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Abstract

For arbitrary compact set K ⊂ C, we consider the uniform polynomial
approximation error En( f , K) of an entire function f and relate it to the gen-
eralized order, generalized lower order and generalized type of f .

1 Introduction

Varga [14] had given the characterization of growth parameters of an entire func-
tion f (z) in terms of the sequence of approximation errors En( f ) taken over the
interval [-1, 1]. Different workers like Batyrev [1], Reddy [9], Ibragimov and
Shikhaliev [6], Giroux [4] and Vakarchuk [13] and others considered the approx-
imation on bounded domain K ⊂ C which does not divide the complex plane.
Dovgoshei [2] considered the uniform approximation on compact subsets of the
complex plane.
Let K be a compact subset of the complex plane and let u1,u2, ...., un ∈ K. Follow-
ing [5, p.285] we put

V(u1, u2, u3, ......, un) =
n

∏
k,l(k<l)

(uk − ul), Vn

= max{|V(u1, u2, u3, ......, un)| : uk ∈ K, 1 ≤ j ≤ n}.
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If f is continuous on K then the best uniform approximation by polynomials
is defined by

En = En( f , K) = inf{max
z∈K

| f (z) − Pn(z)| : deg Pn ≤ n}.

Dovgoshei [2, Theorems 1-3] obtained the necessary and sufficient conditions for
the continuous function f to be extendable to an entire function of given order
and type in terms of the errors En and Vn. To the best of our knowledge, these
characterizations have not been obtained in terms of the lower order of entire
function. In this paper, we have tried to fill this gap. We have also extended the
results of Dovgoshei to generalized orders which will cover the cases of entire
functions of fast growth (Sato order) as well as slow growth. Following Dov-
goshei [2], we give some more definitions.
Let DR denote the disk of radius R centered at the origin and ΓR be its boundary.
Further, suppose that K is an arbitrary compact subset of the plane with card
K = ∞. Set d = max{|z| : z ∈ K}. Also, let µn(z) = zn + a1zn−1 + ...... + an

denote the Chebyshev polynomial for K such that all zeros of µn belong to K. We
set

m∗
n = max{|µn(z)|, z ∈ K}.

Then we have [5, p. 287-289],

m∗
n ≤

Vn+1

Vn
≤ (n + 1)m∗

n, (1)

lim
n→∞

(

Vn+1

Vn

)1/n

= τ (2)

where τ is the transfinite diameter of K. We also have [2, Lemma 1]

Lemma A. Let Pn(z) be a polynomial of degree ≤ n and let Mn = max{|Pn(z)| :
z ∈ K} Then for R > d,

max
z∈ΓR

|Pn(z)| ≤ Rn(n + 1)Mn

(

Vn

Vn+1

(1 + d/R)n+1

(1 − d/R)

)

. (3)

2 Generalized order and generalized type

Let φ : [a, ∞) → R be a real valued function such that (i) φ(x) > 0, (ii) φ(x)
is differentiable ∀ x ∈ [a, ∞), (iii) φ(x) is strictly increasing, and (iv) φ(x) → ∞

as x → ∞. Further, for every real valued function η(x) such that η(x) → 0 as
x → ∞, φ satisfies

lim
x→∞

φ [(1 + η(x) ) x]

φ(x)
= 1. (4)

Then φ is said to belong to the class L0. The function φ(x) is said to belong to the
class Λ if φ(x) ∈ L0 and in place of (4), satisfies the stronger condition

lim
x→∞

φ (cx)

φ(x)
= 1, (5)
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for all c, 0 < c < ∞. Functions φ satisfying (5) are also called slowly increasing
functions (see [8]).
Let f (z) be an entire function, its maximum modulus function being given by
M(r, f )= max

|z|=r
| f (z)|. Using the generalized functions of the class L0 and Λ,

Seremeta [10], obtained the following characterizations:

Theorem B. Let α(t) ∈ Λ, β(t) ∈ L0. Set F(t, c) = β−1 [c α(t)]. If d F(t, c)
/

d ln t =
O(1) as t → ∞ for all c, 0 < c < ∞, then for the entire function f (z) = ∑

∞
n=0 cnzn,

lim sup
r→∞

α (ln M(r, f ))

β (ln r)
= lim sup

n→∞

α (n)

β
(

ln |cn|
−1/n

) . (6)

Theorem C. Let α(t) ∈ L0, β(t) ∈ L0, γ(t) ∈ L0. Let ρ (0 < ρ < ∞) be a

fixed number. Set F(t, σ, ρ) = γ−1
{

[

β−1 (σ α(t))
]1/ρ

}

. Suppose that for all σ,

0 < σ < ∞, F satisfies:
(a) If γ(t) ∈ Λ and α(t) ∈ Λ, then dF(t, σ, ρ)

/

d ln t = O(1) as t → ∞,

(b) If γ(t) ∈ L0 − Λ or α(t) ∈ L0 − Λ, then lim
t→∞

d ln F(t, σ, ρ)/d ln t = 1/ρ.

Then we have

lim sup
r→∞

α (ln M(r, f ))

β
[

(γ(r))ρ] = lim sup
n→∞

α (n
/

ρ)

β
{[

γ
(

e1/ρ |cn|
−1/n

)]ρ} . (7)

Later, S.M.Shah [12] called the left hand quantity in (6) as the generalized order
ρ(α, β, f ) and introduced the generalized lower order λ(α, β, f ) as

λ(α, β, f ) = lim inf
r→∞

α (ln M(r, f ))

β (ln r)
. (8)

Further, Shah obtained the coefficient characterization of λ(α, β, f ).

Theorem D [12, Theorem 2]. Let f (z) = ∑
∞
n=0 cnzn be an entire function. Set

F(t) = β−1(α(t)). Let

(i) For some function ψ(t) tending to ∞ (howsoever slowly) as t → ∞,

β(tψ(t))

β(et)
→ 0 as t → ∞,

(ii)
dF(t)

d(log t)
= O(1) as t → ∞,

(iii) |cn/cn+1| is ultimately a non decreasing function of n.

Then

λ(α, β, f ) = lim inf
n→∞

α (n)

β
(

ln |cn|
−1/n

) .



268 G.S. Srivastava

3 Main Results

We reiterate that the left hand expressions in (6) and (8) will be called generalized
order and generalized lower order respectively. Now we prove
Theorem 1. Let K ⊆ C be an arbitrary compact set with card K = ∞. Let f be an
entire function. Then f has generalized order ρ if and only if

lim sup
n→∞

α (n)

β [ln{En( f , K)/m∗
n+1}

−1/n]
. = ρ. (9)

Proof : Let d = max{|z|; z ∈ K}. In the course of proof of Lemma 2 [ 2, p.923], it
has been shown that for R > d,

En( f , K) ≤
R m∗

n+1

(R − d)n+2

1

2π

∫ 2π

0
| f (Reiθ)| dθ. (10)

Hence we get,

En( f , K)/m∗
n+1 ≤ M(R) (R − d)−(n+1). (11)

By the definition of ρ, we have for any given ε > 0 and R > R0(ε),

α[M(R)] < β(ln R) (ρ + ε)

i.e.; En( f , K)/m∗
n+1 < (R − d)−(n+1) exp[α−1{ρ β(ln R)}], ρ = ρ + ε,

Since d is finite and fixed and the above inequality holds for all R > R0(ε), we can

choose R = R(n) = exp
[

β−1{ α(n)
ρ }

]

= exp
[

F(n, 1
ρ)

]

where F(x, c) is as defined

in the statement of Theorem B. Substituting this value of R in the last inequality
above, we get

En( f , K)/m∗
n+1 < exp

[

−(n + 1)F(n,
1

ρ
)

]

exp

[

α−1

{

ρ
α(n)

ρ

}]

.

< exp

[

−n

{

F(n,
1

ρ
)− 1

}]

,

since F(n, 1
ρ) → ∞ f or n → ∞.

Hence ln[{En( f , K)/m∗
n+1}

−1/n] > F(n, 1
ρ)− 1 = β−1

{

α(n)
ρ

} {

1 − (F(n, 1
ρ))−1

}

.

i.e.; β

[

ln[{En( f , K)/m∗
n+1}

−1/n]
{

1 − (F(n, 1
ρ))−1

}−1
]

>
α(n)

ρ .

Since β ∈ L0 and (F(n, 1
ρ))−1 → 0 as n → ∞, we get on proceeding to limits,

lim sup
n→∞

α (n)

β [ln{En( f , K)/m∗
n+1}

−1/n]
≤ ρ = ρ + ε.

Since ε > 0 was arbitrary, we have

lim sup
n→∞

α (n)

β [ln{En( f , K)/m∗
n+1}

−1/n]
≤ ρ. (12)
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To prove the reverse inequality, let us put

lim sup
n→∞

α (n)

β [ln{En( f , K)/m∗
n+1}

−1/n]
= ρ′.

We assume that 0 ≤ ρ′ < ∞.. Then for a given ε > 0 and all n > n0(ε), we have

En( f , K) < m∗
n+1 exp

[

−n F(n,
1

ρ′ + ε
)

]

.

We now consider the function

h(z) =
∞

∑
n=no

an+1
n+1,R0

zn+1 exp

[

−n F(n,
1

ρ′ + ε
)

]

where R0 > d and an+1,R0
=

[

(1 + d
R0

)n+2 { 2(n+2)
1−d/R0

}
]1/(n+1)

. Let {Pn(z)}∞
0 be

the best approximating polynomials for the function f on K. Let DR denote the
disk of radius R centered at the origin and ΓR be the boundary of DR. Let

S(z) =
∞

∑
n=0

{Pn+1(z) − Pn(z)} + P0(z). (13)

In the course of proof of Theorem 1[ 2 , p.924], it has been shown that the se-
ries (13) is uniformly convergent on ΓR for any arbitrary R > 0. Thus the sum
represents an entire function. Now

S(z) = lim
n→∞

{
n

∑
m=0

{Pm+1(z) − Pm(z)} } + P0(z).

= lim
n→∞

Pn+1(z) = f (z).

We also have [2 , p.924],

max
z∈ΓR

|Pn+1(z)−Pn(z)|1/n ≤ [Rn+1 En( f , K)/m∗
n+1]

1/n

[

2(n + 2)
(1 + (d/R))n+2

1 − d/R

]

(14)
leading to the relation

max
z∈ΓR

|h(z) | =
∞

∑
n=n′

an+1
n+1,R0

Rn+1 exp

[

−n F(n,
1

ρ′ + ε
)

]

≥ max
z∈ΓR

|S(z) − Pn′(z)|.

From the last inequality, we observe that the generalized order of h(z) ≥ the
generalized order of f . If ρ1 denotes the generalized order of h(z) then by (6) we
have

ρ1 = lim sup
n→∞

α(n + 1)

β

[

ln
{

|an+1
n+1,R0

| exp{−nF(n, 1
ρ′+ε)

}−1/(n+1)
] .

Now ln(an+1.R0
) = n+2

n+1 ln(1 + d
R0

) + 1
n+1 ln

(

2(n+2)
1−d/R0

)

= O(1). Hence
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−
1

n + 1
ln

[

exp

(

−n F(n,
1

ρ′ + ε

)]

=
n

n + 1
F(n,

1

ρ′ + ε
) ≈ β−1

[

α(n)

ρ′ + ε

]

.

Since α(x) ∈ Λ, we finally get

ρ1 = lim sup
n→∞

(ρ′ + ε) α(n + 1)

α(n)
= ρ′ + ε .

Since ε > 0 was arbitrary, we get ρ′ = ρ1 ≥ ρ. Combining this with (11), we get
(9).This completes the proof of Theorem 1.
Next we characterize the generalized type. We prove
Theorem 2. Let 0 < ρ < ∞ and functions α(x), β(x) and γ(x) satisfy the con-

ditions of Theorem C. Denote by F(x,σ,ρ) = γ−1
{

[

β−1 (σ α(x))
]1/ρ

}

. For

0 < σ < ∞, let us suppose that the function F satisfies the conditions
(a) If γ(x) ∈ Λ and α(x) ∈ Λ, then dF(x, σ, ρ)

/

d ln x = O(1) as x → ∞ ;

(b) If γ(x) ∈ L0 − Λ or α(x) ∈ L0 − Λ, then lim
x→∞

d ln F(x, σ, ρ)/d ln x = 1/ρ.

Then the entire function f is of generalized type σ if and only if

lim sup
n→∞

α (n
/

ρ)

β
{[

γ
(

e1/ρ{En( f , K)/m∗
n+1}

−1/n
)]ρ} = σ. (15)

Proof . First we assume that f is of generalized type σ with respect to the finite

number ρ i.e., lim sup
r→∞

α (ln M(R))
β [(γ(R))ρ]

= σ.

Let σ < ∞. Then for arbitrary ε > 0 and R > R′(ε),

M(R) < exp
[

α−1 {(σ + ε)β((γ(R))ρ)}
]

.

Using (11), we get

En( f , K)/m∗
n+1 < (R − d)−(n+1) exp

[

α−1 {(σ + ε)β((γ(R)ρ )}
]

The above inequality holds for all n and R > R′(ε). Hence we can choose
R = R(n) = F(n

ρ , 1
σ+ε , ρ) where function F is as defined above. Then for all

large values of n, we have exp
[

α−1 {(σ + ε)β((γ(R)ρ))}
]

= exp
[

α−1
{

α(n
ρ )

}]

and (R − d)−n ∼= R−n =
{

F
[

n
ρ , 1

σ+ε , ρ
]}−n

.

Hence En( f , K)/m∗
n+1 < exp(n

ρ )
{

F
[

n
ρ , 1

σ+ε , ρ
]}−n

,

or, F
[

n
ρ , 1

σ+ε , ρ
]

<

{

En( f , K)/m∗
n+1

}−1/n
e1/ρ ,

or 1
σ+ε α

(

n
ρ

)

< β
[{

γ
(

{

En( f , K)/m∗
n+1

}−1/n
e1/ρ

)}ρ]

.

Since the above inequality holds for all large values of n and ε > 0 is arbitrary,
we obtain on proceeding to limits,

lim sup
n→∞

α (n
/

ρ)

β
{[

γ
(

e1/ρ{En( f , K)/m∗
n+1}

−1/n
)]ρ} ≤ σ. (16)
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To prove the reverse inequality, we follow the method of proof of Theorem 1.
Hence let

lim sup
n→∞

α (n
/

ρ)

β
{[

γ
(

e1/ρ{En( f , K)/m∗
n+1}

−1/n
)]ρ} = σ1.

Then for a given ε > 0 and all n > N1,

En( f , K) < m∗
n+1 exp(

n

ρ
)

{

F

[

n

ρ
,

1

σ1 + ε
, ρ

]}−n

.

Now we consider the function g(z) defined by the infinite series

g(z) = ∑
∞
n=N1

an+1
n+1,R0

zn+1 exp
(

n
ρ

) {

F
[

n
ρ , 1

σ1+ε , ρ
]}−n

= ∑
∞
n=N1

bn+1 zn+1, say

where the sequence
{

an+1
n+1,R0

}

is as defined before. Since F(t, σ, ρ) → ∞ as

t → ∞, we get

lim sup
n→∞

[

an+1
n+1,R0

exp(
n

ρ
)

{

F

[

n

ρ
,

1

σ1 + ε
, ρ

]}−n
]1/n

= 0

and therefore g(z) represents an entire function. Now

max
z∈ΓR

|g(z)| =
∞

∑
n=N1

an+1
n+1,R0

Rn+1 e

(

n

ρ

) {

F

[

n

ρ
,

1

σ1 + ε
, ρ

]}−n

≥
∞

∑
n=N1

an+1
n+1.R0

Rn+1
(

En( f , K)/m∗
n+1

)

≥ max
z∈ΓR

|S(z) − PN1
|.

Hence if g(z) is an entire function of generalized type σ′ with respect to the finite
number ρ then from above inequality we get σ′ ≥ σ. Now applying Theorem C
to the entire function g(z), we have

σ′ = lim sup
n→∞

α (n
/

ρ)

β
{[

γ
(

e1/ρ |bn|
−1/n

)]ρ} . (17)

Now |bn|
−1/n ≃ (an+1,R0

)e−1/ρF

(

n

ρ
,

1

σ1 + ε
, ρ

)

or e1/ρ |bn|
−1/n ≃

(

1 +
d

R0

)(n+2)/(n+1) (

2(n + 2)

1 − d/R0

)

F

(

n

ρ
,

1

σ1 + ε
, ρ

)

= (1 + o(1)) F

(

n

ρ
,

1

σ1 + ε
, ρ

)

.

Since γ(x) ∈ Lo, γ
(

e1/ρ(bn)−1/n
)

≃ γ
[

F
(

n
ρ , 1

σ1+ε , ρ
)]
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= β−1

[

(

1

σ1 + ε
α

(

n

ρ

))1/ρ
]

.

Putting these estimates in (17) , we get σ′ = σ1 + ε. As stated above we have
σ′ ≥ σ. Hence we get for arbitrary ε > 0, σ ≤ σ1 + ε, i.e. σ ≤ σ1. Combining this
with (15), we get (16) which proves Theorem 2.

Remark: If we choose α(x) = β)x) = γ(x) = x in the above result, we get
Theorem 3 of Dovgoshei [2].
In his paper, Dovgoshei did not consider the growth in terms of the lower order.
Presently, we give a characterization of the generalized lower order as defined by
(8). We prove
Theorem 3: Let K ⊆ C be an arbitrary compact set with card K = ∞. Let f be an
entire function. Further, suppose that the sequence

{

En( f , K) m∗
n+2 /En+1( f , K) m∗

n+1

}

forms a non decreasing function of n. Then f has generalized lower order λ if
and only if

lim inf
n→∞

α (n)

β [ln{En( f , K)/m∗
n+1}

−1/n]
. = λ. (18)

Proof: From the definition of generalized lower order λ, given ∈> 0, there exists
a sequence {Rn}, Rn → ∞ as n → ∞ such that

M(R) < exp[α−1{(λ+ ∈) β(log R)}], R = Rn.

Using (11), and proceeding as in the proof of Theorem 1 we can easily show that

lim inf
k→∞

α(k)

β
[

1
k log(Ek( f , K)/m∗

k+1 )−1
] ≤ λ. (19)

To obtain the reverse inequality we assume that the sequence
{

En( f , K) m∗
n+2 /En+1( f , K) m∗

n+1

}

forms a non decreasing function of n. We consider the function

H(z) =
∞

∑
n=1

En( f , K)

m∗
n+1

{

2(n + 2)
(1 + d/R)n+2

1 − d/R

}

zn+1.

Since f (z) is an entire function, from Theorem 1 [2], we have

lim
n→∞

{En( f , K) /m∗
n+1}

1/n = 0.

Since lim
n→∞

{

2(n + 2) (1+d/R)n+2

1−d/R

}1/n
= O(1), it follows that H(z) represents an

entire function of the complex variable z. Further from (13) and (14), we get
M(R, f ) ≤ M(R, H) and consequently

λ = lim inf
R→∞

α (ln M(R, f ))

β (ln R)
≤ lim inf

R→∞

α (ln M(R, H))

β (ln R)
. (20)
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If we denote the coefficients of the Taylor series of H(z) by

cn =
En( f , K)

m∗
n+1

{

2(n + 2)
(1 + d/R)n+2

1 − d/R

}

then
cn

cn+1
=

En( f , K)m∗
n+2

En+1( f , K)m∗
n+1

(

n + 2

n + 3

) (

1

1 + d/R

)

.

Hence, under the assumption of the theorem, |cn/cn+1| forms a non decreasing
function of n. Using Theorem D stated earlier, we obtain

lim inf
R→∞

α (ln M(R, H))

β (ln R)
= lim inf

n→∞

α (n)

β
(

ln |cn|
−1/n

) .

Now ln |cn|−1/n = ln(En( f , K)/m∗
n+1)

−1/n + O(1). Since β ∈ Lo, we finally get
from (20),

λ ≤ lim inf
n→∞

α (n)

β
(

ln
∣

∣En( f , K)/m∗
n+1)

∣

∣

−1/n
) .

Combining this with the inequality (19), we get (18) and proof of Theorem 3 is
complete.
The generalized order and lower generalized order studied above leave an im-
portant case, that is, when α(t) = β(t). This represents the class of entire func-
tions of slow growth and the coefficient formulae derived above are not valid in
this case as the assumptions made in Theorem B and Theorem D on the functions
F(t, c) or F(t) can not hold. To overcome this difficulty, Kapoor and Nautiyal [7]
introduced a new class of functions. Thus a function φ(t) ∈ Ω if φ(t) satisfies (4)
and :

1. (a) There exists a function δ(t) ∈ Λ and t0, K1 and K2 such that for all
t > t0

0 < K1 ≤
d(φ(t))

d(δ(ln t))
≤ K2 < ∞.

Further a function φ(t) ∈ Ω if φ(t) satisfies (4) and

lim
t→∞

d(φ(t))

d(ln(t))
= K, 0 < K < ∞. (21)

Kapoor and Nautiyal [7, p66] showed that Ω , Ω ⊆ Λ and Ω
⋂

Ω = Φ.
Let α(t) ∈ Ω or Ω . Then following Kapoor & Nautiyal [ 7, p.66], for the entire
function f (z) we define the generalized order and generalized lower order λ∗ as

ρ∗ = ρ(α, α, f ) = lim
r→∞

sup
α(ln M(r))

α(ln r)
,

λ∗ = λ(α, α, f ) = lim
r→∞

inf
α(ln M(r))

α(ln r)
.
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It is to be noted that if the function α(t) ∈ Ω then ρ∗ and λ∗ reduce to the ordinary
case of functions of slow growth i.e. ρ(2, 2) and λ(2, 2), (see[11]).
Let f (z) = ∑

∞
k=0 ckzk be an entire function. Then we have [7, Theorem 4]

ρ(α, α, f ) =

{

max{1, L∗} i f α(t) ∈ Ω

1 + L∗ i f α(t) ∈ Ω
(22)

where L∗ = lim sup
n→∞

α(k)
α(ln |ck|

−1/k)
.

Further

λ(α, α, f ) =

{

max{1, l∗} i f α(t) ∈ Ω

1 + l∗ i f α(t) ∈ Ω
(23)

where l∗ = lim inf
n→∞

α(k)
α(ln |ck|−1/k)

and the sequence |ck/ck+1| is ultimately a non decreasing function of k.
Kapoor and Nautiyal did not consider the generalized type for functions of slow
growth. Recently, Ganti and Srivastava [3] defined the type and obtained follow-
ing coefficient characterization [3, Theorem 1]:
Theorem E.:Let α(x) ∈ Ω, then the entire function f (z) of generalized order
ρ, 1 < ρ < ∞, is of generalized type τ if and only if

(3.17)τ = lim sup
r→∞

α (ln M(r, f ))
[

(α(ln r))ρ] = lim sup
n→∞

α (n
/

ρ)
{

[

α
(

ρ
ρ−1 ln |cn|

−1/n
)]ρ−1

} .

Using the estimates obtained in the course of proof of Theorems 1 to 3, the results
stated in (22) , (23) and Theorem E, we can easily obtain following results for
functions of slow growth. We have
Theorem 4. Let K ⊆ C be an arbitrary compact set with card K = ∞. Let f be an
entire function. Then f has generalized order ρ* if and only if

ρ∗ =

{

max{1, L∗∗} i f α(t) ∈ Ω,

1 + L∗∗ i f α(t) ∈ Ω,
(24)

where

L∗∗ = lim sup
k→∞

α(k)

α(ln |Ek( f , K)/m∗
k+1|

−1/k)
.

Further, if the sequence
{

En( f , K) m∗
n+2 /En+1( f , K) m∗

n+1

}

is ultimately a non -decreasing function of n, then the generalized lower order λ∗

is given by

λ∗ =

{

max{1, l∗∗} i f α(t) ∈ Ω

1 + l∗∗ i f α(t) ∈ Ω
(25)

where

l∗∗ = lim inf
k→∞

α(k)

α(ln |Ek( f , K)/m∗
k+1|

−1/k)
.
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Theorem 5. Let K ⊆ C be an arbitrary compact set with card K = ∞. Let f be an
entire function of generalized order ρ* (1 < ρ∗ < ∞) and let α(x) ∈ Ω. Then f
is of generalized type τ if and only if

τ = lim sup
n→∞

α (n
/

ρ
∗
)

{

[

α
(

ρ∗

ρ∗−1 ln
∣

∣En( f , K)/m∗
n+1

∣

∣

−1/n
)]ρ∗−1

} .

The proofs of above results are omitted.

The author is thankful to the referee for his valuable comments.
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