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Abstract

We consider the problem of application of the method of averaging to
the asymptotic approximation of solutions of ordinary differential inclusions
of the form ẋ(t) ∈ f (t/ε, x(t)). Our result is formulated in both classical
mathematics and nonstandard analysis; its proof uses some methods of non-
standard analysis.

1 Introduction and notations

There has recently been a great deal of interest in the field of Bogolubov’s type
theorems. Many authors [7, 8, 9, 10, 20, 21] have discussed the averaging theorem
for differential inclusions.

In the present paper, we prove a theorem on averaging on finite intervals of
time for ordinary differential inclusions of the form

ẋ(t) ∈ f

(
t

ε
, x(t)

)
(1.1)

where f is a multifunction with values that are nonempty compact convex subsets
of R

d.
By use of the axiomatic form IST (for Internal Set Theory) of Robinson’s non-

standard analysis (in short NSA) [22], given by Nelson [19], different averaging
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results under weak conditions are proved by the author in references [11] to [16].
This work continues this line of research.

Here, our averaging result for the ordinary differential inclusion (1.1) is for-
mulated in both classical mathematics and nonstandard analysis. Its proof use
NSA.

The paper is organized as follows. In Section 2 we state as Theorem 2.1 the
main result of this work. A quite efficient tool for the proof of Theorem 2.1,
namely, the so-called Stroboscopic method (Theorem 3.8) is presented in Section
3.2 after a short tutorial to NSA in Section 3.1. The nonstandard translate in the
language of IST of Theorem 2.1 (Theorem 4.1) is presented in Section 4. Finally,
in Section 5 we use Theorem 3.8 to prove Theorem 4.1.

We recall that the stroboscopic method was proposed for the first time in the
study of some ordinary differential equations with a small parameter which occur
in the theory of nonlinear oscillations [2, 17, 23]. Here, we extend it in the context
of ordinary differential inclusions.

We emphasize that none of our proofs needs to be translate into classical form
because IST is a conservative extension of ordinary mathematics. This last means
that any classical statement which is a theorem of IST was already a theorem of
ordinary mathematics.

We finish this section with some definitions and notations.
Let R

d denotes the d-dimensional space with the euclidean norm | · |. Comp(R
d)

(Conv(R
d), respectively) stands for the class of all nonempty compact (nonempty

compact and convex, respectively) subsets of R
d. In Comp(R

d) the so-called
Hausdorff metric is defined by

ρ(A, B) := max

(
sup
a∈A

δ(a, B), sup
b∈B

δ(b, A)

)
, ∀A, B ∈ Comp(R

d)

where δ(x, A) = inf{|x − a| : a ∈ A}, for any x ∈ R
d and any A ∈ Comp(R

d).
The metric space (Comp(R

d), ρ) is complete and Conv(R
d) is a closed subset of

this space.
The norm of any A ∈ Comp(R

d) is given by: ‖A‖ = ρ(A, {0}) = sup{|a| :
a ∈ A}.

Let f : R+ × R
d → Comp(R

d) be a multifunction. By a solution of the or-
dinary differential inclusion ẋ ∈ f (t, x) we understand an absolutely continuous
function x defined on some interval and satisfying ẋ(t) ∈ f (t, x(t)) for almost
every t.

For the usual theory of differential inclusions we refer to the books of Aubin
and Cellina [1], Deimling [3], Hu and Papageorgiou [6] and Smirnov [24].

2 The Averaging Method

Let x0 ∈ R
d and let f : R+ × R

d → Conv(R
d) be a continuous multifunction. Let

ε > 0 be a small parameter. We are interested in the initial value problem

ẋ(t) ∈ f

(
t

ε
, x(t)

)
, x(0) = x0 (2.1)
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on bounded intervals of time t ∈ [0, L] and in the limit behavior of the motion
when the parameter ε tends to zero. Therefore, we apply the averaging method.
For this purpose we assume the following:

Assumption 1 The multifunction f is continuous in the second variable uniform-
ly with respect to the first one.

Assumption 2 For all x ∈ R
d there exists a limit

lim
T→∞

1

T

∫ T

0
f (τ, x)dτ := F(x),

where the integral is meant in Aumann-Hukuhara’s sense.

As a consequence of Assumptions 1 and 2, the average of the multifunction
f , that is, the multifunction F : R

d → R
d in Assumption 2, is continuous (see

Lemma 5.1).
Consider now problem (2.1) together with the initial value averaged problem

ẏ(t) ∈ F(y(t)), y(0) = x0 (2.2)

on which we make the following assumption:

Assumption 3 The initial value problem (2.2) has a unique solution.

The main theorem of this paper states that the problem (2.2) can be considered
as an initial value problem determining the motion when ε goes to zero. It reads
as follows.

Theorem 2.1. Let f : R+ × R
d → Conv(R

d) be a continuous multifunction and let
x0 ∈ R

d. Suppose that Assumptions 1-3 are fulfilled. Let y be the solution of (2.2) and
let L ∈ J, where J is the positive interval of definition of y. Then, for every δ > 0, there
exists ε0 = ε0(L, δ) > 0 such that, for all ε ∈ (0, ε0], every solution x of (2.1) is defined
at least on [0, L] and satisfies |x(t) − y(t)| < δ for all t ∈ [0, L].

3 The Stroboscopic Method

Hereafter we give a short tutorial on Internal Set Theory necessary to the rest of
the paper. All of the results mentioned in this section are proved in [19] (see, also,
references [4, 5, 18]). Then, we present the fundamental tool on which the proof
of Theorem 2.1 is based, namely, the Stroboscopic Method.

3.1 Internal Set Theory: A short tutorial

Internal Set Theory (IST) is a theory extending ordinary mathematics, say ZFC
(Zermelo-Fraenkel set theory with the axiom of choice), that axiomatizes (Robin-
son’s) nonstandard analysis (NSA). In the IST a new predicate standard is added
to the system ZFC. The abbreviated form of this predicate is st. Formulas of IST
without any occurrence of the predicate st are called internal; otherwise, they are



16 M. Lakrib

called external. Thus internal formulas are the formulas of ZFC. In addition to the
usual axioms of ZFC, three others axioms are introduced for handling the new
predicate in a relatively consistent way. Hence all theorems of ZFC remain valid in
IST. What is new in IST is an addition, not a change.

IST is a conservative extension of ZFC, that is, every internal theorem of IST
is a theorem of ZFC. There is the so-called reduction algorithm to reduce any ex-
ternal formula F (x1, . . . , xn) of IST, where x1, . . . , xn, are all the free variables of
F , to an internal formula F ′(x1, . . . , xn) with the same free variables, such that
F ≡ F ′, that is, F is equivalent to F ′ for all standard values of x1, . . . , xn. In other
words, any result which may be formalized within IST by a formula F (x1, . . . , xn)
is equivalent to the classical property F ′(x1, . . . , xn), provided x1, . . . , xn are re-
stricted to standard values. We give the reduction of the frequently occurring
formula ∀x (∀sty P1 =⇒ ∀stz P2) where P1 and P2 are internal formulas

∀x (∀sty P1 =⇒ ∀stz P2) ≡ ∀z ∃ f iny′ ∀x (∀y ∈ y′ P1 =⇒ P2). (3.1)

The notations ∀stX and ∃ f inX stand for [∀X, st(X) =⇒ · · · ] and [∃X, Xfinite & · · · ],
respectively.

Let d be a standard and positive integer and let R
d be the d-dimensional space

with the euclidean norm | · |. Let x be in R
d. The element x is said to be infinites-

imal if |x| < a for all standard and positive a ∈ R
d and limited if |x| ≤ a for

some standard and positive a ∈ R
d. It is said to be appreciable if it is both limited

and not infinitesimal. If x is not limited it is said to be unlimited and denoted by
x ≃ ∞.

Two points x and y in R
d are called infinitely close, denoted by x ≃ y, when

|x − y| is infinitesimal. The element x is called nearstandard in R
d when x ≃ x0

for some standard x0 ∈ R
d. The element x0 is called the standard part or shadow

of x. It is unique and is also denoted by ox. The halo of x, denoted by hal(x), is
the external set of all y ∈ R

d such that x ≃ y.
Note that each limited element of R

d is nearstandard (in R
d).

Let A be an internal subset of R
d. The shadow of A, denoted by o A, is the stan-

dard set whose standard elements are those whose halo intersects A. It is unique
and closed. We note that when A is standard, the shadow o A of A coincides with
its closure A.

Theorem 3.1. Let A be a standard subset of R
d. A is compact if and only if any element

of A is nearstandard in A, that is, if and only if any element of A has a shadow in A.

For any x ∈ R
d and any subset A of R

d, the notation x ≃ A means that
δ(x, A) ≃ 0, where δ(x, A) = inf{|x − a| : a ∈ A}.

Two subsets A and A′ of R
d are called infinitely close, denoted by A ≃ A′,

when every element of A is infinitely close to some element of A′ and conversely,
every element of A′ is infinitely close to some element of A.

Let (Comp(R
d), ρ) be the metric space of nonempty compact subsets of R

d

with the Hausdorff metric ρ.

Theorem 3.2. Let A and A′ be in Comp(R
d). ρ(A, A′) ≃ 0 if and only if A and A′ are

infinitely close.
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Let x : I → R
d be a function, where I is some interval of R. The function x is

called S-continuous at t ∈ I provided for all t′ ∈ I, t ≃ t′ implies x(t) ≃ x(t′), and
S-continuous on I if, for all t and t′ nearstandard in I, t ≃ t′ implies x(t) ≃ x(t′).
When x (and then I) and t are standard, the first definition is the same as saying
that x is continuous at t, and the uniform continuity of x on I is equivalent to, for
all t and t′ in I, t ≃ t′ implies x(t) ≃ x(t′).

We need the following basic result on S-continuous functions.

Theorem 3.3 (Continuous shadow). Let I be some interval of R and x : I → R
d be a

function. Let s I be the standard subset of R whose standard elements are those of I. There
exists a standard and continuous function x0 : s I → R

d such that, for all t nearstandard
in I, x(t) ≃ x0(t) holds, if and only if, x is S-continuous on I and x(t) is nearstandard
for all t nearstandard in I.

The function x0 in Theorem 3.3 is unique. It is called the standard part or shadow
of the function x and denoted by ox.

In ZFC in principle all sets are defined using the only non logical symbol ∈.
In IST there is also the possibility to define collections with the non logical sym-
bol st. Those collections which fall outside the range of ZFC are called external
sets. External sets are often easily recognized: mostly some elementary classical
property fails to hold. For instance, the set of infinitesimal real numbers hal(0)
must be external, for it constitutes a bounded subset of R without lower and up-
per bounds. It happens sometimes in classical mathematics that a property is
assumed, or proved, on a certain domain, and that afterwards it is noticed that
the character of the property and the nature of the domain are incompatible. So
actually the property must be valid on a large domain. In Nonstandard Analy-
sis, statements which affirm that the validity of a property exceeds the domain
where it was established in direct way are called permanence principles. Many per-
manence results used in nonstandard analysis are based upon the self-evident
statement “no external set is internal”. This statement is called the Cauchy-principle.
It has the following frequently used application.

Lemma 3.4 (Robinson’s Lemma). Let r be an internal real function such that r(t) ≃ 0
for all limited t ≥ 0. There exists ω ≃ +∞ such that r(t) ≃ 0 for all t ∈ [0, ω].

We conclude this section with two others applications of Cauchy’s principle
which will be used in this work.

Lemma 3.5. Let a be an appreciable and positive real number and r an internal real
function such that r(t) ≃ 0 for all standard t ∈ [0, a]. There exists a0 ∈ [0, a], a0 ≃ a
such that r(t) ≃ 0 for all t ∈ [0, a0].

Lemma 3.6. Let P(.) be an internal property such that P(a) holds for all appreciable
and positive real numbers a. There exists a0 ≃ 0 and positive such that P(a0) holds.

3.2 The Stroboscopic Method

Let x0 ∈ R
d be standard and let F : R+ × R

d → Conv(R
d) be a standard and

continuous multifunction. Let I be some subset of R and let x : I → R
d be a

function such that 0 ∈ I and x(0) ≃ x0.
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Definition 3.7 (Stroboscopic property). The function x is said to satisfy the strobo-
scopic property if there exists µ > 0 such that, for all limited t ≥ 0 in I satisfying
[0, t] ⊂ I and x(t) is limited, there exists t′ ∈ I such that µ < t′ − t ≃ 0, [t, t′] ⊂ I,

x(s) ≃ x(t) for all s ∈ [t, t′] and
x(t′)− x(t)

t′ − t
≃ F(t, x(t)).

Now, we state the main result of this section which asserts that any function
satisfying the stroboscopic property can be approximated by a solution of the
initial value problem

ẏ(t) ∈ F(t, y(t)), y(0) = x0. (3.2)

Theorem 3.8 (Stroboscopic Lemma). Suppose that

(S1) The function x satisfies the stroboscopic property.

(S2) The initial value problem (3.2) has a unique solution y. Let J = [0, ω),
0 < ω ≤ ∞, be its maximal positive interval of definition.

Then, for every standard L ∈ J, the interval [0, L] is contained in I and the function x
satisfies the approximation x(t) ≃ y(t) for all t ∈ [0, L].

For the proof of Stroboscopic Lemma we need some preliminaries given in the
section below.

3.2.1 Preliminaries

Lemma 3.9. Let L > 0 be limited such that [0, L] ⊂ I. Suppose that

(i) The function x is limited on [0, L].

(ii) There exist some positive integer N and some infinitesimal partition
{tn : n = 0, . . . , N + 1} of the interval [0, L] such that t0 = 0, tN ≤ L < tN+1

and, for n = 0, . . . , N, tn+1 ≃ tn, x(t) ≃ x(tn) for all t ∈ [tn, tn+1], and
x(tn+1)− x(tn)

tn+1 − tn
≃ F(tn, x(tn)).

Then the function x is S-continuous at each point in [0, L].

Proof. Let t ∈ [0, L]. We will show that x is S-continuous at t.
Let t′ ∈ [0, L] and p, q ∈ {0, . . . , N} be such that t ≤ t′, t ≃ t′, t ∈ [tp, tp+1] and

t′ ∈ [tq, tq+1] with p < q.
For each n ∈ {p, . . . , q − 1} let un ∈ F(tn, x(tn)) such that

∣∣∣∣
x(tn+1) − x(tn)

tn+1 − tn
− un

∣∣∣∣ = δ

(
x(tn+1)− x(tn)

tn+1 − tn
, F(tn, x(tn))

)
.

Such an un exists (and is unique) since F(tn, x(tn)) is compact and convex.
From condition (ii) it follows that

x(tn+1)− x(tn)

tn+1 − tn
≃ un,
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that is, for some ηn ≃ 0,

x(tn+1)− x(tn) = (tn+1 − tn)[un + ηn].

Now, using the fact that the multifunction F is standard and continuous, and that
(tn, x(tn)) is nearstandard since it is limited, we have F(tn , x(tn)) ≃ F(otn, o(x(tn))).
Thus the standard and compact set F(otn, o(x(tn))) is the shadow of F(tn, x(tn)).
Hence, un ∈ F(tn, x(tn)) imply that un is nearstandard and then it is limited.

We write

x(tq)− x(tp) =
q−1

∑
n=p

(x(tn+1)− x(tn)) =
q−1

∑
n=p

(tn+1 − tn)[un + ηn]. (3.3)

Denote η = max{|ηn| : n = p, . . . , q − 1} and m = max{|un| : n = p, . . . , q − 1}.
We have η ≃ 0 and m = |us|, for some s ∈ {p, . . . , q − 1}, is limited. Hence (3.3)
leads to the approximation

|x(t′)− x(t)| ≃ |x(tq) − x(tp)| ≤ (m + η)(tq − tp) ≃ 0

which proves the S-continuity of x at t and completes the proof.

If the real number L in Lemma 3.9 is standard one obtains more precise infor-
mation about the function x.

Lemma 3.10. Let L > 0 be standard such that [0, L] ⊂ I. Suppose that conditions
(i) and (ii) in Lemma 3.9 are satisfied. Then the standard function y : [0, L] → R

d

defined by y(t) = o
(

x(t)
)
, for all standard t ∈ [0, L], is a solution of (3.2) and satisfies

x(t) ≃ y(t), for all t ∈ [0, L].

Proof. The proof will be given in two steps.
Step 1. The function y is continuous on [0, L].
Indeed, by Lemma 3.9 the function x is S-continuous on [0, L]. Taking hypoth-

esis (i) into account, the claim follows from Theorem 3.3. We have moreover

y(t) ≃ y(ot) ≃ x(ot) ≃ x(t), ∀t ∈ [0, L].

The first part of the proof is complete.
Step 2. There exists a standard and continuous function ỹ : [0, L] → R

d satisfying
ỹ(t) ∈ F(t, y(t)) for all t ∈ [0, L] (ỹ is a selection of the standard and continuous
multifunction F(·, y(·)) : [0, L] → Conv(R

d)) such that

y(t) = x0 +
∫ t

0
ỹ(s)ds, ∀t ∈ [0, L].

Let n ∈ {0, . . . , N}. Note that for all w ∈ F(tn, x(tn)) we have

δ

(
x(tn+1)− x(tn)

tn+1 − tn
, F(tn, y(tn))

)

≤

∣∣∣∣
x(tn+1)− x(tn)

tn+1 − tn
− w

∣∣∣∣+ ρ(F(tn , x(tn)), F(tn , y(tn))).
(3.4)
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Let w ∈ F(tn, x(tn)) be such that
∣∣∣∣
x(tn+1)− x(tn)

tn+1 − tn
− w

∣∣∣∣ = δ

(
x(tn+1)− x(tn)

tn+1 − tn
, F(tn, x(tn))

)
.

For w = w, from (3.4) we get

δ

(
x(tn+1)− x(tn)

tn+1 − tn
, F(tn, y(tn))

)
≃ 0;

that is
x(tn+1)− x(tn)

tn+1 − tn
≃ F(tn, y(tn)),

since

δ

(
x(tn+1)− x(tn)

tn+1 − tn
, F(tn, x(tn))

)
≃ 0 and ρ(F(tn , x(tn), F(tn, y(tn)) ≃ 0

taking into account condition (ii) and the result of step 1.
Now, if n and p are in {0, . . . , N} then

tn ≃ tp ⇒
x(tn+1)− x(tn)

tn+1 − tn
≃ F(tn, y(tn)) ≃ F(tp , y(tp)) ≃

x(tp+1)− x(tp)

tp+1 − tp
,

since y and F are standard and continuous.
Thus, the standard function z on [0, L] which, for t standard, is given by

z(t) = o

(
x(tn+1)− x(tn)

tn+1 − tn

)
,

where n is such that tn ≤ t < tn+1, is continuous on [0, L], and we have

z(tn) ≃
x(tn+1) − x(tn)

tn+1 − tn
, ∀n ∈ {0, · · · , N}.

By the continuous selection theorem there exists a standard and continuous
function ỹ : [0, L] → R

d satisfying, for all t ∈ [0, L]:

1. ỹ(t) ∈ F(t, y(t)).

2. |z(t) − ỹ(t)| = δ(z(t), F(t, y(t))).

Property 2 implies that, for t = tn, n ∈ {0, . . . , N},
∣∣∣∣
x(tn+1)− x(tn)

tn+1 − tn
− ỹ(tn)

∣∣∣∣ ≃ 0,

that is

x(tn+1)− x(tn) = (tn+1 − tn)[ỹ(tn) + ηn], with ηn ≃ 0,

since, in one hand

|z(tn)− ỹ(tn)| ≃

∣∣∣∣
x(tn+1) − x(tn)

tn+1 − tn
− ỹ(tn)

∣∣∣∣
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and, in other hand

δ(z(tn), F(tn, y(tn))) ≃ δ

(
x(tn+1)− x(tn)

tn+1 − tn
, F(tn, y(tn))

)
≃ 0.

Let t ∈ [0, L] and n ∈ {0, . . . , N} be such that t ∈ [tn, tn+1] with t standard. We
have

y(t) − x0 ≃ x(tn) − x(0) =
n−1

∑
k=0

(x(tk+1)− x(tk)) =
n−1

∑
k=0

(tk+1 − tk)[ỹ(tk) + ηk]

≃
n−1

∑
k=0

(tk+1 − tk)ỹ(tk) ≃
∫ t

0
ỹ(s)ds,

where ηk ≃ 0 for all k ∈ {0, . . . , n − 1}. Thus the approximation

y(t) ≃ x0 +
∫ t

0
ỹ(s)ds (3.5)

holds for all standard t ∈ [0, L]. Actually (3.5) is an equality since both sides of
which are standard. We have thus, for all standard t ∈ [0, L],

y(t) = x0 +
∫ t

0
ỹ(s)ds (3.6)

and by transfer (3.6) holds for all t ∈ [0, L]. The proof is complete.

The following statement is a consequence of Lemma 3.10.

Lemma 3.11. Let L > 0 be standard such that [0, L] ⊂ I. Suppose that

(i) The function x is limited on [0, L].

(ii) There exists µ > 0 such that, for all t ∈ [0, L], there exists t′ ∈ I such that
µ < t′ − t ≃ 0, [t, t′] ⊂ I, x(s) ≃ x(t) for all s ∈ [t, t′], and

x(t′)− x(t)

t′ − t
≃ F(t, x(t)).

Then the function x is S-continuous on [0, L] and its shadow is a solution y of (3.2). So,
we have x(t) ≃ y(t) for all t ∈ [0, L]

Proof. Let Aµ be the subset of R defined by

Aµ = {a ∈ R / ∀t ∈ [0, L] ∃t′ ∈ I : Pµ(t, t′, a)}

where Pµ(t, t′, a) is the property

µ < t′ − t < a, [t, t′] ⊂ I, |x(s) − x(t)| < a ∀s ∈ [t, t′], and

δ

(
x(t′)− x(t)

t′ − t
, F(t, x(t))

)
< a.
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In virtue of condition (ii) we have a ∈ Aµ for all appreciable and positive real
numbers a. By Lemma 3.6 there exists also a0 ∈ Aµ with 0 < a0 ≃ 0. We have
thus for all t ∈ [0, L] there is t′ ∈ I such that Pµ(t, t′, a0) holds. Applying now
the axiom of choice to obtain a function c : [0, L] → I such that c(t) = t′, that
is, Pµ(t, c(t), a0) holds for all t ∈ [0, L]. Since c(t) − t > µ for all t ∈ [0, L], there
are a positive integer N and an infinitesimal partition {tn : n = 0, . . . , N + 1} of
[0, L] such that t0 = 0, tN ≤ L < tN+1 and tn+1 = c(tn). Finally, the conclusion of
Lemma 3.11 follows from Lemma 3.10.

Now we can give the proof of the Stroboscopic Lemma (Theorem 3.8).

3.2.2 Proof of Theorem 3.8

Let L > 0 be standard in J. Fix ρ > 0 to be standard and let W be the (standard)
tubular neighborhood around Γ = {y(t) : t ∈ [0, L]} given by

W = {z ∈ R
d / ∃t ∈ [0, L] : |z − y(t)| ≤ ρ}.

Let A be the nonempty (0 ∈ A) subset of [0, L] defined by

A = {L1 ∈ [0, L] / [0, L1] ⊂ I and {x(t) : t ∈ [0, L1]} ⊂ W}.

The set A is bounded above by L. Let L0 be the upper bound of A and let L1 ∈ A
be such that L0 − µ < L1 ≤ L0. Since {x(t) : t ∈ [0, L1]} ⊂ W, the function x is
limited on [0, L1].

Taking hypothesis (S2) into account, we apply Lemma 3.11 to obtain, for any
standard real number T such that 0 < T ≤ L1,

x(t) ≃ y(t), ∀t ∈ [0, T]. (3.7)

By Lemma 3.5 approximation (3.7) still holds for some T ≃ L1. Next, by Lemma 3.9
and the continuity of y we have

x(t) ≃ x(T) and y(t) ≃ y(T), ∀t ∈ [T, L1].

Combining this with (3.7) yields

x(t) ≃ y(t), ∀t ∈ [0, L1]. (3.8)

Moreover, by hypothesis (S1) there exists L′
1 > L1 + µ such that [L1, L′

1] ⊂ I and

x(t) ≃ y(t), ∀t ∈ [L1, L′
1]. (3.9)

Together (3.8) and (3.9) show that x(t) ≃ y(t) for all t ∈ [0, L′
1].

It remains to verify that L ≤ L′
1. If this is not true, then [0, L′

1] ⊂ I and {x(t) :
t ∈ [0, L′

1]} ⊂ W imply L′
1 ∈ A. This contradicts the fact that L′

1 > L0. So the
proof is complete.
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4 Nonstandard Averaging Result

Hereafter we give the nonstandard formulation of Theorem 2.1. Then, by use of
the reduction algorithm, we show that the reduction of Theorem 4.1 bellow is
Theorem 2.1.

Theorem 4.1. Let f : R+ × R
d → Conv(R

d) be standard and continuous. Assume
that Assumptions 1-3 are fulfilled. Let x0 ∈ R

d be standard. Let y be the solution of (2.2)
with y(0) = x0, and let J be its positive interval of definition. Let ε > 0 be infinitesimal.
Then for any standard L > 0, L ∈ J, any solution x of (2.1) with x(0) = x0 is defined
on [0, L] and satisfies x(t) ≃ y(t) for all t ∈ [0, L].

The proof of Theorem 4.1 is postponed to Section 5. Theorem 4.1 is an external
statement. We show that the reduction of Theorem 4.1 is Theorem 2.1.

Reduction of Theorem 4.1. Let L ∈ J. We suppose that L is standard and positive.
Let A be the formula “any solution x of (2.1) with x(0) = x0 is defined on [0, L]
and satisfies x(t) ≃ y(t) for all t ∈ [0, L]”. The characterization of the conclusion
of Theorem 4.1 is

∀ε (ε ≃ 0 =⇒ A) (4.1)

Let B be the formula “If δ > 0 then any solution x of (2.1) with x(0) = x0 is defined
on [0, L] and satisfies the inequality |x(t) − y(t)| < δ on t ∈ [0, L]”. Formula (4.1)
is then equivalent to

∀ε (∀stη ε < η =⇒ ∀stδ B). (4.2)

In this formula L is standard and ε, η and δ range over the strictly positive real
numbers. By (3.1) formula (4.2) is equivalent to

∀δ ∃ f inη′ ∀ε (∀η ∈ η′ ε < η =⇒ B). (4.3)

For finite sets η′, property ∀η ∈ η′ ε < η is the same as ε < ε0 for ε0 = min η′, and
so formula (4.3) is equivalent to

∀δ ∃ε0 ∀ε (ε < ε0 =⇒ B).

That is the statement of Theorem 2.1 holds for L > 0, L standard. By transfer, it
holds for any L > 0.

5 Proof of Theorem 4.1

We will prove Theorem 4.1 by applying Stroboscopic Lemma (Theorem 3.8). For
this purpose we need first to translate Assumptions 1 and 2 in Section 2 into their
external forms and then prove some technical lemmas.

Let ε > 0 be infinitesimal. Let f : R+ × R
d → Conv(R

d) be standard and
continuous. The external formulations of Assumptions 1 and 2 are, respectively:

Assumption 1’ ∀t ∈ R+ ∀stx ∈ R
d ∀x′ ∈ R

d (x′ ≃ x =⇒ f (t, x′) ≃ f (t, x)).

Assumption 2’ There is a standard multifunction F : R
d → Conv(R

d) such that

F(x) ≃
1

R

∫ R

0
f (τ, x)dτ, ∀stx ∈ R

d, ∀R ≃ +∞.
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5.1 Technical Lemmas

In Lemmas 5.1 and 5.2 below we formulate some properties of the multifunction
F defined in Assumption 2’.

Lemma 5.1. Suppose that the multifunction f satisfies Assumptions 1’ and 2’. Then its
average F is continuous and satisfies, for any limited x ∈ R

d and any R ≃ +∞,

F(x) ≃
1

R

∫ R

0
f (t, x)dt.

Proof. Let x, ox ∈ R
d such that ox is the shadow of x. Fix ν > 0 to be infinitesimal.

In virtue of Assumption 2 there exists R0 > 0 such that, for all R > R0

ρ

(
F(x),

1

R

∫ R

0
f (t, x)dt

)
< ν.

Hence for some R ≃ +∞ we have

F(x) ≃
1

R

∫ R

0
f (t, x)dt. (5.1)

As f (t, x) ≃ f (t, ox) for all t ∈ R+, (5.1) implies that

F(x) ≃
1

R

∫ R

0
f (t, ox)dt.

Now by Assumption 2’ we deduce that F(x) ≃ F(ox). Thus F is continuous.
Moreover for R ≃ +∞ we have

F(x) ≃ F(ox) ≃
1

R

∫ R

0
f (t, ox)dτ ≃

1

R

∫ R

0
f (t, x)dτ.

So, the proof is complete.

Lemma 5.2. Suppose that the multifunction f satisfies Assumptions 1’ and 2’. Let ε > 0
be infinitesimal. Then, for all t ∈ R+ and x ∈ R

d, both limited, there exists α = α(ε, t, x)
such that 0 < α ≃ 0, ε/α ≃ 0 and for all T ∈ [0, 1]

ε

α

∫ t/ε+Tα/ε

t/ε
f (τ, x)dτ ≃ TF(x).

Proof. Let t ∈ R+ and x ∈ R
d, both limited. Let T ∈ [0, 1]. We consider the

following two cases.
Case 1: t/ε is limited. – Let α > 0 be such that ε/α ≃ 0. If Tα/ε is limited then

we have T ≃ 0 and

ε

α

∫ t/ε+Tε/α

t/ε
f (τ, x)dτ ≃ {0} ≃ TF(x)

taking into account that f (·, x) is locally integrable and that the shadow of F(x),
i.e. F(ox), is a standard compact subset of R

d.
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If Tα/ε ≃ +∞ we write

ε

α

∫ t/ε+Tα/ε

t/ε
f (τ, x)dτ =

(
T +

t

α

)
1

t/ε + Tα/ε

∫ t/ε+Tα/ε

0
f (τ, x)dτ −

ε

α

∫ t/ε

0
f (τ, x)dτ.

By Lemma 5.1 we have

1

t/ε + Tα/ε

∫ t/ε+Tα/ε

0
f (τ, x)dτ ≃ F(x)

and then
ε

α

∫ t/ε+Tα/ε

t/ε
f (τ, x)dτ ≃ TF(x) (5.2)

since
ε

α

∫ t/ε

0
f (τ, x)dτ ≃ {0} and

t

α
≃ 0.

The approximation (5.2) holds for all α > 0 such that ε/α ≃ 0. Choosing α
such that 0 < α ≃ 0 and ε/α ≃ 0 gives the desired result.

Case 2: t/ε is unlimited. – Let α > 0. We write

ε

α

∫ t/ε+Tα/ε

t/ε
f (τ, x)dτ = T

1

t/ε + Tα/ε

∫ t/ε+Tα/ε

0
f (τ, x)dτ

+
t

ε

(
1

t/ε + Tα/ε

∫ t/ε+Tα/ε

0
f (τ, x)dτ −

1

t/ε

∫ t/ε

0
f (τ, x)dτ

)
.

(5.3)

Define now η by setting, for any α ≥ 0

η(α) =
1

t/ε + Tα/ε

∫ t/ε+Tα/ε

0
f (τ, x)dτ − F(x).

By Lemma 5.1 we have η(α) ≃ {0}, for all α ≥ 0.
Return to (5.3) and assume that α is appreciable. Then

ε

α

∫ t/ε+Tα/ε

t/ε
f (τ, x)dτ = TF(x) + Tη(α) +

t

α
[η(α) − η(0)]

≃ TF(x),
(5.4)

since Tη(α) + t
α [η(α) − η(0)] ≃ {0}. By Lemma 3.6 approximation (5.4) holds

for some α ≃ 0 which can be chosen such that ε/α ≃ 0.
This completes the proof of the lemma.

Lemma 5.3. Let g : R+ × R
d → Conv(R

d) and h : R+ → Conv(R
d) be continuous

multifunctions. Let x0 be limited in R
d. Suppose that

(i) g(t, x) ≃ h(t) holds for all t ∈ [0, 1] and all limited x ∈ R
d,

(ii)
∫ t

0
h(s)ds is limited for all t ∈ [0, 1].
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Then any solution x of the initial value problem

ẋ ∈ g(t, x), t ∈ [0, 1]; x(0) = x0 (5.5)

is defined and limited on [0, 1] and satisfies

x(t) ≃ y(t), ∀t ∈ [0, 1]

where y is a solution of the initial value problem

ẏ ∈ h(t), t ∈ [0, 1]; y(0) = x0

Proof. Let x be a maximal solution of (5.5). By Lemma 3.4 there exists ω ≃ +∞

such that the approximation in hypothesis (i) holds for all t ∈ [0, 1] and all
x ∈ B(0, ω), where B(0, ω) ⊂ R

d is the ball of center 0 and radius ω. Assume
that x(t′) ≃ ∞ for some t′ ∈ [0, 1]. Let t ∈ [0, 1] be such that t ≤ t′, x(t) ≃ ∞ and
x(s) ∈ B(0, ω) for all s ∈ [0, t]. Recall that

x(s) = x(0) +
∫ s

0
ẋ(τ)dτ, ∀s ∈ [0, t], (5.6)

with
ẋ(s) ≃ h(s), for a.e. s ∈ [0, t], (5.7)

since
δ(ẋ(s), h(s)) ≤ ρ(g(s, x(s)), h(s)) ≃ 0, for a.e. s ∈ [0, t].

Let now x̃ : [0, t] → R
d be a Lebesgue measurable function (such a function

exists by the Lebesgue measurable selection theorem) such that

1. x̃(s) ∈ h(s), for all s ∈ [0, t],

2. |ẋ(s) − x̃(s)| = δ(ẋ(s), h(s)), for a.e. s ∈ [0, t].

From (5.7) and property 2, we have ẋ(s) ≃ x̃(s) for almost all s ∈ [0, t]. Then,
it follows that

∫ s
0 ẋ(τ)dτ ≃

∫ s
0

˙̃x(τ)dτ for all s ∈ [0, t]. Finally, by (5.6) we obtain
the approximation

x(s) ≃ x(0) +
∫ s

0
x̃(τ)dτ, ∀s ∈ [0, t]. (5.8)

Taking into account hypothesis (ii), the second member of (5.8) is limited since∫ s
0 x̃(τ)dτ ∈

∫ s
0 h(τ)dτ, and then x(t) is too; this is a contradiction. Therefore x(t)

is defined and limited for all t ∈ [0, 1].

5.2 Proof of Theorem 4.1

We are now able to prove our main result (there is not much work left). We as-
sume that the assumptions in Theorem 4.1 are fulfilled. Fix ε > 0 to be infinitesi-
mal and let x : I → R

d be a maximal solution of (2.1).
We claim that x satisfies the stroboscopic property.
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Indeed, let t0 ∈ I such that t0 ≥ 0 and limited, and x(t0) is limited. By
Lemma 5.2 there exists α = α(ε, t0, x(t0)) such that 0 < α ≃ 0, ε/α ≃ 0 and

ε

α

∫ t0/ε+Tα/ε

t0/ε
f (t, x(t0))dt ≃ TF(x(t0)), ∀T ∈ [0, 1]. (5.9)

Consider the function X : [0, 1] → R
d defined, for any T ∈ [0, 1], by

X(T) =
x(t0 + αT)− x(t0)

α
.

Differentiating the function X and substituting into (2.1) gives, for any T ∈ [0, 1],

dX

dT
(T) ∈ f

(
t0

ε
+

α

ε
T, x(t0) + αX(T)

)
. (5.10)

By Assumption 1’ and Lemma 5.3 the function X, as a solution of (5.10), is defined
and limited on [0, 1] and, for any T ∈ [0, 1],

X(T) ≃
∫ T

0
f

(
t0

ε
+

α

ε
t, x(t0)

)
dt =

ε

α

∫ t0/ε+Tα/ε

t0/ε
f (t, x(t0))dt.

Using now (5.9) this leads to the approximation: X(T) ≃ TF(x(t0)) for all T ∈ [0, 1].
Define t1 = t0 + α and set µ = ε. Then µ < α = t1 − t0 ≃ 0, [t0, t1] ⊂ I and

x(t0 + αT) = x(t0) + αX(T) ≃ x(t0) for all T ∈ [0, 1], that is, x(t) ≃ x(t0) for all
t ∈ [t0, t1], whereas

x(t1)− x(t0)

t1 − t0
= X(1) ≃ F(x(t0)),

which shows the claim.
Finally, by Assumption 3 and Theorem 3.8, the solution x is defined at least

on [0, L] and satisfies x(t) ≃ y(t) for all t ∈ [0, L].
The proof of Theorem 4.1 is complete.

Remark 5.4. It appears clearly throughout the proof of Theorem 4.1 that it is not neces-
sary to consider the whole space R+ × R

d. One can restrict the domain of definition of
f to R+ × D for any standard D ⊂ R

d with the assumption that y lies on [0, L] in the
interior of D.
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Université Djillali Liabès,
B.P. 89, 22000 Sidi Bel Abbès, Algérie
email:mlakrib@univ-sba.dz


