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Abstract

The aim of this paper is to study some properties of secantoptics, defined
in [8]. We show that any evolutoid of a given oval C is a hedgehog and that
any secantoptic of an oval C, is an isoptic of a pair of required evolutoids. We
prove some Crofton-type formulas for secantoptics and give a necessary and
sufficient condition for a secantoptic to be convex.

1 Introduction

An isoptic of a given curve C is a set of points from which this curve is seen
under the fixed angle α, where α ∈ (0, π). In [6] A. Miernowski and W. Mozgawa
define and study isoptics of pairs of nested closed strictly convex curves. Now,
we consider curves which must not be nested. Instead of strictly convex curves
we consider hedgehogs defined by R. Langevin, G. Levitt and H. Rosenberg in
[3] and later studied by Y. Martinez-Maure in [4]. A hedgehog Γ is a curve which
can be parametrized by the formula

z(t) = ψ(t)eit + ψ̇(t)ieit, (1.1)

where h(cos t, sin t) = ψ(t), h ∈ C2(S1, R) is called the support function of Γ. The
hedgehog is the envelope of the family of lines given by the equation

x cos t + y sin t = p(t). (1.2)
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In [8] we defined secantoptics, a generalization of isoptic curves of ovals. Re-
call that a closed convex curve C of class C2 with nonvanishing curvature is said
to be an oval. To real this notion we choose a coordinate system with the origin
O in the interior of the oval C and parametrize C by the equation

z(t) = p(t)eit + ṗ(t)ieit for t ∈ [0, 2π], (1.3)

where p ∈ C3 and the curvature radius R(t) = p(t) + p̈(t) > 0. Let β ∈ [0, π),
γ ∈ [0, π − β) and α ∈ (β + γ, π) be fixed angles. We take the line l1(t) tangent
to the oval C at a point z(t). We construct a secant line s1(t) of C rotating l1(t)
around the point z(t) through the angle −β. Let us take another tangent line
l2(t) = l1(t + α − β − γ) at the point z(t + α − β − γ) and let s2(t) be a secant
obtained by rotating l2(t) around the tangency point through angle γ. Then s1(t)
and s2(t) intersect forming a fixed angle α.

Definition 1.1. The set of intersection points zα,β,γ(t) of s1(t) and s2(t) for t ∈ [0, 2π]
form a curve which we call a secantoptic Cα,β,γ of an oval C.

The equation of the secantoptic Cα,β,γ can be written as

zα,β,γ(t) = (p(t) + λ(t) sin β + i(ṗ(t) + λ(t) cos β))eit, (1.4)

where

λ(t) =
1

sin α
(p(t + α − β − γ) cos γ + ṗ(t + α − β − γ) sin γ (1.5)

− ṗ(t) sin(α − β) − p(t) cos(α − β)).

For the further purposes we introduce also a function

µ(t) =
1

sin α
(p(t + α − β − γ) cos(α − γ) − ṗ(t + α − β − γ) sin(α − γ) (1.6)

+ ṗ(t) sin β − p(t) cos β).

2 Isoptics of pairs of hedgehogs.

Let us fix a coordinate system with the origin O at a point in the plane and let
Γ1 and Γ2 be two hedgehogs given by support functions h1(cos t, sin t) = ψ1(t)
and h2(cos t, sin t) = ψ2(t), respectively. Therefore we know equations of these
hedgehogs

Γ1 : z1(t) = ψ1(t)eit + ψ̇1(t)ieit, (2.1)

Γ2 : z2(t) = ψ2(t)eit + ψ̇2(t)ieit. (2.2)

Let l(t) be the tangent line to the curve Γ1 at a point z1(t) and let m(t) be the
tangent to Γ2 at a point z2(t). Then, for a given α ∈ (0, π), lines l(t) and m(t + α)
form an angle α.

Definition 2.1. The set of intersection points zΓ1Γ2
α (t) of tangent lines l(t) and m(t + α)

for t ∈ [0, 2π] form a curve which we call an α-isoptic CΓ1Γ2
α of the pair Γ1 and Γ2.
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Note that we drop here the assumption from [6] that Γ1 and Γ2 have to be
nested. Therefore we do not have to define isoptics of first and second kind, but
we can consider isoptics of the pair Γ2 and Γ1. The lines l(t) and m(t + α − π)
form an angle α. If we put t = τ + π − α, then the set of intersection points of
lines m(t + α−π) = m(τ) and l(t) = l(τ + π − α) for τ ∈ [0, 2π] forms an isoptic

CΓ2Γ1
π−α of the pair Γ2 and Γ1.

We fix α ∈ (0, π) and define a vector

q(t) = z1(t) − z2(t + α) = (B(t) − ib(t))eit , (2.3)

where

B(t) = ψ1(t) − ψ2(t + α) cos α + ψ̇2(t + α) sin α, (2.4)

b(t) = ψ2(t + α) sin α + ψ̇2(t + α) cos α − ψ̇1(t). (2.5)

If we write the vector q(t) by the formula

q(t) = M(t)iei(t+α) − L(t)ieit , (2.6)

then we get L(t) and M(t) in terms of the support functions of the considered
hedgehogs

L(t) = −ψ̇1(t) − ψ1(t) cot α + ψ2(t + α)
1

sin α
, (2.7)

M(t) = −ψ1(t)
1

sin α
− ψ̇2(t + α) + ψ2(t + α) cot α. (2.8)

Any point on an α-isoptic of a pair of curves Γ1 and Γ2 can be expressed as

zΓ1Γ2
α (t) = z1(t) + L(t)ieit = z2(t + α) + M(t)iei(t+α), (2.9)

where L(t) and M(t) are some real functions. We can write an equation of CΓ1Γ2
α

by the following formula

zΓ1Γ2
α (t) = ψ1(t)eit + (ψ2(t + α)

1

sin α
− ψ1(t) cot α)ieit. (2.10)

If we introduce the notation

ρ(t) = ψ1(t) + ψ̇2(t + α)
1

sin α
− ψ̇1(t) cot α, (2.11)

then the first derivative of zΓ1Γ2
α (t) can be written as

żΓ1Γ2
α (t) = −L(t)eit + ρ(t)ieit. (2.12)

Note that
∣

∣

∣
żΓ1Γ2

α (t)
∣

∣

∣

2
=

1

sin2 α
|q(t)|2, (2.13)

hence CΓ1Γ2
α can be a nonregular curve, for if z1(t) = z2(t + α) for some t ∈ [0, 2π],

then |żΓ1Γ2
α (t)| = 0.
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Figure 1:

3 Evolutoid of an oval is a hedgehog

Let C be a given oval. Note that C is an envelope of the family of its tangent
lines. We define the family Sβ of the secants s(t) to oval C obtained by rotating the
tangent line l(t) about the tangency point z(t) through angle β for each t ∈ [0, 2π].
The family Sβ can be expressed by the formula

x cos θ + y sin θ = ψβ(θ), (3.1)

where θ = t + β and (x, y) ∈ s(t) is the point z(t) on the oval C. Hence

(x, y) = (p(t) cos t − ṗ(t) sin t, p(t) sin t + ṗ(t) cos t), where t = θ − β. (3.2)

We can find the function ψβ(θ) from (3.1)

ψβ(θ) = p(θ − β) cos β + ṗ(θ − β) sin β, θ ∈ [0, 2π]. (3.3)

Note that ψβ ∈ C∞ is a support function of an envelope Γβ of the family Sβ and
Γβ is parametrized by

zβ(t) = ψβ(t)eit + ψ̇β(t)ieit. (3.4)

Since ψβ(t) is at least of class C2(R), the curve Γβ is a hedgehog.

We need to recall the definition of the evolutoid given in [2].

Definition 3.1. The evolutoid of angle δ of a curve f (s) is the envelope of the lines
making a fixed angle δ with the normal vector at f (s).

Hence the curve Γβ is the evolutoid of angle π
2 + β of an oval C as the envelope

of the family of secants to this oval.

Corollary 3.1. Any evolutoid of an oval is a hedgehog.
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Figure 2:

4 Secantoptic as isoptic of pair of evolutoids

Theorem 4.1. The isoptic C
Γ−βΓγ
α and the secantoptic Cα,β,γ of a given oval C coincide if

β ∈ [0, π), γ ∈ [0, π − β) and α ∈ (β + γ, π).

Proof. Consider two evolutoids Γ−β and Γγ of an oval C, given by support func-
tions

ψ−β(t) = p(t + β) cos β − ṗ(t + β) sin β (4.1)

and

ψγ(t) = p(t − γ) cos γ + ṗ(t − γ) sin γ, (4.2)

respectively. The equation of the isoptic C
Γ−βΓγ
α , where β ∈ [0, π), γ ∈ [0, π − β)

and α ∈ (β + γ, π) can be written as

z
Γ−βΓγ
α (t) = ψ−β(t)eit +

(

ψγ(t + α)
1

sin α
− ψ−β(t) cot α

)

ieit (4.3)

and it depends on the support function of C. Since

z
Γ−βΓγ
α (t − β) =

1

sin α
[(p(t) cos β sin(α − β) − ṗ(t) sin β sin(α − β)

+ p(t + α − β − γ) sin β cos γ + ṗ(t + α − β − γ) sin β sin γ)eit

+ (−p(t) cos β cos(α − β) + ṗ(t) sin β cos(α − β) (4.4)

+ p(t + α − β − γ) cos β cos γ + ṗ(t + α − β − γ) cos β sin γ)ieit]

= zα,β,γ(t),

for a given oval C the isoptic C
Γ−βΓγ
α is the same curve as the secantoptic Cα,β,γ

under the assumption that β ∈ [0, π), γ ∈ [0, π − β) and α ∈ (β + γ, π).
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We introduce the following notations which will simplify our next calcula-
tions

L(t) = R(t) sin β + λ(t),

M(t) = µ(t) − R(t + α − β − γ) sin γ, (4.5)

Q(t) = M(t)iei(t+α−β) − L(t)iei(t−β) .

Let us remind that all secantoptics of a curve C for a fixed β ∈ [0, π), fixed
γ ∈ [0, π − β) and various α ∈ (β + γ, π) form two parameters family of curves
Fβ,γ(α, t) (see [8]). Hence, we have the mapping

Fβ,γ : (β + γ, π)× (0, 2π) 7→ Ω \ ζ, (4.6)

where Ω denotes the exterior of the curve C and ζ(α) is a set of points Fβ,γ(α, 0).
Let us remind that the Jacobian of a secantoptic Fβ,γ(α, t) = zα,β,γ(t) can be writ-
ten as

J(Fβ,γ) =
−M(t)L(t)

sin α
> 0. (4.7)

It is easy to see that the mapping Fβ,γ(α, t) is a diffeomorphism, similarly as it

was for isoptics F0,0(α, t). Note that C = C
Γ−βΓγ

β+γ .

5 Crofton integral formulas for secantoptics

For all convex curves the following Crofton integral formula holds
∫∫

Ω

sin ω

t1t2
dxdy = 2π2, (5.1)

where t1 and t2 are lengths of segments of tangents to C passing through the
point (x, y) ∈ Ω and ω = ∠(t1, t2). The formula (5.1) can be found in [7] but in
[1] authors used the isoptics to prove it. Now, we are going to extend this formula
to secantoptics.

Theorem 5.1. For any oval the following integral formula holds
∫∫

Ω1

sin ω

t1t2
dxdy = 2π2 − 2π(β + γ), (5.2)

where

ω = π − α,

t1 = −M(t), (5.3)

t2 = L(t).

Proof. We determine the integral (5.1) in our framework using the mapping Fβ,γ

∫∫

Ω

sin ω

t1t2
dxdy =

∫ 2π

0

∫ π

β+γ

sin α

L(t)(−M(t))

−L(t)M(t)

sin α
dαdt (5.4)

=
∫ 2π

0

∫ π

β+γ
dαdt = 2π2 − 2π(β + γ).
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To give a geometric interpretation of the value 2π(β + γ) consider the expres-
sion

∫∫

Ω1

sin ω

t1t2
dxdy, (5.5)

where Ω1 is the exterior of an isoptic Cβ+γ of an oval C. For t1 = |zα(t) − z(t)| =
λ1(α, t), t2 = |zα(t) − z(t + α)| = −µ1(α, t) and ω = π − α, where α ∈ (β + γ, π)
we obtain

∫∫

Ω1

sin ω

t1t2
dxdy =

∫ 2π

0

∫ π

β+γ

sin α

λ1(t)(−µ1(t))

−λ1(t)µ1(t)

sin α
dαdt (5.6)

=
∫ 2π

0

∫ π

β+γ
dαdt = 2π2 − 2π(β + γ).

Hence 2π(β + γ) is the value of the integral of sin ω
t1t2

over the annulus Cβ+γ \ C .

Remark 5.1. Let C be a circle parametrized by z(t) = reit for r > 0 and t ∈ [0, 2π].
Let β, γ ∈ [0, π/2) and β < γ. We can define evolutoids

Γ−β : z−β(t) = r cos β eit, (5.7)

Γγ : zγ(t) = r cos γ eit.

Since they are nested, we can apply [6] and define the mapping Fβ,γ(α, t) for isop-
tics of pair Γ−β and Γγ. If

α ∈

(

arccos

(

cos γ

cos β

)

, π

)

(5.8)

and t ∈ (0, 2π), then Fβ,γ is a diffeomorphism from
(

arccos
(

cos γ
cos β

)

, π
)

× (0, 2π)

to the exterior of Γ−β . Note that the equation of isoptic C
Γ−βΓγ

β+γ given by the

formula
z

Γ−βΓγ

β+γ (t) = r cos βeit + r sin βieit = rei(t+β) (5.9)

describes the circle C. If we put

t1 = |z−β(t − β) − z(t)| = L(t), t2 = |zγ(t + α − β) − z(t)| = −M(t) (5.10)

and ω = π − α, then we can write the Crofton integral formula for isoptics C
Γ−βΓγ
α

in exterior of C that is for α ∈ (β + γ, π). Hence we obtain

∫∫

Ω

sin ω

t1t2
dxdy =

∫ 2π

0

∫ π

β+γ
dαdt = 2π2 − 2π(β + γ). (5.11)

Let us recall, that
∫ 2π

0 p(t)dt means the length of a given convex curve C,
which we denote by LC. In [4] the algebraic length of a hedgehog Γ is defined by
the formula

LΓ =
∫ 2π

0
ψ(t)dt, (5.12)
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where ψ(t) is the support function of Γ. Hence, for Γ−β and Γγ we get

LΓ−β
=
∫ 2π

0
ψ−β(t)dt =

∫ 2π

0
(p(t) cos β − ṗ(t) sin β)dt = LC cos β (5.13)

and

LΓγ =
∫ 2π

0
ψγ(t)dt =

∫ 2π

0
(p(t) cos γ + ṗ(t) sin γ)dt = LC cos γ, (5.14)

respectively. In [7] one can find the following Crofton-type formula for convex
curves

∫∫

Ω

sin2 ω

t1
dxdy =

∫∫

Ω

sin2 ω

t2
dxdy = πLC. (5.15)

Theorem 5.2. For any oval the following integral formulas hold

∫∫

Ω

sin2 ω

t1
dxdy = LΓ−β

(π − (β + γ)) + LΓγ sin(β + γ), (5.16)

∫∫

Ω

sin2 ω

t2
dxdy = LΓγ(π − (β + γ)) + LΓ−β

sin(β + γ), (5.17)

where

ω = π − α,

t1 = −M(t), (5.18)

t2 = L(t).

Proof. For secantoptics we get

∫∫

Ω

sin2 ω

t1
dxdy =

∫ 2π

0

∫ π

β+γ

sin2 α

L(t)

(−L(t)M(t))

sin α
dαdt (5.19)

=
∫ 2π

0

∫ π

β+γ
−M(t) sin α dαdt

= LΓ−β
(π − (β + γ)) + LΓγ sin(β + γ)

and

∫∫

Ω

sin2 ω

t2
dxdy =

∫ 2π

0

∫ π

β+γ
L(t) sin α dαdt (5.20)

= LΓγ(π − (β + γ)) + LΓ−β
sin(β + γ).
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6 The condition for secantoptic to be convex

The geometric condition for convexity of isoptics is given in [5]. We will use the
similar method and give the conditions for convexity of secantoptics.

Note that

RΓ−β
(t − β) = R(t) cos β − Ṙ(t) sin β, (6.1)

RΓγ(t + α − β) = R(t + α − β − γ) cos γ + Ṙ(t + α − β − γ) sin γ (6.2)

are curvature radii of evolutoids Γ−β and Γγ, respectively. Denote curvatures of
these evolutoids by

kΓγ(t) =
1

RΓγ(t)
and kΓ−β

(t) =
1

RΓ−β
(t)

. (6.3)

Theorem 6.1. The secantoptic Cα,β,γ is convex if and only if

2|Q(t)|2 > sin α

(

L(t)

kΓγ(t + α − β)
−

M(t)

kΓ−β
(t − β)

)

. (6.4)

Proof. For secantoptic Cα,β,γ we have defined a mapping Fβ,γ(α, t) = zα,β,γ(t). Let
us calculate its partial derivatives

∂Fβ,γ

∂α
=

−M(t)

sin α
(sin β + i cos β)eit, (6.5)

∂Fβ,γ

∂t
=

1

sin α
((−M(t) sin β − L(t) sin(α − β) (6.6)

+ i(L(t) cos(α − β) − M(t) cos β))eit .

Note that the curvature of the secantoptic

k(t) =
sin α

|Q(t)|3
(2|Q(t)|2 − [Q, Q̇]) (6.7)

can be written as

k(t) =
sin α

|Q(t)|3
(2|Q(t)|2 − RΓγ(t + α − β)L(t) sin α + RΓ−β

(t − β)M(t) sin α).

(6.8)
Hence, the secantoptic is convex if and only if

2|Q(t)|2 − sin α

(

L(t)

kΓγ(t + α − β)
−

M(t)

kΓ−β
(t − β)

)

> 0. (6.9)

Theorem 6.2. The secantoptic Cα,β,γ is convex if and only if

2|Q(t)| > sin α

(

sin α1

kΓγ(t + α − β)
+

sin α2

kΓ−β
(t − β)

)

. (6.10)
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Figure 3:

Proof. In [8] we proved the sine theorem for secantoptics

|Q(t)|

sin α
=

L(t)

sin α1
=

−M(t)

sin α2
, (6.11)

where α1 and α2 are angles as in Fig.3. Now, we use it to (6.4)

2|Q(t)|2 > sin α

(

|Q(t)| sin α1

kΓγ(t + α − β)
+

|Q(t)| sin α2

kΓ−β
(t − β)

)

(6.12)

and obtain the following condition for convexity

2|Q(t)| > sin α

(

sin α1

kΓγ(t + α − β)
+

sin α2

kΓ−β
(t − β)

)

. (6.13)

We use the observation from [5] to find a geometric interpretation of this con-
dition.

Theorem 6.3. The secantoptic Cα,β,γ is convex if and only if the sum of the lengths of

the projections of the curvature vectors of Γ−β at z−β(t − β) and Γγ at zγ(t + α − β) in
the direction of the vector Q(t) is less than 2|Q(t)|.

Proof. Note that the length of the projection of the curvature vector of the curve

Γ−β at a point z−β(t − β) in the direction of the vector Q(t) is equal to sin α2
kΓ−β

(t−β)
.

Similarly, the length of the projection of the curvature vector of Γγ at zγ(t + α− β)

in the direction of Q(t) is equal to sin α1
kΓγ (t+α−β)

.

We can, similarly as it was done for isoptics, give a condition which implies
that all secantoptics of an oval C are convex. Let Γ−β and Γγ be two evolutoids

of a given oval C. For each point z−β(t) for t ∈ [0, 2π] we can choose a point
zγ(t + α), where α ∈ (β + γ, π). The vector z−β(t)zγ(t + α) will be denoted by
q(t, t + α).
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Theorem 6.4. If the sum of the lengths of the projections of the curvature vectors of Γ−β

at z−β(t) and of Γγ at zγ(t + α) in the direction of q(t, t + α) is less than 2|q(t, t + α)|
for all t ∈ [0, 2π] and α ∈ (β + γ, π), then secantoptics Cα,β,γ of an oval C are convex
for all α ∈ (β + γ, π).

Proof. Let α ∈ (β + γ, π) be arbitrary, but fixed and let t = τ − β, τ ∈ [0, 2π]. For
each τ the sum of the lengths of the projections of the curvature vectors of Γ−β

at z−β(τ − β) and of Γγ at zγ(τ + α − β) in the direction of the vector z−β(τ −
β)zγ(τ + α − β) is less than 2|z−β(τ − β)zγ(τ + α − β)|. Since z−β(τ − β)zγ(τ +
α − β) = Q(τ), then from the Theorem 6.3 the secantoptic Cα,β,γ is convex. From
arbitrariness of α ∈ (β + γ, π) each secantoptic Cα,β,γ of an oval C is convex.

Authors would like to thank the Referee for his remarks which improved this
paper.
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curves and Crofton-type formulas, Beiträge Algebra Geom. 42 no. 1, (2001), 281–
288.

[7] Santalo, L., Integral geometry and geometric probability, Encyclopedia of Math-
ematics and its Applications, Reading, Mass., 1976.

[8] Skrzypiec, M., A note on secantoptics, Beiträge Algebra Geom. 49 no. 1, (2008),
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