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Abstract

We introduce and study a new class of lattice ordered algebras.

1 Introduction

The importance of f -algebras in the theory of Riesz spaces has steadily grown
since their introduction in the fifties by Birkhoff and Pierce [6]. It is only recently
that other various lattice-ordered algebraic structures have been getting more at-
tention. We are thinking here about almost f -algebras introduced by Birkhoff
[5]. Recently, Henriksen [9] expressed his wish to see more papers dealing with
ℓ-algebras rather than f -algebras. In this prospect, we introduce and give a sys-
tematic study a class of ℓ-algebras that is much larger than the class of (almost)
f -algebras. Indeed, we define an ℓ-algebra A to be a generalized almost f -algebra if
x∧ y = 0 in A implies that the product xy is an annihilator element in A. The sur-
prise is that, unlike to (almost) f -algebras, a generalized almost f -algebra need
not be commutative and need not have positive squares. In spite of that, our main
objective in this paper is to extend various classical facts on (almost) f -algebras
to the more general setting of generalized almost f -algebras as introduced above.
Furthermore, we show that a1..ap = a

σ(1)..aσ(p) for all permutation σ ∈ S(p) such
that p ≥ 3 and ai ∈ A. This is applied to give a description of the set of nilpo-
tent elements in an Archimedean generalized almost f -algebras. We also present
in this paper a generalization of multiplicator operator on an algebra A. An or-
der bounded operator T is said to be a generalized multiplicator if xT(y) − T(x)y
is an annihilator element in A for all x, y in A. In this regard, it will be focused
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on the relationship between generalized multiplicators and orthomorphisms on
generalized almost f -algebras.

We assume that the reader is familiar with the notion of Riesz spaces (also
called vector lattices) as presented in [1] by Aliprantis and Burkinshaw and [11]
by Luxemburg and Zaanen. For terminology and properties of Riesz spaces
and order bounded operators not explained or proved in this paper, we refer
to [1,11,14]. We refer to [1,14] for f -algebra and orthomorphism theories and to
[11] for the relatively uniform topology..

2 Preliminaries

A vector lattice (also called a Riesz space) L is said to be Archimedean if for each
non zero x ∈ L the set {nx : n = ±1,±2, ...} has no upper bound in L. In order
to avoid unnecessary repetition we will assume throughout that all vector lattices and
lattice ordered algebras under consideration are Archimedean. The vector lattice A is
said to be a lattice ordered algebra (briefly, an ℓ-algebra) if there exists an associative
multiplication in A with the usual algebra properties such that xy ∈ A+ for all
x, y ∈ A+. For an ℓ-algebra A, we denote

N(A) = {x ∈ A : xn = 0 for some n = 1, 2, ..} ,

that is, N(A) is the set of all nilpotent elements in A. Also, for a fixed nonnegative
integer n, we put

Nn(A) = {x ∈ A : xn = 0} .

The ℓ-algebra A is said to be semiprime (or reduced) if N(A) = {0}. The ℓ-algebra
A is called an f -algebra if A has the property that x ∧ y = 0 in A implies xz ∧ y =
zx ∧ y = 0 for all z ∈ A+. In a (not necessarily Archimedean) f -algebra A, the
equality |xy| = |x| |y| holds for all x, y ∈ A and then squares are positive. The
(Archimedean) f -algebra A is automatically commutative and satisfies

N(A) = N2(A) = {x ∈ A : xy = 0 for all y ∈ A} .

An almost f -algebra is an ℓ-algebra A such that x ∧ y = 0 in A implies xy = 0. An

ℓ-algebra is an almost f -algebra if and only if
∣∣x2

∣∣ = |x|2 for all x ∈ A. As for
f -algebras, any (Archimedean) almost f -algebra is commutative and satisfies

N2(A) = {x ∈ A : xy = 0 for all y ∈ A}

and
N(A) = N3(A) = {x ∈ A : xyz = 0 for all y, z ∈ A} .

For an (almost) f -algebras A, both N(A) and N2(A) are ℓ-ideals, that is, order and
ring ideals. For more information about almost f -algebras, the reader is referred
to [2].

Next, we discuss linear operators on Riesz spaces. Let L and M be Riesz spaces
with positive cones L+ and M+, respectively, and let T be a linear operator from
L into M. One says that T is order bounded if for each x ∈ L+ there exists y ∈ M+

such that |T(z)| ≤ y in M whenever |z| ≤ x in L. The linear operator T is said to
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be positive if T(L+) ⊂ M+. The linear operator T is called a Riesz homomorphism
(or lattice homomorphism) whenever x∧ y = 0 implies T(x)∧ T(y) = 0. Obviously,
every Riesz homomorphism is positive and then order bounded. The set Lb(L)
of all order bounded linear operators on L is an ordered vector space with respect
to pointwise operations and order. The positive cone of Lb(L) is the subset of all
positive linear operators. An element T in Lb(L) is referred to as an orthomorphism
if, for all x, y ∈ L, |T(x)| ∧ |y| = 0 whenever |x| ∧ |y| = 0. Under the ordering
and operations inherited from Lb(L), the set Orth(L) of all orthomorphisms on
L is an Archimedean Riesz space. The absolute value in Orth(L) is given by
|T| (x) = |T(x)| for all x ∈ L+. With respect to the composition as multiplication,
Orth(L) is an Archimedean f -algebra with the identity mapping IL on L as a unit
element (for details on this see, e.g., [1, Theorem 8.24]).

Let L and M be Riesz spaces, p ∈ {2, 3, ...}. A map Ψ : Lp → M is called a
p-linear map whenever the operator

Ψi : L → A
x → Ψ(a1, .., x

i
, .., ap)

is linear for all 1 ≤ i ≤ p and a1, a2, .., ap ∈ L+ (where Lp is the cartesian product
of L with itself p times). A p-linear map Ψ : Lp → M is said to be positive if
Ψ(a1, a2, .., ap) ∈ M+ for all a1, a2, .., ap ∈ L+. A positive p-linear map Ψ : Lp → M
is said to be an orthosymmetric map if ai ∧ aj = 0 implies Ψ(a1, a2, .., ap) = 0. The
proof of commutativity of Archimedean almost f -algebras, given by Bernau and
Huijsmans in [2, Theorem 2.15], doesn’t make use of associativity. In fact, Bernau
and Huijsmans proved that every orthosymmetric bilinear map is symmetric.

At this point, we shall introduce and give the first properties of the class of
ℓ-algebras that will be surveyed in this paper.

Let A be a lattice ordered algebra. Consider the left annihilator lan(A) =
{x ∈ A : xA = {0}}, the right annihilator ran(A) = {x ∈ A : Ax = {0}} and the
annihilator ann(A) = lan(A) ∩ ran(A).

Definition 1. The ℓ-algebra A is said to be a generalized almost f -algebra if

x ∧ y = 0 implies xy ∈ ann(A).

It is not hard to prove that f -algebras and almost f -algebras are generalized
almost f -algebras. Now we give an example to show that the classes of almost
f -algebras and generalized almost f -algebras are in general distinct.

Example 1. Take A = C([−1, 1]) with the usual operation, order and multiplication ∗
defined by





( f ∗ g)(x) =
∫ 1

0 f (t)g(1 − t)dt if x ∈
[
−1,− 1

4

]

( f ∗ g)(x) = (−4
∫ 1

0 f (t)g(1 − t)dt)x if x ∈
[
− 1

4 , 0
]

( f ∗ g)(x) = 0 if x ∈ [0, 1]

it is not hard to show that A is a generalized almost f -algebra under the multiplication
∗. However, A is not an almost f -algebra. Indeed, let f , g, defined by

f (x) =





1 − 4x if x ∈
[
−1, 1

4

]

0 if x ∈
[

1
4 , 1

]
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g(x) =

{
0 if x ∈

[
−1, 3

4

]

− 4
3 x + 1 if x ∈

[
3
4 , 1

] .

It is not hard to prove that f ∧ g = 0 and f ∗ g 6= 0.

We observe from preceding example that a generalized almost f -algebra need
not have positive squares.

It seems natural therefore to ask what is missing for a generalized almost
f -algebra to be an f -algebra. If some conditions are imposed, then we have
the following relationship. Any semiprime generalized almost f -algebra is an
f -algebra and any generalized almost f -algebra with unit element e is an f-algebra.

3 Theoretical properties of generalized almost f -algebras

In this section we prove some properties of generalized almost f -algebras which
will be used later. We start with our basic Lemma.

Lemma 1. Let A be a generalized almost f -algebra and p ∈ {3, 4, ..}. If σ ∈ S(p) is a
permutation then

a1..ap = a
σ(1)..aσ(p) for all a1, .., ap ∈ A.

Proof. Let Ψ the p-linear map from Ap into A defined by

Ψ(a1, .., ap) = a1..ap

for all a1, .., ap ∈ A. It is not hard to prove that Ψ is orthosymmetric.
Let i 6= j ∈ {1, ..., p} and 0 ≤ a1, ..., ap ∈ A and define

Φ : A2 → A
(x, y) → Ψ(a1, .., x

i
, .., y

j

, .., ap) .

Φ is a orthosymmetric bilinear map then symmetric. So Ψ(a1, .., ai, .., aj, .., ap) =
Ψ(a1, .., aj, .., ai, .., ap).Since S(p) is generated by transpositions, we obtain

Ψ(a1, .., ap) = Ψ(a
σ(1) , .., a

σ(p))

for all permutation σ ∈ S(p). This give the desired result.

As an application we give the following Proposition.

Proposition 1. Let A be a generalized almost f -algebra. then

(i) a4 ≥ 0 for all a ∈ A (and hence
∣∣a4

∣∣ = |a|4 for all a ∈ A).
(ii) a(a+)2 ≥ 0, (a+)2a ≥ 0, a2b ≥ 0 for all a ∈ A and b ∈ A+.

(iii)
∣∣a2n

∣∣ = |a|2n for all a ∈ A and n ∈ {2, 3, ...} .

Proof. (i) If a ∈ A then

a4 = (a+ − a−)4

= (a+)4 − 4(a+)3(a−) + 6(a+)2(a−)2 − 4(a+)(a−)3 + (a−)4

= (a+)4 + (a−)4.
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(ii) Let a ∈ A and observe that a(a+)2 = (a+ − a−)(a+)2 = (a+)3 ≥ 0.
Similarly (a+)2a = (a+)3 ≥ 0.

(iii) All mixed terms in the expansion of a2n = (a+ − a−)2n vanish for
n ∈ {2, 3, ...}, so

a2n = (a+)2n + (a−)2n ≥ 0

i.e. a2n =
∣∣a2n

∣∣ for n ∈ {2, 3, ...}. Likewise |a|2n = (a+ + a−)2n = (a+)2n +

(a−)2n =
∣∣a2n

∣∣ for n ∈ {2, 3, ...}.

Next, we describe the set of nilpotent elements in a generalized almost
f -algebra.

Proposition 2. If A is a generalized almost f -algebra, then N(A) is an ℓ-ideal in A.

Proof. Obviously, N(A) is a vector subspace of A. Moreover, Lemma 1 implies
directly that N(A) is a ring ideal. Now, we prove that N(A) is an order ideal. It
is clear that for 0 ≤ b ≤ a, a ∈ N(A) implies b ∈ N(A). It remains to show, that
N(A) is a sublattice of A. To this end we use Proposition 1(iii). If a ∈ N(A), then
an = 0 for some n ∈ {2, 3, ...}, so a2n = 0, so

|a|2n =
∣∣∣a2n

∣∣∣ = 0.

This give the desired result.

Theorem 1. Let A be an Archimedean generalized almost f -algebra. Then

N(A) = N4(A) =
{

a ∈ A : a4 = 0
}

=
{

a ∈ A : a2bc = 0 for all b, c ∈ A
}

= {a ∈ A : abcd = 0 for all b, c, d ∈ A} .

Proof. By Proposition 2 we can assume, without loss of generality that a ∈ A+.
Let k ∈ {5, 6, ...} such that ak = 0. It follows from Lemma 1 and Proposition 1(ii)
that

(a − nak−3)2a = a3 + n2a2k−5 − 2nak−1 ≥ 0 for all n ∈ {1, 2, ...} .

Observe now that for k ∈ {5, 6, ...}, we have 2k − 5 ≥ k. Therefore, a2k−5 = 0.
Consequently, 2nak−1 ≤ a3 for all n ∈ {1, 3, ...}. The Archimedean property gives
ak−1 = 0. Repeating this argument another k− 5 times, we finally find a4 = 0. So,

N(A) =
{

a ∈ A : a4 = 0
}

.

The rest of proof is an easy exercise.

Now, let A be an Archimedean generalized almost f -algebra it is easily fol-
lowed from the descriptions of N(A) that N(A) is a uniformly closed ℓ-ideal of
A. Hence, the quotient A/N(A) is Archimedean.

Theorem 2. If A is an Archimedean generalized almost f -algebra, then A/N(A) is an
Archimedean semiprime f -algebra.



228 E. Chil

We observe from the preceding Theorem that if A is an Archimedean gen-
eralized almost f -algebra then A is four-commutative (i.e (ab − ba)4 = 0 for
all a, b ∈ A). This result can be strengthened in the following way, if A is an
Archimedean generalized almost f -algebra then A is square-commutative (i.e
(ab − ba)2 = 0 for all a, b ∈ A).

4 Product in generalized almost f -algebra

Let A be a uniformly complete generalized almost f -algebra and p ∈ {3, 4, ...}.
In this section, we take the following notations:

(i) Πp(A) =
{

a1a2..ap : ak ∈ A, k = 1, .., p
}

.
(ii) Σp(A) = {ap : 0 ≤ a ∈ A} .

In this section, we will study the set Πp(A).
First let us prove a useful Proposition.

Proposition 3. Let A, B be Archimedean vector lattices, p ∈ {2, 3, ...}, Ψ an orthosym-
metric map from Ap into B and π1, .., πp ∈ Orth(A). Then

Ψ(π1(a1), π2(a2), .., πp(ap)) = Ψ(a1, a2, .., (π1..πp)(ap))

for all a1, a2, .., ap ∈ A.

Proof. It sufficient to prove that if i 6= j ∈ {1, .., p} then

Ψ(a1, .., π(ai), .., ap) = Ψ(a1, .., π(aj), .., ap)

for all a1, .., ap ∈ A and π ∈ Orth(A).
Let i 6= j ∈ {1, .., p}, 0 ≤ π ∈ Orth(A) and define

Φ : A2 → A
(x, y) → Ψ(a1, .., π(x)

i

, .., y
j

, .., ap) .

It is straightforward to show that Φ(x, y) = Φ(y, x). Therefore

Ψ(a1, .., π(x)
i

, .., y
j

, .., ap) = Ψ(a1, .., π(y)
i

, .., x
j
, .., ap).

On the other hand Ψ(a1, .., π(y)
i

, .., x
j
, .., ap) = Ψ(a1, .., x

i
, .., π(y)

j

, .., ap) (because the

bilinear map (x, y) → Ψ(a1, .., x
i
, .., y

j

, .., ap) is symmetric). Consequently,

Ψ(a1, .., π(x)
i

, .., y
j

, .., ap) = Ψ(a1, .., x
i
, .., π(y)

j

, .., .., ap)

for all x, y ∈ A. In particular

Ψ(a1, .., π(ai), .., aj, .., ap) = Ψ(a1, .., ai, .., π(aj), .., .., ap)

and the proof of the Proposition is finished.
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Proposition 4. Let A be an uniformly complete generalized almost f -algebra and
p ∈ {3, 4, ...}. Then:

(i) For every 0 ≤ a1, .., ap ∈ A, there exists 0 ≤ u ∈ A such that

up = a1..ap.

(ii) For every 0 ≤ a, b ∈ A, there exists 0 ≤ u ∈ A such that

up = ap + bp.

Proof. (i) Let 0 ≤ a1, .., ap ∈ A and put e = a1 + .. + ap. Consider Ae the principal
order ideal of A generated by e and Ψ the p-linear map from Ap into A defined
by

Ψ(a1, .., ap) = a1..ap.

Obviously, Ψ is an orthosymmetric map. Moreover, for every k ∈ {1, .., p},
there exists 0 ≤ πk ∈ Orth(Ae) such that ak = πk(e). So

a1..ap = Ψ(a1, .., ap) = Ψ(π1(e), .., πp(e)) = Ψ(e, .., π1..πp(e))

(by the preceding Proposition).
Since Orth(Ae) is an uniformly complete f -algebra with unit, there exists

0 ≤ π ∈ Orth(Ae) such that
π

p = π1..πp

(see [3; Theorem 5]). Consequently

a1..ap = Ψ(e, .., π
p(e)) = Ψ(π(e), .., π(e)) = π(e)p

which is the asked result.
(ii) We use the same argument of the proof of (i).

Now, we arrive at to the main result of this section.

Theorem 3. Let A be a uniformly complete generalized almost f -algebra and a natural
number p ∈ {4, 5, ..}. Then, Πp(A) is a semiprime f -algebra under the ordering and
multiplication inherited from A with Σp(A) as positive cone. In particular

ap ∧p bp = (a ∧ b)p and ap ∨p bp = (a ∨ b)p for all 0 ≤ a, b ∈ A.

(Where ap ∧p bp and ap ∨p bp indicate inf(ap , bp) and sup(ap , bp) in Πp(A)).

Proof. At first, we prove that Πp(A) is an order vector subspace of A with
(Πp(A))+ = Σp(A), ap ∧p bp = (a∧ b)p and ap ∨p bp = (a∨ b)p . From the preced-
ing Theorem, it is clear that Σp(A) is a positive cone in A. Hence Σp(A) − Σp(A)
is an order vector subspace of A with

(Σp(A) − Σp(A))+ = Σp(A).

Let a, b ∈ A+, we have

ap − bp = (a − b) ∑
0≤k≤p−1

akbp−1−k.
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Now, by preceding Proposition there exists u ∈ A+ such that

up−1 = ∑
0≤k≤p−1

akbp−1−k

Therefore
ap − bp = up−1(a − b).

So Σp(A) − Σp(A) ⊂ Πp(A). Conversely, let a1, a2, ..., ap ∈ A. Observe now that,

by using the fact that ai = a+
i − a−i and the preceding Proposition, there exists

u, v ∈ A+ such that
a1..ap = up − vp.

So Πp(A) ⊂ Σp(A) − Σp(A). This implies that

Σp(A) − Σp(A) = Πp(A).

Now, let a, b, c ∈ A+. Obviously, (a ∨ b)p ≥ ap and (a ∨ b)p ≥ bp. Assume that

cp ≥ ap, cp ≥ bp

so, [c]p ≥ [a]p, [c]p ≥ [b]p in A/N(A). Since A/N(A) is an Archimedean semi-
prime f -algebra we get by [3; Proposition 2]

[c] ≥ [a] , [c] ≥ [b]

so
[c − a] ≥ 0, [c − b] ≥ 0.

This implies that
(c − a)−, (c − a)− ∈ N(A).

Consequently,

(c − (a ∨ b))− = (c − a)− ∨ (c − a)− ∈ N(A).

Observe now that by using Theorem 1, we get

cp − (a ∨ b)p = (c − (a ∨ b))( ∑
0≤k≤p−1

ck(a ∨ b)p−1−k)

= (c − (a ∨ b))+( ∑
0≤k≤p−1

ck(a ∨ b)p−1−k) ≥ 0.

Hence ap ∨p bp exists in Πp(A) and satisfies

ap ∨p bp = (a ∨ b)p.

We conclude that Πp(A) is a vector lattice.
Prove now that Πp(A) is a semiprime f -algebra. Let a, b ∈ A such that

ap ∧p bp = (a ∧ b)p = 0, so
a ∧ b ∈ N(A).
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So
(a ∧ b)(ab)c = 0

for all c ∈ A. Since A is a generalized almost f -algebra, so

(a − a ∧ b)(b − a ∧ b)(ab) = 0

so
(ab)2 = 0.

We get
apbp = (ab)p = 0.

This implies that Πp(A) is an almost f -algebra. It is easy to prove that Πp(A) is
semiprime. So Πp(A) is a semiprime f -algebra, and the proof is complete.

Now, let A be a uniformly complete generalized almost f -algebra and B be
a semiprime f -algebra. If T : A → B is an algebra homomorphism, then T is
disjointness preserving, that is, if |a| ∧ |b| = 0 in A then |Ta| ∧ |Tb| = 0. Indeed,
|a| ∧ |b| = 0 implies abc = 0 for all c ∈ A, so (ab)2 = 0, so (T(ab))2 = T(ab)2 = 0.
Since B is semiprime, we get T(ab) = T(a)T(b) = 0. So, |Ta| ∧ |Tb| = 0 and thus
the algebra homomorphism T : A → B is a lattice homomorphism if and only if
T is positive.

Theorem 4. Let A be a uniformly complete generalized almost f -algebra and B be an
Archimedean semiprime f -algebra. Then any algebra homomorphism T : A → B is a
lattice homomorphism.

Proof. By the above remark, it suffices to prove that T ≥ 0. Let a ∈ A+, Hence
a5 ∈ A+ then there exists b ∈ A+ such that a5 = b4 (see Theorem 3). Con-
sequently (Ta)5 = (Tb)4 ≥ 0. However, (Ta)5 = ((Ta)+)5 − ((Ta)−)5 ≥ 0,
where we use (Ta)+(Ta)− = 0. It follows from ((Ta)+)5 ∧ ((Ta)−)5 = 0 that
the above decomposition of (Ta)5 into positive elements is minimal and hence
((Ta)−)5 = ((Ta)5)− = 0. Since B is semiprime, we obtain (Ta)− = 0, that is,
Ta ≥ 0. The proof is complete.

5 Generalized multiplicators in generalized almost f -algebras

We call a linear operator T on an algebra A a multiplicator after Scheffold [12] if

xT(y) = T(x)y for all x, y ∈ A.

Using his representation Theorem of almost f -algebras on C(Ω)-spaces, Scheffold
proved in [12] that any orthomorphism on a Banach almost f -algebra automati-
cally is an order bounded multiplicator. In the present section we intend to make
some contributions to this area. In spite of that, we start our study with a gener-
alization of multiplicator operators. A linear operator T on an algebra A is said
to be a generalized multiplicator if

xT(y) − T(x)y ∈ ann(A) for all x, y ∈ A.
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First, let Multb(A) denote the set of all order bounded multiplicators on an
ℓ-algebra A and GMultb(A) denote the set of all order bounded generalized mul-
tiplicator on an ℓ-algebra A.

The main topic of the following result is to establish a relationship between the
set of orthomorphisms and the set of order bounded generalized multiplicators.

We plunge into the matter with the following Proposition.

Proposition 5. Let A be an Archimedean generalized almost f -algebra. Then any ortho-
morphism on A is an order bounded generalized multiplicator on A.

Proof. It is clear that we may prove the result only for positive orthomorphisms.
Let 0 ≤ T ∈ Orth(A), c ∈ A+ and define the bilinear map Ψ from A × A into A
by

Ψ(x, y) = xT(y)c for all x, y ∈ A.

Obviously, Ψ is positive and if x ∧ y = 0 then x ∧ Ty = 0 and therefore

Ψ(x, y) = xT(y)c = 0.

This implies that Ψ is symmetric. Hence

xT(y)c = Ψ(x, y) = Ψ(y, x) = yT(x)c = T(x)yc

and then
(xT(y) − T(x)y)c = 0

for all x, y, c ∈ A. We derive that T is a generalized multiplicator on A and the
proof of the Proposition is complete.

Next, we give a characterization of positive generalized multiplicators on a
generalized almost f -algebra, which turns out to be useful for later purposes.

Proposition 6. Let A be an Archimedean generalized almost f -algebra, T a positive
operator on A. Then the following are equivalent.

(i) T ∈GMultb(A),
(ii) If x ∧ y = 0 then T(x)y ∈ ann(A).

Proof. Assume that T ∈GMultb(A) and x ∧ y = 0. Then xyT(z) = 0 for all z ∈ A
(because A is an Archimedean generalized almost f -algebra). Since T∈GMultb(A),
we obtain

T(x)yz = T(x)zy = xT(z)y = 0 for all z ∈ A.

Consequently, T(x)y ∈ ann(A). Therefore, if 0 ≤ T and x ∧ y = 0, then
T(x)y ∈ ann(A). Let z ∈ A+ and define the bilinear map Φ from A × A into
A by Φ(x, y) = T(x)yz. It is straightforward to show that Φ is a symmetric.
Hence T(x)yz = xT(y)z for all x, y ∈ A and z ∈ A+. So

T(x)y − xT(y) ∈ ann(A).

We derive that T ∈GMultb(A).

As an immediate application we obtain the following result, the proof of which
is left to the reader.
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Corollary 1. If A is an Archimedean semiprime f -algebra then

Orth(A) = Multb(A).

Assume now that A is an Archimedean generalized almost f -algebra and
T ∈ GMultb(A). Let s : A → A/N(A) be the canonical surjection. By Propo-
sition 14, s is a lattice and algebra homomorphism. Now let x ∈ N(A) then
xT(y) ∈ N(A) for all y ∈ A (because N(A) is a ring ideal). On the other hand,
xT(y) − T(x)y ∈ N(A) and thus T(x)y ∈ N(A) for all y ∈ A. If one takes

y = T(x) then T(x) ∈ N(A). So, we can define the operators T̃ from A/N(A)

into itself by putting T̃(s(x)) = s(T(x)). Obviously, T̃ ∈ Multb(A/N(A)). Since

A/N(A) is a semiprime f -algebra, the preceding Corollary, yields that T̃ is an
orthomorphism of A/N(A). This leads to the following result.

Corollary 2. If T ∈ GMultb(A) then T̃ ∈ Orth(A/N(A)).

As an immediate application of preceding result, we prove that GMultb(A) is
an algebra whenever A is a generalized almost f -algebra and ann(A) = N(A).

Theorem 5. Let A be an Archimedean generalized almost f -algebra such that ann(A) =
N(A). Then GMultb(A) is an ordered subalgebra of Lb(A).

Proof. We only prove that GMultb(A) is closed under composition of operators.

Let R, T ∈ GMultb(A), then R̃ = s ◦ R, T̃ = s ◦ T ∈ Orth(A/N(A)). Hence, R̃ ◦
T̃ ∈ Orth(A/N(A))=Multb (A/N(A)). We derive that R ◦ T(x)y − xR ◦ T(y) ∈
N(A) for all x, y ∈ A. Consequently, R ◦ T ∈ GMultb(A), which is the desired
result.
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