
Riemann-Stieltjes operators between different

weighted Bergman spaces

Songxiao Li Stevo Stević

Abstract

Let g : B → C
1 be a holomorphic map of the unit ball B. We give a

complete picture regarding the boundedness and compactness of the following
two integral operators

Tgf(z) =

∫ 1

0
f(tz)ℜg(tz)

dt

t
and Lgf(z) =

∫ 1

0
ℜf(tz)g(tz)

dt

t
, z ∈ B,

between different weighted Bergman spaces.

1 Introduction

Let B = {z ∈ Cn : |z| < 1} be the open unit ball in Cn, S = ∂B = {z ∈ Cn : |z| = 1}
be its boundary, dν the normalized Lebesgue measure on B, i.e. ν(B) = 1, and
dνα(z) = cα(1−|z|2)αdν(z), where cα = Γ(n+α+1)/(Γ(n+1)Γ(α+1)). Let H(B)
denote the class of all holomorphic functions on the unit ball. For f ∈ H(B) with
the Taylor expansion f(z) =

∑
|β|≥0 aβz

β , let ℜf(z) =
∑

|β|≥0 |β|aβz
β be the radial

derivative of f, where β = (β1, β2, . . . , βn) is a multi-index and zβ = zβ1
1 · · · zβn

n . It
is well known that ℜf(z) =

∑n
j=1 zj

∂f
∂zj

(z), (see, for example, [17]).

Let β(z, w) be the distance between z and w in the Bergman metric of B. For
any r > 0 and z ∈ B, we write E(z, r) = {w ∈ B : β(z, w) < r}. The volume of
E(z, r) is given by (see [17])

ν(E(z, r)) =
R2n(1 − |z|2)n+1

(1 − R2|z|2)n+1
,
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where R = tanh(r). Set |E(z, r)| = ν(E(z, r)). For w ∈ E(z, r), r > 0, we have that
(see, for example, [17])

(1 − |z|2)n+1 ≍ (1 − |w|2)n+1 ≍ |1 − 〈z, w〉|n+1 ≍ |E(z, r)|. (1)

For any ζ ∈ S and r > 0, the set Qr(ζ) is defined by

Qr(ζ) = {z ∈ B : |1 − 〈z, ζ〉| < r}. (2)

A positive Borel measure µ on B is called a γ-Carleson measure if there exists a
constant C > 0 such that

µ(Qr(ζ)) ≤ Crγ (3)

for all ζ ∈ S and r > 0. A well-known result about the γ-Carleson measure ([15]),
is that µ is a γ-Carleson measure if and only if

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)γ

dµ(z) < ∞. (4)

For p ∈ (0,∞) and α > −1, the weighted Bergman space Ap
α(B) = Ap

α is defined
to be the space of all holomorphic functions f on B such that

‖f‖p
Ap

α
=
∫

B
|f(z)|pdνα(z) = cα

∫

B
|f(z)|p(1 − |z|2)αdν(z) < ∞.

When α = 0, Ap
0(B) = Ap(B) is the standard Bergman space. It is known that

f ∈ Ap
α if and only if (1 − |z|2)ℜf(z) ∈ Lp(B, dνα). Moreover

‖f‖p
Ap

α
≍ |f(0)|p +

∫

B
|ℜf(z)|p(1 − |z|2)pdνα(z). (5)

See [16, 17] for some basic facts on Bergman spaces.
Given g ∈ H(B), the Riemann-Stieltjes or Extended-Cesàro operator Tg with

symbol g is defined on H(B) as follows

Tgf(z) =
∫ 1

0
f(tz)

dg(tz)

dt
=
∫ 1

0
f(tz)ℜg(tz)

dt

t
, z ∈ B,

where f ∈ H(B). This operator was introduced in [2], and studied in [2, 3, 4, 5, 6,
7, 8, 11, 14].

Similarly, we define the operator

Lgf(z) =
∫ 1

0
ℜf(tz)g(tz)

dt

t
, z ∈ B.

In [14] Xiao gave the characterization on g for which the Riemann-Stieltjes operator
Tg is bounded or compact on the weighted Bergman space Ap

α. Hu considered the
boundedness and compactness of Tg on the weighted Bergman space Lp

a,ω, see [4].
The purpose of this paper is to study the boundedness and compactness of

operators Tg and Lg between different weighted Bergman spaces. This paper can
also be considered as a natural continuation of our investigations in [5, 6, 7, 8, 11].
For related results in the case of the unit polydisk see [12, 13].

Throughout this paper, C will stand for a positive constant, whose value may
differ from one occurrence to the other. The expression a ≍ b means that there is a
positive constant C such that C−1a ≤ b ≤ Ca.



Riemann-Stieltjes operators between different weighted Bergman spaces 679

2 Auxiliary Results

Here we state some auxiliary results which are incorporated in the following lemmas.

Lemma 1. For every f, g ∈ H(B) it holds

ℜ[Tg(f)](z) = f(z)ℜg(z) and ℜ[Lg(f)](z) = ℜf(z)g(z).

The proof of the first identity can be found in [2], while the second identity can
be proved similarly (see [6]).

The following criterion for compactness follows from standard arguments similar,
for example, to those outlined in Proposition 3.11 of [1].

Lemma 2. Assume that g ∈ H(B), α, β > −1 and 0 < p, q < ∞. Then the operator
Tg ( or Lg ) : Ap

α → Aq
β is compact if and only if Tg ( or Lg ) : Ap

α → Aq
β is bounded

and for any bounded sequence (fk)k∈N in Ap
α which converges to zero uniformly on

compact subsets of B, we have ‖Tgfk‖Aq

β
→ 0 (or ‖Lgfk‖Aq

β
→ 0) as k → ∞.

Lemma 3. Assume that g ∈ H(B), α, β > −1 and q ≥ p > 0. Then the following
two conditions are equivalent.

(a)

bg = sup
z∈B

|g(z)|(1 − |z|2)
n+1+β

q
−n+1+α

p < ∞; (6)

(b)

M := sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α+p)q/p

|g(z)|q(1 − |z|2)qdνβ(z) < ∞. (7)

Proof. Let t = n+1+β
q

− n+1+α
p

. By the subharmonicity of the function |g|q and

(1), it follows that

( |g(z)|(1 − |z|2)t)q

≤ C
(1 − |z|2)tq

|E(z, r)|

∫

E(z,r)
|g(w)|qdν(w)

≤ C
∫

E(z,r)

(
1 − |z|2

|1 − 〈z, w〉|2

)(n+1+α+p)q/p

|g(w)|q(1 − |w|2)qdνβ(w), (8)

from which easily follows that (7) implies (6).
Now assume that (6) holds. Then, from (6) and by a well-known estimate (see,

for example, Theorem 1.12 in [17]), we have

sup
a∈B\B(0,1/2)

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α+p)q/p

|g(z)|q(1 − |z|2)qdνβ(z)

≤ bq
g sup

a∈B\B(0,1/2)
(1 − |a|2)(n+1+α+p)q/p

∫

B

(1 − |z|2)q−qt+β

|1 − 〈z, a〉|2(n+1+α+p)q/p
dν(z)

≤ C. (9)
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On the other hand, since q ≥ p we have that

sup
a∈B(0,1/2)

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α+p)q/p

|g(z)|q(1 − |z|2)qdνβ(z)

≤ C
∫

B
(1 − |z|2)

q(p+α)+(n+1)(q−p)
p dν(z) < ∞. (10)

From (9) and (10) the result follows.

Lemma 4. Assume that g ∈ H(B), α, β > −1 and q ≥ p > 0. Then the following
two conditions are equivalent.

(a)

lim
|z|→1

|g(z)|(1 − |z|2)
n+1+β

q
−n+1+α

p = 0; (11)

(b)

lim
|a|→1

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α+p)q/p

|g(z)|q(1 − |z|2)qdνβ(z) = 0. (12)

Proof. That (12) implies (11), follows from estimate (8).
On the other hand, if (11) holds, then for every ε > 0 there is a δ > 0 such that

|g(z)|(1 − |z|2)
n+1+β

q
−n+1+α

p < ε,

whenever δ < |z| < 1. From this we have that

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α+p)q/p

|g(z)|q(1 − |z|2)qdνβ(z)

≤ εq(1 − |a|2)(n+1+α+p)q/p
∫

B\δB

(1 − |z|2)q−qt+β

|1 − 〈z, a〉|2(n+1+α+p)q/p
dν(z)

+
∫

δB

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α+p)q/p

|g(z)|q(1 − |z|2)qdνβ(z)

≤ Cεq + C
max|z|=δ |g(z)|q

(1 − δ)2(n+1+α+p)q/p
(1 − |a|2)(n+1+α+p)q/p. (13)

Letting |a| → 1 in (13) and using the fact that ε is an arbitrary positive number the
result follows.

3 Main Results

In this section we formulate and prove the main results of this paper.

Theorem 1. Suppose that g ∈ H(B), 0 < p ≤ q < ∞, α, β > −1. Then
(a) Tg : Ap

α → Aq
β is bounded if and only if

sup
a∈B

|ℜg(a)|(1 − |a|2)1+ n+1+β

q
−n+1+α

p < ∞. (14)
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(b) Lg : Ap
α → Aq

β is bounded if and only if (6) holds.

Proof. (a) It is easy to see that Tgf(0) = 0. By (5) and Lemma 1, we have

‖Tgf‖
q
Aq

β

≍
∫

B
|ℜ(Tgf)(z)|q(1 − |z|2)qdνβ(z)

=
∫

B
|ℜg(z)|q|f(z)|q(1 − |z|2)qdνβ(z) =

∫

B
|f(z)|qdµ1(z), (15)

where

dµ1(z) = |ℜg(z)|q(1 − |z|2)qdνβ(z). (16)

By Theorem 50 of [16], we see that Tg : Ap
α → Aq

β is bounded if and only if

µ1(Qr(ζ)) ≤ Cr(n+1+α)q/p.

From this and (4), we have that

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α)q/p

|ℜg(z)|q(1 − |z|2)qdνβ(z) < ∞.

From Theorem 2.1 of [9], we find that the above inequality is equivalent to (14).
(b) Similar to the previous case, we have that

‖Lgf‖
q
Aq

β

≍
∫

B
|ℜf(z)|qdµ2(z), (17)

where

dµ2(z) = |g(z)|q(1 − |z|2)qdνβ(z). (18)

From (17) and by Theorem 50 of [16], we find that Lg : Ap
α → Aq

β is bounded if and
only if

µ2(Qr(ζ)) ≤ Cr(n+1+α+p)q/p.

By (4), we obtain (7). From this and by employing Lemma 3 the result follows.

Theorem 2. Suppose that g ∈ H(B), 0 < p ≤ q < ∞, α, β > −1. Then
(a) Tg : Ap

α → Aq
β is compact if and only if

lim
|a|→1

|ℜg(a)|(1− |a|2)1+ n+1+β

q
−n+1+α

p = 0. (19)

(b) Lg : Ap
α → Aq

β is compact if and only if (11) holds.

Proof. (a) Suppose that Tg : Ap
α → Aq

β is compact. Assume that (ak)k∈N is a
sequence in B such that limk→∞ |ak| = 1. Set

fk(z) =

(
1 − |ak|

2

(1 − 〈z, ak〉)2

)n+1+α
p

, k ∈ N. (20)

By Theorem 1.12 of [17], we see that there exists a constant C such that supk∈N ‖fk‖Ap
α

≤ C. Also, it is easy to see that the sequence (fk)k∈N converges to 0 uniformly on
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compact subsets of B. By Lemma 2, we have that ‖Tgfk‖Aq
β
→ 0 as k → ∞. Hence,

in view of Lemma 1, from (5) and by letting k → ∞, we have that

lim
k→∞

∫

B

(
1 − |ak|

2

|1 − 〈z, ak〉|2

)(n+1+α)q/p

|ℜg(z)|q(1 − |z|2)qdνβ(z)

= lim
k→∞

∫

B
|ℜ(Tgfk)(z)|q(1 − |z|2)qdνβ(z)

≍ lim
k→∞

‖Tgfk‖
q
Aq

β

= 0.

This implies

lim
|a|→1

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)(n+1+α)q/p

|ℜg(z)|q(1 − |z|2)qdνβ(z) = 0. (21)

From Theorem 3.1 of [9], we see that (21) is equivalent to (19), as desired.
Conversely, suppose that (19) holds, that is, (21) holds. Then for any fixed ε > 0,

there exists η0 ∈ (0, 1) such that

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

) q(n+1+α)
p

dµ1(z) < ε (22)

for all a ∈ B with η0 < |a| < 1, where µ1 is defined in (16). Let r0 = 1 − η0. For
ζ ∈ S and r ∈ (0, r0), let a = (1 − r)ζ . Then a ∈ B, η0 < |a| < 1,

|1 − 〈z, a〉| < 2r and 1 − |a|2 ≥ r,

for each z ∈ Qr(ζ). Hence

(
1 − |a|2

|1 − 〈z, a〉|2

) q(n+1+α)
p

≥
(

r

(2r)2

) q(n+1+α)
p

=
1

(4r)
q(n+1+α)

p

(23)

for each z ∈ Qr(ζ). From (22) and (23), we obtain

µ1(Qr(ζ))

4
q(n+1+α)

p r
q(n+1+α)

p

≤
∫

Qr(ζ)

(
1 − |a|2

|1 − 〈z, a〉|2

) q(n+1+α)
p

dµ1(z)

≤
∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

) q(n+1+α)
p

dµ1(z) < ε

for all r ∈ (0, r0) and ζ ∈ S. Let ε > 0 be fixed and µ̃1 ≡ µ1 |B\(1−r0)B . As in the
proof of [10, Theorem 1.1], we obtain that there exists a constant C > 0 such that

µ̃1(Qr(ζ)) ≤ Cεr
q(n+1+α)

p , (24)

for every r > 0. Suppose that (fk)k∈N is a sequence in Ap
α which converges to 0

uniformly on compact subsets of B and satisfies supk∈N ‖fk‖Ap
α
≤ L. By Lemma 1,

we have

‖Tgfk‖
q
Aq

β

≍
∫

B
|ℜg(z)|q|fk(z)|q(1 − |z|2)qdνβ(z)

=
∫

B
|fk(z)|qdµ̃1(z) +

∫

(1−r0)B
|fk(z)|qdµ1(z). (25)
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By (24) and utilizing the method of Theorem 1.1 of [10], it follows that there exists
a positive constant C such that

∫

B
|fk|

qdµ̃1 ≤ Cε‖fk‖
q
Ap

α
≤ CLqε, (26)

for each k ∈ N. Moreover, fk → 0 uniformly on (1 − r0)B implies that the second
term in (25) can be made small enough for sufficiently large k. From this and since
µ1 is finite, it follows that

lim
k→∞

∫

(1−r0)B
|fk(z)|qdµ1(z) = 0. (27)

Estimate (25), together with (26) and (27) gives that ‖Tgfk‖Aq
β
→ 0 as k → ∞.

Employing Lemma 2, the result follows.
(b) Suppose that Lg : Ap

α → Aq
β is compact. Further assume that (ak)k∈N is a

sequence in B such that limk→∞ |ak| = 1. Set

hk(z) = (1 − |ak|
2)

n+1+α+p
p

∫ 1

0


 1

(1 − 〈tz, ak〉)
2(n+1+α+p)

p

− 1


 dt

t
. (28)

By using (5), the fact that hk(0) = 0, and Theorem 1.12 of [17], we obtain

‖hk‖
p
Ap

α
≍

∫

B
|ℜhk(z)|p(1 − |z|2)α+pdν(z)

=
∫

B

(1 − |ak|
2)n+1+α+p

|1 − 〈z, ak〉|2(n+1+α+p)
(1 − |z|2)α+pdν(z)

≤ C. (29)

Hence supk∈N ‖hk‖Ap
α
≤ C. Clearly hk → 0 uniformly on compact subsets of B.

Therefore, by Lemma 2 we have that ‖Lghk‖Aq

β
→ 0 as k → ∞. Hence

lim
k→∞

∫

B

(
1 − |ak|

2

|1 − 〈z, ak〉|2

)(n+1+α+p)q/p

|g(z)|q(1 − |z|2)qdνβ(z)

= lim
k→∞

∫

B
|ℜ(Lghk)(z)|q(1 − |z|2)qdνβ(z)

≍ lim
k→∞

‖Lghk‖
q
Aq

β

= 0. (30)

From (30) we see that (12) holds, and by Lemma 4 that (11) holds. The remainder
of the proof is similar to the proof of part (a) and will be omitted.

Remark 1. Note that when 1 + n+1+β
q

− n+1+α
p

≤ 0, then the symbol g in (14)

and (19) is a constant, while when t := n+1+β
q

− n+1+α
p

< 0, then the symbol g in

(6) and (11) is a constant. Note also that if t > 0 then conditions (6) and (14) are
equivalent.
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Theorem 3. Suppose that g ∈ H(B), 0 < q < p < ∞, α, β > −1. Then the
following statements are equivalent.

(a) Tg : Ap
α → Aq

β is bounded;
(b) Tg : Ap

α → Aq
β is compact;

(c) g ∈ Ar
γ, where 1

r
= 1

q
− 1

p
, and γ

r
= β

q
− α

p
.

Proof. From the proof of Theorem 1 we know that

‖Tgf‖
q
Aq

β

≍
∫

B
|f(z)|qdµ1(z),

where dµ1 is defined by (16). By Theorem 54 of [16], we know that (a) and (b) are
equivalent and both are equivalent to the following condition

∫

B

(1 − |a|2)n+1+α

|1 − 〈z, a〉|2(n+1+α)
dµ1(z) ∈ Lp/(p−q)(να),

which is the same as

∫

B
|ℜg(z)|q(1 − |z|2)q (1 − |a|2)n+1+α

|1 − 〈z, a〉|2(n+1+α)
dνβ(z) ∈ Lp/(p−q)(να). (31)

By the subharmonicity of |ℜg|q, using Lemma 24, p.59 in [17] and (1),

∫

B
|ℜg(z)|q(1 − |z|2)q (1 − |a|2)n+1+α

|1 − 〈z, a〉|2(n+1+α)
dνβ(z)

≥
∫

E(a,ρ)
|ℜg(z)|q(1 − |z|2)q (1 − |a|2)n+1+α

|1 − 〈z, a〉|2(n+1+α)
dνβ(z)

≥ (1 − |a|2)q−n−1−α
∫

E(a,ρ)
|ℜg(z)|qdνβ(z)

≥ (1 − |a|2)q+β−α|ℜg(a)|q. (32)

Therefore (31) implies that

(1 − |a|2)q+β−α|ℜg(a)|q ∈ Lp/(p−q)(να),

which is the same as
∫

B
|ℜg(a)|r(1 − |a|2)r+γdν(a) < ∞.

By (5) we get that g ∈ Ar
γ .

Conversely, if g ∈ Ar
γ, then by Hölder’s inequality, we get

‖Tgf‖
q
Aq

β

≍
∫

B
|f(z)|q|ℜg(z)|q(1 − |z|2)qdνβ(z)

≤

(∫

B
|ℜg(z)|r(1 − |z|2)(q+ qγ

r
) r

q dν(z)

) q
r
(∫

B
|f(z)|

qr
r−q (1 − |z|2)(β− qγ

r
) r

r−q dν(z)

)1− q
r

.

From this, since
(
q +

qγ

r

)
r

q
= r + γ,

qr

r − q
= p, 1 −

q

r
=

q

p
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and

(
β −

qγ

r

)
r

r − q
=

rβ − qγ

r − q
=

β
q
− γ

r
1
q
− 1

r

= α,

and by using (5), it follows that

‖Tgf‖
q
Aq

β

≤ C‖g‖q
Ar

γ
‖f‖q

Ap
α
,

which means that the operator Tg : Ap
α → Aq

β is bounded, finishing the proof of the
theorem.

Theorem 4. Suppose that g ∈ H(B), 0 < q < p < ∞, α, β > −1. Then the
following statements are equivalent.

(a) Lg : Ap
α → Aq

β is bounded;
(b) Lg : Ap

α → Aq
β is compact;

(c) g ∈ Ar
γ, where 1

r
= 1

q
− 1

p
, and γ

r
= β

q
− α

p
.

Proof. By Theorem 54 of [16], we know that Lg : Ap
α → Aq

β is bounded if and
only if

∫

B
|g(z)|q

(1 − |a|2)n+1+α+p

|1 − 〈z, a〉|2(n+1+α+p)
(1 − |z|2)qdνβ(z) ∈ Lp/(p−q)(να+p).

The remainder of the proof is similar to the proof of Theorem 3, therefore is omitted.
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