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Abstract

In this studies, we discuss the following Rayleigh equation with two de-
lays:

x′′(t) + f (t, x′(t)) + g1(t, x(t − τ1)) + g2(t, x(t − τ2)) = e(t).

By using Mawhin’s continuation theorem and some new techniques, some
criteria to guarantee the existence and uniqueness of periodic solutions of
this equation is given. Our results are new and complement the known re-
sults in the literature.

1 Introduction

In this present paper, we investigate the existence and uniqueness of the periodic
solutions of the following Rayleigh equation with two delays

x′′(t) + f (t, x′(t)) + g1(t, x(t − τ1)) + g2(t, x(t − τ2)) = e(t), (1.1)

where τ1, τ2 ≥ 0 are two constants, f , g1, g2 ∈ C(R
2, R), f (t, x), g1(t, x), g2(t, x)

are T-periodic functions with respect to t, T > 0, f (t, 0) = 0 for all t ∈ R,
e ∈ C(R, R), and e(t) is a T-periodic function.
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As we know, Rayleigh equation can be derived from many fields, such as
physics, mechanics and engineering technique fields. The problem concerning
the periodic solutions for this equation has been studied extensively by lots of
authors. For example, in 1977, R.E. Gaines and J.L. Mawhin [1] introduced some
continuation theorems and applied them to the existence of solutions of differen-
tial equations. In particular, a specific example is provided in [1, p. 99] on how
T-periodic solutions can be obtained by means of these theorems for the Rayleigh
equation

x′′(t) + f (x′(t)) + g(t, x(t)) = 0. (1.2)

In this direction, many researchers (see [4–9]) continued to discuss the Rayleigh
equation and got some new results on the T-periodic solutions of Eq.(1.1), and
generalized the results in [1]. However, to the best of our knowledge, there exist
much fewer results for the existence and uniqueness of T-periodic solutions of
Eq.(1.1). One of the significant reasons is that various methods to obtain some
criteria for securing the uniqueness of T-periodic solutions in the case of Duffing
equation and Liénard equation can not be adapted directly to the case of Rayleigh
equation. Hence, it is still essential to study the T-periodic solutions of Eq.(1.1).

In this paper, we get around with these difficulties by using some new tech-
niques and obtain some criteria for securing the existence and uniqueness of T-
periodic solutions of Eq.(1.1), which can not be achieved in most of the previous
papers. The results of this studies are new and complement the previously known
results. An illustrative example will be provided to demonstrate the applications
of our results in Section 4.

2 Lemmas

Let us start with some notations. Define

|x|∞ = max
t∈[0,T]

|x(t)|, |x′|∞ = max
t∈[0,T]

|x′(t)|, |x|k =

(∫ T

0
|x(t)|kdt

)1/k

.

Let

C1
T := {x ∈ C1(R, R) : x is T-periodic}

and

CT := {x ∈ C(R, R) : x is T-periodic},

which are two Banach spaces with the norms

||x||C1
T

= max{|x|∞, |x′|∞}, ||x||CT
= |x|∞.

The following conditions will be used later:

(H1) (gi(t, u) − gi(t, v))(u − v) < 0 for all t, u, v ∈ R, u 6= v;

(H′
1) (gi(t, u) − gi(t, v))(u − v) > 0 for all t, u, v ∈ R, u 6= v,
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where i = 1, 2.
Lemma 2.1. If x ∈ C2(R, R) with x(t + T) = x(t), then

|x′|22 ≤
(

T

2π

)2

|x′′|22.

Proof. Lemma 2.1 is a direct consequence of the Wirtinger inequality, and see
[2, 3] for its proof.

Lemma 2.2. Let (H1) or (H′
1) hold. Suppose there exist some nonnegative

constants C0,C1 and C2 such that

(H2) | f (t, u) − f (t, v)| ≤ C0|u − v|, for all t, u, v ∈ R;

(H3) |gi(t, u) − gi(t, v)| ≤ Ci|u − v|, for all t, u, v ∈ R, i = 1, 2;

(H4) C0
T

2π + (C1 + C2)
T2

4π < 1,

then (1.1) has at most one T-periodic solution.
Proof. Suppose that x1(t) and x2(t) are two T-periodic solutions of (1.1). Then,

we have

[x1(t)− x2(t)]′′ + [ f (t, x′1(t))− f (t, x′2(t))]+ [g1(t, x1(t− τ1))− g1(t, x2(t− τ1))]

+ [g2(t, x1(t − τ2)) − g2(t, x2(t − τ2))] = 0. (2.1)

Set Z(t) = x1(t) − x2(t), then, from (2.1), we obtain

Z′′(t) + [ f (t, x′1(t)) − f (t, x′2(t))] + [g1(t, x1(t − τ1)) − g1(t, x2(t − τ1))]

+ [g2(t, x1(t − τ2)) − g2(t, x2(t − τ2))] = 0. (2.2)

Since Z(t) = x1(t)− x2(t) is a continuous T-periodic function in R, there exist
two constants tmax , tmin ∈ R such that

Z(tmax) = max
t∈[0,T]

Z(t) = max
t∈R

Z(t), Z(tmin) = min
t∈[0,T]

Z(t) = min
t∈R

Z(t). (2.3)

Then we have

Z′(tmax) = x′1(tmax)− x′2(tmax) = 0, Z′′(tmax) ≤ 0, (2.4)

and

Z′(tmin) = x′1(tmin)− x′2(tmin) = 0, Z′′(tmin) ≥ 0. (2.5)

In view of (2.2)–(2.5), we get

g1(tmax , x1(tmax − τ1)) − g1(tmax , x2(tmax − τ1))

+ g2(tmax , x1(tmax − τ2)) − g2(tmax , x2(tmax − τ2))

= −Z′′(tmax)− [ f (tmax , x′1(tmax)) − f (tmax , x′2(tmax))] = −Z′′(tmax) ≥ 0 (2.6)
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and

g1(tmin, x1(tmin − τ1)) − g1(tmin, x2(tmin − τ1))

g2(tmin, x1(tmin − τ2))− g2(tmin, x2(tmin − τ2))

= −Z′′(tmin) − [ f (tmin, x′1(tmin)) − f (tmin, x′2(tmin))] = −Z′′(tmin) ≤ 0, (2.7)

which implies there exists a constant t0 ∈ R such that

g1(t0, x1(t0 − τ1)) − g1(t0, x2(t0 − τ1)) + g2(t0, x1(t0 − τ2))

− g2(t0, x2(t0 − τ2)) = 0. (2.8)

From (H1) or (H′
1) and (2.8), we have

Z(t0 − τ1)Z(t0 − τ2) = (x1(t0 − τ1)− x2(t0 − τ1))(x1(t0 − τ2)− x2(t0 − τ2)) ≤ 0,

which implies there exists a constant t00 ∈ R, such that

Z(t00) = 0

Set t00 = nT + t̃0, where t̃0 ∈ [0, T] and n is an integer. Noticing Z(t + T) = Z(t),
we get

Z(t̃0) = Z(nT + t̃0) = Z(t00) = 0. (2.9)

Hence, for any t ∈ [t̃0, t̃0 + T], we obtain

|Z(t)| =

∣∣∣∣Z(t̃0) +
∫ t

t̃0

Z′(s)ds

∣∣∣∣ ≤
∫ t

t̃0

|Z′(s)|ds

and

|Z(t)| =

∣∣∣∣Z(t̃0 + T) +
∫ t

t̃0+T
Z′(s)ds

∣∣∣∣ =

∣∣∣∣∣−
∫ t̃0+T

t
Z′(s)ds

∣∣∣∣∣ ≤
∫ t̃0+T

t
|Z′(s)|ds.

Combining above two inequalities, we get

|Z(t)| ≤ 1

2

∫ T

0

∣∣Z′(s)
∣∣ ds.

Using Schwartz inequality yields

|Z|∞ = max
t∈[t̃0 ,̃t0+T]

|Z(t)| ≤ 1

2

∫ T

0
|Z′(s)|ds ≤ 1

2
|1|2|Z′|2 =

1

2

√
T|Z′|2. (2.10)
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Multiplying Z′′(t) and (2.2) and then integrating it from 0 to T, by Lemma 2.1,
(H2), (H3), (2.10) and Schwartz inequality, we obtain

|Z′′|22 = −
∫ T

0
[ f (t, x′1(t)) − f (t, x′2(t))]Z′′(t)dt

−
∫ T

0
[g1(t, x1(t − τ1)) − g1(t, x2(t − τ1))]Z

′′(t)dt

−
∫ T

0
[g2(t, x1(t − τ2)) − g2(t, x2(t − τ2))]Z

′′(t)dt

≤
∫ T

0
| f (t, x′1(t)) − f (t, x′2(t))||Z′′(t)|dt

+
∫ T

0
|g1(t, x1(t − τ1)) − g1(t, x2(t − τ1))||Z′′(t)|dt

+
∫ T

0
|g2(t, x1(t − τ2)) − g2(t, x2(t − τ2))||Z′′(t)|dt

≤
∫ T

0
C0|x′1(t) − x′2(t)||Z′′(t)|dt

+
∫ T

0
C1|x1(t − τ1)− x2(t − τ1)||Z′′(t)|dt

+
∫ T

0
C2|x1(t − τ2)− x2(t − τ2)||Z′′(t)|dt

≤
∫ T

0
C0|Z′(t)||Z′′(t)|dt +

∫ T

0
C1|Z(t − τ1)||Z′′(t)|dt

+
∫ T

0
C2|Z(t − τ2)||Z′′(t)|dt

≤ C0

( ∫ T

0
|Z′(t)|2dt

)1/2( ∫ T

0
|Z′′(t)|2dt

)1/2

+C1

( ∫ T

0
|Z(t − τ1)|2dt

)1/2( ∫ T

0
|Z′′(t)|2dt

)1/2

+C2

( ∫ T

0
|Z(t − τ2)|2dt

)1/2( ∫ T

0
|Z′′(t)|2dt

)1/2

≤ C0|Z′|2|Z′′|2 + (C1 + C2)
√

T|Z|∞|Z′′|2

≤
[

C0
T

2π
+ (C1 + C2)

T2

4π

]
|Z′′|22 (2.11)

Since Z(t), Z′(t) and Z′′(t) are continuous T-periodic functions, by Lemma 2.1,
(H4) and (2.10), we get

Z(t) = Z′(t) = Z′′(t) = 0, for all t ∈ R.

Thus, x1(t) ≡ x2(t), for all t ∈ R. Hence, (1.1) has at most one T-periodic solution.
This completes the proof.
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For convenience of use, Mawhin’s Continuation Theorem is introduced as fol-
lows.

Lemma 2.3. (Gaines and Mawhin [1]) Let X and Y be two Banach spaces.
Suppose that L : D(L) ⊂ X → Y is a Fredholm operator with index zero and N :
X → Y is L-compact on Ω, where Ω is an open bounded subset of X. Moreover,
assume that all the following conditions are satisfied:

(i) Lx 6= λNx, for all x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);
(ii) Nx ∈ ImL, for all x ∈ ∂Ω ∩ KerL;
(iii) the Brouwer degree deg{JQN, Ω ∩ KerL, 0} 6= 0,

where J : ImQ → KerL is an isomorphism.
Then equation Lx = Nx has at least one solution on Ω ∩ D(L).

3 Main results

Now we are in the position to give our main results.
Theorem 1. Suppose (H1)(or (H′

1))–(H4) hold. Also suppose there exists a
nonnegative constant D1 such that

(H5) x(g1(t, x) + g2(t, x) − e(t)) < 0, for all |x| > D1 and t ∈ R;

Then Eq.(1.1) has a unique T-periodic solution.
Proof. Consider the homotopic equation of Eq.(1.1) as follows:

x′′(t) + λ f (t, x′(t)) + λg1(t, x(t − τ1)) + λg2(t, x(t − τ2)) = λe(t). (3.1)

By Lemma 2.2, it is easy to see that Eq.(1.1) has at most one T-periodic solution.
Thus, to complete the proof of Theorem 1, it suffices to show that Eq.(1.1) has at
least one T-periodic solution. to do this, Lemma 2.3 will be applied.

Firstly, we proof all possible T-periodic solutions of Eq.(3.1) are bounded in
C1

T. Let S ⊂ C1
T be the set of T-periodic solutions of (3.1). If S = ∅, the proof is

ended. Suppose S 6= ∅, and let x ∈ S, then exist two constants t, t ∈ R such that

x(t) = max
t∈R

x(t) and x(t) = min
t∈R

x(t),

which implies
x′(t) = 0, x′′(t) ≤ 0; x′(t) = 0, x′′(t) ≥ 0. (3.2)

In view of (3.1) and (3.2) and noticing f (t, 0) = 0 for all t ∈ R, we obtain

g1(t, x(t − τ1)) + g2(t, x(t − τ2)) − e(t) ≥ 0 and

g1(t, x(t − τ1)) + g2(t, x(t − τ2))− e(t) ≤ 0,

which implies there exists a constant t̂ ∈ R such that

g1(t̂, x(t̂ − τ1)) + g2(t̂, x(t̂ − τ2)) − e(t̂) = 0. (3.3)

Now we show that the following claim is true.
Claim. There exists a constant t̂0 ∈ R such that

|x(t̂0)| ≤ D1. (3.4)
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Assume, by way of contradiction, that (3.4) does not hold. Then

|x(t)| > D1 for all t ∈ R, (3.5)

which, together with (H5) and (3.3), implies that one of the following relations
holds:

x(t̂ − τ1) ≥ x(t̂ − τ2) > D1, (3.6)

x(t̂ − τ2) ≥ x(t̂ − τ1) > D1, (3.7)

x(t̂ − τ1) ≤ x(t̂ − τ2) < −D1, (3.8)

x(t̂ − τ2) ≤ x(t̂ − τ1) < −D1. (3.9)

Suppose that (3.6) holds, in view of (H1), (H′
1), and (H5), we will consider two

cases as follows:
Case (i): If (H1) and (H5) hold, according to (3.6), we have

0 > g1(t̂, x(t̂ − τ2)) + g2(t̂, x(t̂ − τ2)) − e(t̂)

≥ g1(t̂, x(t̂ − τ1)) + g2(t̂, x(t̂ − τ2)) − e(t̂),

which contradicts that (3.3). This contradiction implies that (3.4) is true.
Case (ii): If (H′

1) and (H5) hold, according to (3.6), we have

0 > g1(t̂, x(t̂ − τ1)) + g2(t̂, x(t̂ − τ1)) − e(t̂)

≥ g1(t̂, x(t̂ − τ1)) + g2(t̂, x(t̂ − τ2)) − e(t̂),

which contradicts that (3.3). This contradiction implies that (3.4) is true.
Suppose that (3.7)(or (3.8), or (3.9)) holds; using methods similar to those used

in Case(i) and (ii), we can show that (3.4) is also true. This completes the proof of
the above claim.

For any t ∈ [t̂0, t̂0 + T], we have

|x(t)| =

∣∣∣∣x(t̂0) +
∫ t

t̂0

x′(s)ds

∣∣∣∣ ≤ D1 +
∫ t

t̂0

|x′(s)|ds

and

|x(t)| =

∣∣∣∣x(t̂0 + T) +
∫ t

t̂0+T
x′(s)ds

∣∣∣∣ ≤ D1 +

∣∣∣∣∣−
∫ t̂0+T

t
x′(s)ds

∣∣∣∣∣

≤ D1 +
∫ t̂0+T

t
|x′(s)|ds.

Combining above two inequalities, we get

|x(t)| ≤ D1 +
1

2

∫ T

0
|x′(s)|ds.

Using Schwartz inequality yields

|x|∞ = max
t∈[t̂0,t̂0+T]

|x(t)| ≤ D1 +
1

2

∫ T

0
|x′(s)|ds ≤ D1 +

1

2
|1|2|x′|2 = D1 +

1

2

√
T|x′|2.

(3.10)
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Since (H2) and f (t, 0) = 0 imply that | f (t, x)| ≤ C0|x|, by Lemma 2.1, (H2), (H3),
(3.1), (3.10) and Schwartz inequality, we obtain

|x′′|22 = −λ
∫ T

0
f (t, x′(t))x′′(t)dt − λ

∫ T

0
g1(t, x(t − τ1))x′′(t)dt

− λ
∫ T

0
g2(t, x(t − τ2))x′′(t)dt + λ

∫ T

0
e(t)x′′(t)dt

= −λ
∫ T

0
f (t, x′(t))x′′(t)dt − λ

∫ T

0
[g1(t, x(t − τ1)) − g1(t, 0) + g1(t, 0)]x′′(t)dt

− λ
∫ T

0
[g2(t, x(t − τ2))− g2(t, 0) + g2(t, 0)]x′′(t)dt + λ

∫ T

0
e(t)x′′(t)dt

≤
∫ T

0
C0|x′(t)||x′′(t)|dt +

∫ T

0
|g1(t, x(t− τ1))− g1(t, 0)||x′′(t)|dt + G1

∫ T

0
|x′′(t)|dt

+
∫ T

0
|g2(t, x(t − τ2)) − g2(t, 0)||x′′(t)|dt + G2

∫ T

0
|x′′(t)|dt + |e|∞

∫ T

0
|x′′(t)|dt

≤ C0

∫ T

0
|x′(t)||x′′(t)|dt + C1

∫ T

0
|x(t − τ1)||x′′(t)|dt

+ C2

∫ T

0
|x(t − τ2)||x′′(t)|dt + (G1 + G2 + |e|∞)

∫ T

0
|x′′(t)|dt

≤ C0

( ∫ T

0
|x′(t)|2dt

)1/2( ∫ T

0
|x′′(t)|2dt

)1/2

+ C1

( ∫ T

0
|x(t − τ1)|2dt

)1/2( ∫ T

0
|x′′(t)|2dt

)1/2

+ C2

( ∫ T

0
|x(t − τ2)|2dt

)1/2( ∫ T

0
|x′′(t)|2dt

)1/2

+ (G1 + G2 + |e|∞)

( ∫ T

0
12dt

)1/2( ∫ T

0
|x′′(t)|2dt

)1/2

≤ C0|x′|2|x′′|22 + (C1 + C2)
√

T|x|∞|x′′|2 + (G1 + G2 + |e|∞)|1|2|x′′|2

≤
[

C0
T

2π
+ (C1 + C2)

T2

4π

]
|x′′|22 + G3

√
T|x′′|2 (3.11)

where G1 = max{|g1(t, 0)| : t ∈ [0, T]},G2 = max{|g2(t, 0)| : t ∈ [0, T]} and
G3 = G1 + G2 + |e|∞ + C1D1 + C2D1.

By (H4), there exists a constant M0 > 0 such that

|x′′|2 < M0. (3.12)

Since x(0) = x(T), there exists a constant t̃ ∈ [0, T] such that x′(t̃) = 0. For any
t ∈ [t̃, t̃ + T], by Schwartz inequality, we have

|x′(t)| =

∣∣∣∣x
′(t̃) +

∫ t

t̃
x′′(s)ds

∣∣∣∣ ≤
∫ T

0
|x′′(s)|ds ≤ |1|2|x′′|2 =

√
T|x′′|2,
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which implies

|x′|∞ = max
t∈[t̃,t̃+T]

|x′(t)| ≤
√

T|x′′|2. (3.13)

By Lemma 2.1, (3.10), (3.12) and (3.13), there exists a constant M > max{M0, D1}
such that

|x|∞ < M and |x′|∞ < M,

hence, all possible T-periodic solutions of Eq.(3.1) are bounded in C1
T.

Secondly, we proof the existence of T-periodic solutions to Eq.(1.1).
Set

Ω = {x : x ∈ C1
T, |x|∞ < M, |x′|∞ < M}. (3.14)

Define a linear operator L : D(L) ⊂ C1
T → CT by setting

D(L) = {x : x ∈ C1
T, x′′ ∈ C(R, R)}

and for x ∈ D(L),
Lx = x′′. (3.15)

We also define a nonlinear operator N : C1
T → CT by setting

Nx = − f (t, x′(t)) − g1(t, x(t − τ1)) − g2(t, x(t − τ2)) + e(t), (3.16)

then, Eq.(3.1) is equivalent to the following operator equation

Lx = λNx, λ ∈ (0, 1). (3.17)

It is easy to see that

KerL = R and ImL =

{
x : x ∈ CT,

∫ T

0
x(t)dt = 0

}
,

thus L is a Fredholm operator with index zero.
Also let projectors P : C1

T → KerL and Q : CT → CT/ImL defined by

Px = x(0) where x ∈ C1
T

and

Qx =
1

T

∫ T

0
x(t)dt where x ∈ CT,

hence, ImP=ImQ=KerL=R and KerQ=ImL.
Define the isomorphism as follows

J : ImQ → KerL, J(x) = x. (3.18)

Let
LP := LD(L)∩Ker P : D(L) ∩ Ker P → ImL,

then, from [5], LP has a continuous inverse L−1
P on ImL defined by

(L−1
P x)(t) = − t

T

∫ T

0
(t − s)x(s)ds +

∫ t

0
(t − s)x(s)ds, (3.19)
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In view of (3.14) and (3.19), N is L-compact on Ω. By (3.14) and (3.17), the condi-
tion (i) of Lemma 2.3 is satisfied.
Since

QNx =
1

T

∫ T

0
[− f (t, x′(t)) − g1(t, x(t − τ1))− g2(t, x(t − τ2)) + e(t)]dt,

for any x ∈ ∂Ω ∩ KerL, x = M or x = −M, then in view of (H5) and f (t, 0) = 0
for all t ∈ R, we obtain

QN(M) = − 1

T

∫ T

0
[g1(t, M) + g2(t, M) − e(t)]dt > 0 (3.20)

and

QN(−M) = − 1

T

∫ T

0
[g1(t,−M) + g2(t,−M) − e(t)]dt < 0, (3.21)

which implies the condition (ii) of Lemma 2.3 is satisfied.
Moreover, define

H(x, µ) = µx + (1− µ)QNx = µx + (1− µ)
1

T

∫ T

0
[− f (t, x′(t))− g1(t, x(t − τ1))

− g2(t, x(t − τ2)) + e(t)]dt,

in view of (3.20) and (3.21), we get

xH(x, µ) > 0, for all x ∈ ∂Ω ∩ KerL, µ ∈ (0, 1).

Hence, H(x, µ) is a homotopic transformation, together with (3.18) and by using
the homotopic invariance theorem, we have

deg{JQN, Ω ∩ KerL, 0} = deg{QN, Ω ∩ KerL, 0} = deg{x, Ω ∩ KerL, 0} 6= 0,

so condition (iii) of Lemma 2.3 is satisfied. In view of previous Lemma 2.3, there
exists at least one solution with period T. This completes the proof.

Remark 1. If f (t, 0) 6= 0, the problem of the existence and uniqueness of T-
periodic solutions to Eq.(1.1) can be converted to the following equation

x′′(t) + f1(t, x′(t)) + g1(t, x(t − τ1)) + g2(t, x(t − τ2)) = e1(t), (3.22)

where f1(t, x′(t)) = f (t, x′(t)) − f (t, 0), e1(t) = e(t) − f (t, 0). As f1(t, 0) = 0 for
all t ∈ R, Eq.(3.22) can be studied by Theorem 1 in this paper.
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4 Example and remark

In this section, we apply the main results obtained in previous sections to an
example.

Example 4.1. Consider the following Rayleigh equation with two delays

x′′(t) + f (t, x′(t)) + g1(t, x(t − τ1)) + g2(t, x(t − τ2)) = e(t), (4.1)

where τ1 ≥ 0 and τ2 ≥ 0 are two constants, T = 2π, e(t) = cos2 1
2 t and

f (t, x′(t)) = − 1

40
(1 + sin2t)x′(t)arctanx′ (t),

g1(t, x(t − τ1)) = − 1

40
(1 + cos2t)x(t − τ1),

g2(t, x(t − τ2)) = − 1

60
ecos2tarctan(x(t − τ2) + 1)

Set C0 = 3
20 , C1 = 1

20 , C2 = 1
20 , and let D1 be big enough. Then it is easy

to check that all the conditions of Theorem 1 in this paper hold, which implies
Eq.(4.1) has a unique 2π-periodic solution.

Remark 2. Eq.(4.1) is a very simple version of Rayleigh equation with two
delays, all the results in [1,3–9] and the references therein cannot be applicable
to Eq.(4.1) for securing the existence and uniqueness of 2π-periodic solutions,
which implies the results in this paper are new and they complement previously
known results.
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