r
.

2. As ε(L, P1, ..., Pr) is lower semi-continuous, for P1, ..., Pr generic on X we write ε(L, r)
instead of ε(L, P1, ..., Pr).

It is still an open problem whether ε(L, P1, ..., Pr) may attain the maximal possible

value
√

L2

r , in case this value is irrational.

Suppose, we can find a curve C on X, such that LC
multP1

C+...+multPr C <

√
L2

r . Such a

curve is called Seshadri submaximal curve. Then, the Seshadri constant ε(L, P1, ..., Pr)
is rational, what follows from the fact that there is a finite number of Seshadri sub-
maximal curves on a surface, see for example [8]. The existence of such a curve
may follow from the Riemann-Roch theorem, and then the Seshadri constant is
rational.

Definition 3. A curve C in a linear system |L| on a surface, passing through r points
with multiplicities m1, ..., mr is Riemann-Roch expected if

h0(L) −
r

∑
i=1

(
mi + 1

2

)
≥ 1.

In [9] Syzdek studied Riemann-Roch expected Seshadri submaximal curves on
P1 × P1 with different polarizations L. She gave a list of the Riemann-Roch ex-
pected submaximal curves on P

1 ×P
1. She also proved that there exists a number

R0 (depending on the type of the polarization), such that for r ≥ R0, there are no
Riemann-Roch expected submaximal curves on P1 × P1.
In [3], as well as in this note, we considered the situation, when L and r are
such, that there are no Riemann-Roch expected submaximal curves on P1 × P1,

so ε(L, r) ”should” attain the maximal value
√

L2

r . In [3] we then gave a uni-

form lower bound for the Seshadri constant on P1 × P1, proving that ε(L, r) ≥√
L2

r

√
1 − 1

2r+1 . In this note we improved this bound, namely we proved the fol-

lowing theorem.

Theorem 4. Let L be a line bundle in P1 × P1, of type (a, b). Let r be such, that there
exist no Riemann-Roch expected submaximal curves on (P1 × P1, L). Then

ε(L, r) ≥
√

2ab

r

√
1 − 1

4.5r
.

In some cases we were able to improve the bound further.

Theorem 5. Under the assumptions of the previous theorem, if
i) r is odd
or
ii) r is even and L is of type (a, a),
then

ε(L, r) ≥
√

L2

r

√
1 − 1

5r
.
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The proof of this theorem uses the result of Harbourne and Roé from [5], and we
are grateful to them for their suggestions on the subject.

2 Important facts

The main result used in the proof of theorem 4 will be the following theorem of
Harbourne and Roé (cf [5], Theorem I.2.1, here we quote and use only the second
part of the theorem).

Theorem 6. Let X be a smooth projective surface with an ample line bundle L. Let
α0(X, L, m1, ..., mr) denote the least degree (with respect to L) of an irreducible curve
passing through r general points with multiplicities m1, ..., mr in these points. If all the
multiplicities are equal, we write α0(X, L, m×r). Let µ ≥ 1 be a real number. Then,
if

α0(X, L, m×r) ≥ m

√
L2

(
r − 1

µ

)
(1)

for every integer 1 ≤ m < µ and if

α0(X, L, m×r−1, m + k) ≥ mr + k

r

√
L2

(
r − 1

µ

)
(2)

for every integer 1 ≤ m <
µ

r−1 and every integer k with

k2
<

r

r − 1
min{m, m + k},

then

ε(L, r) ≥
√

L2

r

√
1 − 1

rµ
.

Observe, that as in our case r ≥ 9 (for r < 9 there are always Riemann-Roch
expected submaximal curves on P1 × P1, see [9]) and µ ≤ 5, the condition (2) is
empty. Thus, to get the bound from theorem 6, we need only to check (1). For
this, we use the lemma proved by Xu.

Lemma 7. (See [11], Lemma 1). Let C be a reduced and irreducible curve on a surface
X, passing through a general point P ∈ X with multiplicity m ≥ 2. Then

C2 ≥ m2 − m + 1.

3 Proofs

3.1 Proof of theorem 4

As mentioned above, to prove theorem 4 we need to check that the condition (1) is
satisfied for all positive m < µ = 4.5. Thus, we have to check (1) for m = 1, 2, 3, 4
and then our result will follow from theorem 6.
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Let us take an irreducible curve C of type (α, β) on P
1 ×P

1. The degree of C with
respect to L (L is of type (a, b)) is LC = aβ + bα. Assume that C passes through r
general points with multiplicity m. The condition (1) says then that:

aβ + bα ≥ m

√

2ab

(
r − 1

4.5

)
. (3)

As 2
√

αβab ≤ aβ + bα, the condition (3) will be implied by

2αβ ≥ m2

(
r − 1

4.5

)
. (4)

Thus, we need to check that (3) or (4) is satisfied for m = 1, 2, 3, 4. Let us consider
cases.

Case I. m = 1. We have to prove that aβ + bα ≥
√

2ab(r − 1
4.5), for any irreducible

curve C passing through r general points with multiplicity one. As the points of
multiplicity one give independent conditions on the dimension of linear system,
the curve C must be Riemann-Roch expected. According to our assumptions, C
is then not submaximal, what means

LC

r
≥

√
L2

r
,

so (3) follows immediately.

Case II. m = 2. Here we have to prove that 2αβ ≥ 4
(

r − 1
4.5

)
. As C passes

through r general points with multiplicity 2 at each point, from lemma 7, we
have

2αβ − 4(r − 1) ≥ 4 − 2 + 1,

so
2αβ ≥ 4r − 1.

If 2αβ ≥ 4r then inequality (4) follows, and 2αβ = 4r − 1 means that 0 = 1mod2,
what is impossible.

Case III. m = 3. We have to check that 2αβ ≥ 9
(

r − 1
4.5

)
= 9r − 2, and this is

exactly guaranteed by lemma 7 in this case.

Case IV. m = 4. We have to check that 2αβ ≥ 16
(

r − 1
4.5

)
= 16r − 32

9 . From

lemma 7, we have now 2αβ ≥ 16r − 4 + 1 = 16r − 3, and we are done.

3.2 Proof of theorem 5

If we prove that

aβ + bα ≥ m

√

2ab

(
r − 1

5

)
, (5)

for m = 1, 2, 3, 4, then again the result will follow from theorem 6. For m = 1, 2, 4
the proof goes analogously as the proof of theorem 4, so we skip the calculations.
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The only case needing considerations is m = 3. We have to show that

aβ + bα ≥ 3

√

2ab

(
r − 1

5

)
, (6)

what will follow from

2αβ ≥ 9

(
r − 1

5

)
. (7)

From lemma 7 we have that

2αβ ≥ 9r − 2.

Thus, if 2αβ ≥ 9r − 1, we are done. We have to consider the case 2αβ = 9r − 2.
This is clearly impossible if r is odd, so the proof of part (i) is finished.
For (ii), assume then that r is even, r = 2k, and 2αβ = 9r − 2. If the curve C is not

submaximal, then LC
3r ≥

√
L2

r and inequality (6) follows.

So, assume that C is submaximal. We have then

2
√

αβab ≤ bα + aβ < 3
√

2abr. (8)

From 2αβ = 9r − 2 and r = 2k we obtain αβ = 9k − 1, so (8) becomes

2
√

9k − 1 ≤ bα + aβ√
ab

< 6
√

k, (9)

or equivalently

4(9k − 1) ≤ (bα + aβ)2

ab
< 36k. (10)

Taking a = b, we get
4(9k − 1) ≤ (α + β)2

< 36k. (11)

Thus (α + β)2 = 36k − j, for j = 1, 2, 3, 4. We have to exclude these possibilities.
We will use the fact that a square of a natural number modulo a prime number
must again be a square.
If j = 1, then (α + β)2 = 36k − 1. This means that (α + β)2 = −1mod3, what is
impossible.
If j = 2, then (α + β)2 = 36k − 2 = 2(18k − 1) and this is impossible as (18k − 1)
is odd.
If j = 3, then (α + β)2 = 36k − 3 = 3(12k − 1) and this is impossible as (12k − 1)
is not divisible by 3.
If j = 4 then (α + β)2 = 36k− 4. This again means that (α + β)2 = −1mod3, what
is impossible.

Remark 8. Observe, that not every curve on (P
1 ×P

1, L) satisfies the bound given
by theorem 6. Take for example L of type (7, 1) and C ≡ (5, 1), r = 15. Take

µ = 2 in theorem 6. Then it is easy to check that LC
r <

√
L2

r

√
1 − 1

2r . Of course,

the assumption (1) is also not satisfied. The reader may look into [9] for more
examples.
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