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Abstract

As an application of the Gottlieb sequence [11]([7]) of fibration, we give
an upper bound of the rank of Gottlieb group G(E) = ®;~0Gi(F) of the
total space E of a fibration £ : X — E — B and define the Gottlieb type
(a,b,c;s,t,u), which describes a rational homotopical condition of fibration
with rankG(E) = s+t + u. We also note various examples showing the
different situations that can occur. Finally we comment about an interaction
with a Halperin’s conjecture on fibration.

1 Introduction

The nth Gottlieb group G, (X) of a space X is the subgroup of the nth homotopy
group 7,(X) of X consisting of homotopy classes of maps a : S™ — X such that
the wedge (alidx) : S™V X — X extends to a map F, : 8" x X — X [3]. The
nth evaluation subgroup G, (Y, X; f) of amap f : X — Y is the subgroup of 7, (Y)
represented by maps a : S — Y such that (a|f) : S"VX — Y extends to a map F, :
S"x X — Y. Note G,(Y) C G,(Y, X f) in general and G,(X) = G, (X, X;idx).

For a fibration X — FE — B of simply connected spaces, various inequations
between their LS categories are known. For example, there is an upper bound of
cat(E) by cat(X) and cat(B): cat(E)+ 1 < (cat(X)+ 1)(cat(B) +1) [2, Prop.30.6].
It is well known that there is an inequation rankm,(F) < rankm,(X) + rankm,(B)
induced by the exact homotopy sequence of fibration. If both X and B have the
rational homotopy types of homogeneous spaces, it is restricted as rankG(FE) <
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rankG(X) + rankG(B) (see Proposition B). But, in general, we can’t hope such
a good inequation only between the ranks of Gottlieb groups of spaces X, F, B.
In fact, rankG(X), rankG(F) and rankG(B) can be arbitary natural numbers (see
Example 1). So we must make a compromise.

In this paper, all spaces are simply connected with rational homology of finite
type. Let £ : X — F > B be a Hurewicz fibration. Restricting the homomorphisms
j

in the exact homotopy sequence of £ yields a sequence

which is called as the Gottlieb sequence of & [11]. The nth Gottlieb homology group of
¢, GH, (&), is defined by the subquotient Kerp;/Imyy in (x) [11](the n-th w-homology
group of j in [7]). We give an effective upper bound of rankG,(F) by adding the
supplementary “rankG'H,(£)” and by expanding G, (B) somewhat.

Proposition A. Let € : X — E % B be a fibration. Then
rankG,,(E) < rankG, (X) + rankGH,,(§) + rankG, (B, E; p)

for alln > 1.

If ¢ is a fibre-homotopically trivial fibration, the left and right hand sides are
equal. The gap between them may represent a distance from the triviality. Note
that GH(§) = ®,>0GH,(§) = 0 and G(B, E;p) = G(B) in this case. Although
notice that there are rationally non-trivial examples as Example 2 (9),(10),(11)
and (13). For the rational number field Q, denote G ® Q as G for an abelian
group G and f ® Q as fp for a group homomorphism f. There is a monomor-
phism of Q-spaces G(Y)g — G(Y(o)) for the rationalization Yo of Y [2, p.378]. In
the following without mention, suppose that the spaces Y = X, E of £ are finite
complexes. Then dim G(Y(p)) < caty < oo [2, Prop.28.8], G(Y)g = G(Y(o)) [9]
and G(Z,Y; flo = G(Zw), Y0); fio)) for amap f : Y — Z [13]. Therefore we see
GH (&) = GH(&)) and it is possible to consider the sequence () by the derivation
argument of Sullivan model [1],[10],[11] (see Section 2). Proposition A is realized as
an inclusion of positively graded Q-spaces.

Theorem A. Let £ : X L E% Bbea fibration. Then there is a decomposition
GEp=S®TaeU withS CGX)y, T C GH(§)g and U C G(B, E;p)g, whose

dimensions are uniquely determined.

Here, for S = ©,215,, T = ®p-11,, and U = ®,,-1U,,, elements of S,,, T,, and
U, are respectively represented by the rationaliztions of elements «a, /3 and ~ of
G (E) satistying the conditions: there are maps {F,, F}, Fjz and F, which make
respectively the homotopy commutative diagrams (i), (47) and (1),
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Then our inclusion

is given by
ie ((20): Byl 7)) = (Falsm o), [Bo))s P o 7o)
where [f(o)] = [5(0)] if and only if ¢ := ) — 5(0) € Imjyq, i.e., ¢ can be embedded

in the rationalized diagram of (i) with some Fy and Fj.
Note that i¢ depends on the choice of a map F), in (7) in general (see Remark 2).
Anyway we can define a rational homotopy invariant of fibration.

Definition. We say that the fibration £ is Gottlieb type of (a,b,c;s,t,u) for a =
rankG(X), b = rankGH(§), ¢ = rankG(B,FE;p), s = dimS, t = dim7 and
u=dimU.

We often say simply ‘G-type of (a,b,¢;s,t,u)’. Then a > s > 0, b > t >
0, ¢ > u > 0 and rankG(F) = s+t + u. It may be useful for estimating
rankG(E). We see that i¢ is ‘equal’ if and only if ¢ is G-type of (a,b,c;a,b,c)
for some a, b, c. If a fibration is fibre-homotopically trivial, i¢ is ‘equal” with G-type
of (rankG(X), 0, rankG(B);rankG(X), 0, rankG(B)), especially G(F)g = G(X)q ®
G(B)g. If a fibration satisfies G(E)g = G(X)g ® G(B)g, it is rationally weak-
homotopy trivial, that is, the rational connecting homomorphism 9y is zero. But ¢
may not be ‘equal’ as we can see in Example 2 (5) and (8). In §3, we give the proofs
of Proposition A and Theorem A, and note various examples of small homotopy
ranks, by the derivation argument of Sullivan model as in [11]. In §4, we comment
about an interaction with G-type and a Halperin’s conjecture on the rational co-
homological splittings, i.e., H*(F; Q) = H*(X;Q) ® H*(B; Q) additively, of certain
fibrations X — E — B.
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2 Preliminary

We use the Sullivan minimal model M(Y") of a simply connected space Y of finite
type. It is a free Q-commutative differential graded algebra (DGA) (AV,d) with
a Q-graded vector space V = @,., V'’ where dimV? < oo and a decomposable
differential, i.e., d(V') C (ATV - ATV)* and dod = 0. Here AV = (the Q-
polynomial algebra over V") @ (the Q-exterior algebra over V°%) and ATV is
the ideal of AV generated by elements of positive degree. Denote the degree of a
homogeneous element z of a graded algebra as |z| and the Q-vector space of basis
{v;}s as Q{v;};. Then zy = (—1)Wyz and d(xy) = d(z)y + (=1)lzd(y). A map
f X — Y has a minimal model which is a DGA-map f* : M(Y) — M(X).
Notice that M (Y') determines the rational homotopy type of Y. Especially there is
an isomorphism Hom;(V,Q) = m;(X)g. See [2] for a general introduction and the
standard notations.

The detailed discussion of the followings are in [10],[11]. Let A be a DGA A =
(A*, da) with A* = @;50A", AY = Q and the augmentation € : A — Q. Define Der; A
the vector space of derivations of A decreasing the degree by ¢ > 0, where 6(zy) =
0(x)y+(—1)"=lz0(y) for § € Der;A. We denote @;~oDer; A by Der A. The boundary
operator & : Der,A — Der,_1A is defined by §(c) = ds 00 — (—1)I?lo 0 dy. For a
DGA-map ¢ : A — B, define a ¢-derivation of degree n to be a linear map 6 : A* —
B with 0(zy) = 0(x)é(y) + (—=1)"*l¢(2)0(y) and Der(A, B; ¢) the vector space
of ¢-derivations. The boundary operator d, : Der.(A, B;¢) — Der._1(A, B; ¢) is
defined by d4(0) = dg oo — (—1)l?lo 0 d4. Note Der.(A, A;ids) = Der.(A). For
¢: A= (AZ dy) — B, the composition with the augmentation ¢ : B — Q induces
a chain map €, : Der, (A, B; ¢) — Der, (A, Q;¢€). Define

Gn(A, B; ¢) :=Tm(H(€,) : Hy(Der(A, B; ¢)) — Hom,(Z,Q)).
Especially
Gn(AZ,dy) :==1Im(H,(e) : Hy(Der(AZ,ds)) — Hom,(Z,Q)),

that is, G.(A, A;ida) = G.(A). Note that z* € Hom,(Z,Q) (z* is the dual of the

basis element z of Z") is in G, (A, B; ¢) if and only if 2* extends to a derivation 6 of

Der,, (A, B; ¢) with 04(6) = 0. For example, see [2, p.392-393]. Let £ : X — E ~ B
j

be a fibration. Consider the rationalization of the Gottlieb sequence (x) of &:

= a1 (B)o o Gn(X)g — Gu(E, X))o e Tn(B)g — -+ . (%)

Jiq

Write M(B) = (AW,dg) and M(X) = (AV,d). Then the model (not minimal
in general) of E is given by (AW ® AV, D) with Do D = 0, D|yw = dp and
D = d. The DGA-maps J : (A(W @ V), D) — (AV, D) = (AV,d) (projection) and
P (AW,dg) — (A(W @& V), D) (injection) are the Sullivan models for j and p,
respectively. They induce linearization maps Q(J) : W @&V — V and Q(P) : W —
W @ V. Then we obtain the model version of () as

-+ — Hom, 1 (W, Q) % G,(AV) Q(_f)* G (A(WaV),AV; J) Q(?)* Hom,(W,Q) — - -
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and GH,(§)g = GH,(A(W @ V),AV;J) := KerQ(P)*/ImQ(J)* [11]. Note that
there is a monomorphism GH,(§)g — Hom,(V,Q) = m,(X)q for n > 1.

Proposition B. If X and B have the rational homotopy types of homogeneous
spaces, then G(E)g C G(X)q ® G(B)q for any fibration X — E — B.

Proof. We can put M(X) = (A(xy, -+, zg,v1,- - ,v;),d) with |z;| even for 1 <

i <k, |v] odd for 1 <i <, dx, = 0 and dv. € A(zy,---,x;) for some k and [
2, Proposition 15.16]. Also M(B) = (A(y1,+ " Ym, W1, -+ ,Wy,),dg) with |y;| even
for 1 <i < m, |wy] odd for 1 < i < n, dpy, = 0 and dpw. € A(yy, -+ ,ym) for

some m and n. Since G(X)g D Q{vf, -+ ,v/} and G(B)g D Q{w;, -+ ,wi}, we
have Goaa(E)g C Toad(E)gp C G(X)g @ G(B)g. On the other hand, we know that
G2, (Y)gp = 0 (n > 0) for any simply connected finite complex Y [2, Proposition
28.8]. u

Claim. A space X or a minimal model M (X) = (AV,d) with dim H*(X;Q) < oo
(dim H*(AV,d) < oo) and rankm,(X) < oo (dimV < o0) is said to be elliptic.
If the fiber of a rationally weak-homotopy trivial fibration is elliptic, then s > 0
in its G-type since the dual of a top degree element in V' is in G(E)g. An ellip-
tic minimal model M(X) = (AV,d) with dV**" = 0 and dV°% C AV is said
to be pure. For example, homogeneous spaces are pure. If the fiber X of a fibra-
tion has a pure model M (X), then ¢t = 0 in its G-type from T' C mo44(X)g = G(X)g.

Notation. Denote by o ® f for o € Der,(AZ) and f € AZ the derivation of degree
lo® fl =n—|f| on (AZ,d) given by (¢ ® f)(2) := (=1)*//lg(2) - f, which satisfies
for x,y € AZ

(0® fllay) = (0@ f)(@) -y + (=D (0@ f)(y)

and (60 ® f)oD = —o o D® f. Especially, note that 2* ® f means the derivation
sending z to f and extending by linearity.

3 Gottlieb type and examples

First we give two examples (1) and (2), which motivate our estimate. Note that
these models are realized as certain fibrations of finite complexes X — F — B since
their cohomologies are finite. Especially the following spaces are elliptic.

Example 1. For any three natural numbers [,m and n, there is a fibration
¢ : X — E — B with rankG(X) = [, rankG(E) = m and rankG(B) = n. In
the following models, the degrees of all elements v,, v, w,, w.,v,v", u are odd.

(1) Suppose M(B) = (A(wr, .., wy),0), i.e., B aq) Sl x Slw2l ... x Slenl (B has
the rational homotopy type of the product of n-odd spheres). Note that it induces
rankG (B, F;p) = rankG(B) = n.
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(a): m > 1l+n—1. If m — 1 —n is even, for an even integer s (> 2), put
M(X) = (A(vy, .., vs,0, 0], ..,0]_1),d) with dv = vy ---vs and dv, = dv, = 0. Put
Dv=wv; vy +wyvy. Then

G<E)Q = @{U;7 70:711*7@/;”' 71/77177“0;7"' 7w;}'

If m—I—nis odd, for an odd integer s(> 1), put M (X) = (A(v1, .., Vs1, 0,05, .., U]_1),
d) with dv = vy - - - vs11 and dv, = dv, = 0. Put Dv = dv+wyvy, Dvg = wyvy. Then

* *
G(E)Q = Q{'U;?' e ’vzvv;rlvv*’v/l?' e ’v/lflvw; T ,w;}.

Thus rankG(E) =1+ n + s — 2.
(b): m=1+n—1. Put M(X) = (A(v1, .., v142),d) with dvs = vjv9 and dv; =0
for i # 3. Put Dvy = wyv; and Dv; = dv; for i # 2. Then

G(E)Q = Q{U;, e 7vl*+27w;7 e 7w:;}7

that is, rankG(F) =1 +n — 1.

(c) m <l+4+n—1. If l4+n—miseven, put M(X) = (A(vy,..,1;),0). Put
Dvy =0,..,Dv;_1 = 0 and Dv; = wy -+ -w;vy - - - vy, (i + k:even) for some i > 1 and
k>0 Ifl+n—misodd and | > 1, put Dy, = wyv; + wy---w; (i:odd) and
Duvi_y = wyvy - - - vy, (k:even) for M(X) = (A(vy,..,v;),0). Then

G(E)Q = Q{UI:JA’ T >'Ul*7w;<+1> Tt ’w;}’

that is, rankG(F) =1 +n — (i + k).

Ifl+n—misoddand | =1, put M(X) = (A(vy,v2,v3,04,0),d) with dv; =
<o =dvy = 0 and dv = vivouzvy. Put Dv = vjvgugvy + wy -+ - wivy (krodd> 1).
Then

GB)o = Q" wipn, - wl),

that is, rankG(E) = 1+n — k.

(2) Suppose M(X) = (A(vy, .., 1), 0), i.e, X =) Il x Slv2l x ... x Slul Note that
it induces rankG(X) = [ and rankGH (§) = 0.

(d): m>1l+n—1and l+m+niseven. Put M(B) = (A(wy, .., Wpik-1,u),dp)
with dpw, = 0 and dgu = w; -+ -wy (k:even). Put Dv; = wywy and Dv; = 0 for
1> 1. Then

G(E)Q = Q{UL T >vl*>w§> T ’w:—i—k—l’ u*}’
that is, rankG(F) =l +n+k — 2.

(e): m>1l+n—1and [+ m+nisodd. Put M(B) = (A(wy, .., Wpik_2,u),dp)
with dpw, = 0 and dpu = wy - - - wg_1 (k:odd). Put Dv; = wiwy, Dvy = wyv; and
Dv; = 0 for ¢« > 2. Then

G(E)Q = Q{U;, e 7'Ul*7w§7 e aw;+k72au*}a

that is, rankG(F) =1l +n+k — 4.
(f): m < l+n—1. Ifl > 1, see the example in (c¢) . If [ = 1, put

M(B) = (Awy, wa, w3, wg, u,wh, - -+ ,wh,_),dg) with dgw, = dpw!, = 0 and dpu =
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wiwowzwy. Put Dv = wywy ---w) (j:odd) or Dv = wiwowy - --wj (j:even> 0).
Then

G(E>Q = Q{U*, wI;Jrlv T 7w/1*171 )
that is, rankG(E) = n — j.

Remark 1. Even if rankG(F) = rankG (X )+rankG(B), notice that G(F)q may not
be equal to G(X)g® G(B)g. For example, put M (X) = (A(v1, v, v3,v4,v,0",0"), d)
with dv, = dv' = dv” = 0, dv = vjvv3vy and M(B) = (A(w),0). Put Dv =
VU934 + wuy, DV = wvy and Dv” = wvy. Then rankG(E) = 4 = 34+ 1 =
rankG(X) +rankG(B) but T = Q{v;} = GH(§)g and & is G-type of (3,1,1;3,1,0),
ie., G(E)g = Q{v", o, 0"} & Q{u3} = G(X)g & GH(E)g # G(X)g & G(B)ag.

Proof of Proposition A. Consider the following commutative diagram:

P

Gn(E) Gn(B, E;p)

inc. inc.
2

GolE, X j) —— 7,(B)

where pf is defined by [poa] for a : S — E. From this, Ker pj C Ker p;. From the
definition of Gottlieb homology group, the sequence G,,(X) — Ker p§ — GH,(¢) —
7

0 is exact. Thus
rank Kerp; < rank Kerp; < rank G,(X) + rank GH,(¢).

From rank G,(E) < rank Ker p; 4 rank G, (B, E;p), we have done. n

Proof of Theorem A. Denote by U the image of pyg : G(E)g — G(B, E)g and put
the kernel as K. Then G(E)g = K @ U. Denote by S the kernel of the map

K — G(E)g = G(B,X)g "™ G(E, X)g/jn(G(X)e)
and by T' the image. Then K = S @ T with the natural inclusion S < J:o(G(X)g)
and T' C G(E, X)g/Jji(G(X)g). By choosing a lift 7 of i to G(X)g, S injects into
G(X)q- Since Pyo(T) = 0 for Py : G(E, X)o/ji(G(X)g) — m(B)g, we have

Ker( pyo : G(E, X)g — m(B)g )
J1(G(X))

Remark 2. An inclusion i¢|g : S — G(X)g in §1 corresponds to a lift i : S —
G(X)g in the proof of Theorem A. For example, consider the product fibration
S8 x §3 — ST x S3 — §% of the Hopf fibration S? — ST — S* (see Example
2 (1)) and the trivial fibration S — S3 — x. Put M(S? x S3) = (A(v,v'),0)
with [v| = [v/| = 3 and M(S*) = (A(wy,ws),dp) with |w,| = 4 and |w,y| = 7.
The model is given by Dv = w; and Dv' = 0. Then S = Q{v} and a lift
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i8S — G(X)g = Q{v',v"} is given by i(v") = av* + v for a € Q. Note that
i is not unique and depends on a. S is identified as Q{av* + v"*} in G(X)g and
jﬁQ(av* +0") =" in Q{w;, v} = G(E, X; j)o.

If a rationallized Gottlieb sequence (%) deduces the short exact sequence
0—Gn(X)o—Gn(E, X;j)o—mn(B)g — 0 for all n > 1, the fibration ¢ is said
as rationally Gottlieb-trivial (r.G-trivial). Especially, if a fibration is r.G-trivial,
GH(§)g = 0. Recall that ¢ is r.G-trivial if and only if py : Gu(E, X; j)o—ma(B)o
is surjective for n > 1 [11, Theorem 4.2 (2) < (3)].

Example 2. The following examples are fibrations or the models of certain fibra-

tions € : X & E % B. The degrees of elements of the models without mention are

odd.

(1) The Hopf fibration : S* — S7 — S where M(S3) = (Av,0) with |v| = 3,
M(S*) = (A (wy,ws),dg) with |wy| =4, |we| =7, dgw; = 0, dpwy = w? and Dv =
wy. Note that there is a quasi-isomorphism p : (A(ws),0) — (A(wq, we,v), D) with
p(we) = wy —wyv. It is G-type of (1,0,2;0,0,1) from G(B, E;p)g = Q{w}, w}} and
G(E)g = G(B)g. Since d0,-cycle v* is exact by 0,(w]) = v*, G(E, X; j)o = Q{w}}.
Note that GH({)g = 0 but & is not r.G-trivial since py,, : G(E, X; j)o—m(B)g =
Qfwi,wi} in (%) is not surjective.

(2) S5 - F — S x S3 with M(S%) = (Av,0), M(S? x S?) = (A(wy, wy),0)
and Dv = wyws. It is G-type of (1,0,2;1,0,0). Since G(E, X)g = Q{v*, w},ws} D
Q{w;, w3} = m(B)g, £ is r.G-trivial.

(3) 3 x S5 — F — S3 with M(S% x S%) = (A(v1,v9),0) |v1] = 3,|va] = 5
and M(S?) = (Aw,0) and Dvy = wvy. It is G-type of (2,0,1;1,0,0). Since
G(E,X)g = Q{v],v3} # w*, £ is not r.G-trivial.

(4) M(X) = (A(v1,v2,v3),d) and M(B) = (Aw,0) with dv; = dvy = 0, dvs =
Dvs = vjvg, Dv; = 0 and Dvy = wvy. Then £ is G-type of (1,0,1;1,0,0). Since
G(E,X)g # w*, € is not r.G-trivial.

(5) Recall the non-trivial fibration CP? — E — S* of [11, Ex.4.4]. The model
is given by M(CP?) = (A(vy,v),d) with |v1] = 2,|ve| = 5, dv; = 0,dvy = v}
and M(S*) = (A(wy,wy),dp) with |wi| = 4,|wy| = 7, dpw; = 0,dpws = w?, and
Dvy = 0, Dvy = v? + wyvy. Since 0;(v; — 3w @ v1) = 0, GH(¢)g = Q{v}}. In
fact, §;(vi — 3w; @ vy)(vg) = vi(dvg) — 3(w} @ vy)(wyvy) = vi(v}) — 3wi(wyvy) - vy =
3v?—3v? = 0 and 0, (vi—3w;®v;)(z) = 0 for z = w,, v;. Ttis G-typeof (1,1,1;1,0,1)
and G(E)Q = G(X)Q @ G(B)Q

(6)[11, Ex.4.5] M(X) = (A(vy,va, -+ ,Upt1,0),d) (n:odd) with dv, = 0, dv =
VVg -+ Upyq and M(B) = (Aw,0). Put Dv = vvg- - vyq1 + wo,y and Du, =
0. Then GH()g = T = Q{v;,---,vi} if n > 1. In fact, d;(v] + (=1)'w* ®
vy vyn) = 0 for i <m. Thus € is G-type of (1,n,1;1,n,0)ifn > 1. Ifn=1, ¢
is G-type of (1,0,1;1,0,1). Note that it is rationally trivial. In fact, there is a DGA-
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isomorphism p : (A(w, vy, va,v), D) — (Aw,0) @ (A(v1,v2,v),d) given p(vy) = v —w
and p(z) = z for the other elements z.

(7) M(X) = (A(vy,..,05,v),d) with dv, = 0 and dv = v;---v, (n:even). If
Dv = vy v, + wywawsv, for M(B) = (A(wy,ws,ws),0), then £ is G-type of
(1,0,3;1,0,0) if n > 2. Since G(E, X)q 3 wi,wi, wj, £ is r.G-trivial. If n =2, £ is
G-type of (1,0,3;1,0,3). Note that it is rationally trivial by p(v1) = v; — wwows
as in (6).

(8) M(X) = (A(vy,vq,v3,v4,v),d) with dv, = 0 and dv = vyvovsvy. M(B) =
(AMw,w',u),dg) with dpw = dgw’ = 0 and dpu = ww'. Put Dv, = 0 and
Dv = vjv9vgvy + wuy. Then € is G-type of (1,3,1;1,0,1). Especially GH(§)q =
Q{vf, v3,v3} and G(E)q = G(X)g ® G(B)g.

(9) M(X) = (A(v1,v2,v3,04,05,0),d) with dvy = dvy = dvg = dvy = 0, dvs =
U1y, dv = vivgugvy and M(B) = (A(w,w’,u),dp) with dgw = dgw’ = 0, dpu =
ww'. Put Dv = vjv9v3vs + wuy and Dv, = dv,. Then ¢ is G-type of (1,0,1;1,0,1)
and G(E)g = G(X)g @ G(B)g. Since G(F, X)g Z w*, £ is not r.G-trivial.

(10) M(X) = (A(v1,v2,v3,v4,0,0",0"),d) with dv; = dvy = dvg = dvy = dv’
dv” =0, dv = v1v9v3vg and M(B) = (A w,w',u),dp) with dpw = dpw’ =0, dpu =
ww'. Put Dv = vv9v3v4 + wuy, DV = wovs, Dv” = w'vg and Dv, = 0. Then £ is

G-type of (3,2,1;3,2,1) with GH(§)g =T = Q{v}, vi}.

(11) M(X) = (Av,0) and M(B) = (A(wy, we, w3, wy,u),dp) with dgw, = 0
and dpu = wjwywswy. If Dv = wyws, then £ is G-type of (1,0,3;1,0,3). Since
G(E,X)g 3 wi,wy,w;,wy,u*, & is r.G-trivial. Note that G(B)gy = Q{u*} but
G(B, E)g = Q{wj,w},u*}. Thus G(E)g # G(X)o®G(B)g but G(E)g = G(X)g®
G(B, E;p)e.

(12) M(X) = (A(v,v'),0) and M(B) = (A(wy, wa, w3, wy, u),dg) with dgw, =0
and dgu = wiwswswy. Put Dv = wywy and Dv' = wswy + wiv. Then £ is G-type
of (2,0,4;1,0,1) from G(B,E)y = Q{w;,w;, w;,u*}. Here wi ¢ G(B, E)g from
the reason that the D-cocycle wywqv is not exact. Since G(E, X)g Z wi, £ is not
r.G-trivial. Note that G(E)g & G(X)q © G(B)qg.

(13) There is a rationally non-trivial fibration n : S V S — E’ — S3 which is
rationally constructed as [5, (6.5)]. Then n is G-type of (0,0, 1; 0,0, 0) since the Got-
tlieb rank of the one point union of spheres is zero [13, Theorem 5.4] and GH (n)g =
from degree argument. The pull back fibration £ : S? v .8? — E — S3Vv S3 of n
by the map (idgs|*) : S* Vv S — S3. Then £ is G-type of (0,0,0;0,0,0) and
G(E,S?V 5% j)g = 0 from degree argument. Since rankm, (5% V S?) = oo, £ is not
r.G-trivial.

Remark 3. In general (especially without finite condition), if a fibration X —
E — B has a section, then G, (B, FE;p) = G,(B) for all n.  In fact, we can
see that G, (B, E;p) C G,(B) as follows. Put s : B — E a section of ¢, i.e.,
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pos ~ idg. For an element a € G(B, E;p), there is a map F' : E x S™ — B
satisying F” oinc; ~ (pla). Put F' := F' o (s X idgn). Then we have F oincy =
F' o (s X idgn) oincg = F' oincy o (s Vidgn) =~ (pla) o (s Vidgn) =~ (idg|a) in the
diagram:

sVidgn

i Ev Sn

y (idpla) y

BX Sfl sxidgn E x S™ (pla)
N B B7

that is, the left triangle homotopically commutes. Thus we have a € G, (B). For
example, since the free loop fibration of X &{x : QX — LX — X has the section
s: s(q) =the constant loop map to ¢ for a point ¢ of X, G(X,LX;p) = G(X).
Finally, the rationalized fibration gy : Xy — E@©) — B of { has a section
if and only if a model of it has the property : (D — d)V C AW ® A1V, where
ATV is the ideal of AV generated by positive degree elements [2]. The rational-
ized fibrations of (3) ~ (10) and (13) of Example 2 satisfy it. For them we see
G(B, E;p)o = G(B(), E); b)) = G(B()) = G(B)g.

Remark 4. From a fixed fiber X, base B and G-type, we can not determine the
rational homotopy equivalent class of fibration X — E — B uniquely. We give
such two examples (i) and (ii), in which X is the product of spheres, F is finite
and B = K(Z,2) = CP>. Note that there is a free S'-action on X for each
fibration, which is rationally realized as a Borel fibration X — ES* x g1 X — BS!
[4, Proposition 4.2].

(i) A fibration S3 x S°® x S — E — K(Z,2) is rationally given as

(Q[w],0) = (A(w, z,y,2), D) — (Az,y, 2),0),

where |w| = 2, |z| = 3,|y| = 5,|2| = 9. From degree argument, it is given by one
of (1) Dz = w? and Dy = Dz =0, (2) Dy = w® and Dz = Dz = 0, (3) Dz = w®
and Dr = Dy = 0 or (4) Dz = wzy + w® and Dz = Dy = 0. Then E has the
rational homotopy type of (1) S? x S5 x 59, (2) S3 x CP? x 5%, (3) S® x S x CP* or
(4) a 16-dimensional c-symplectic space, i.e., E satisfies that [w®] # 0 € H%(E;Q),
respectively. The G-types of (1), (2) and (3) are (3,0,1;3,0,0) and the G-type of
(4) is (3,0,1;1,0,0).
(i) A fibration &, : S* x S3 — E — K(Z,?2) is rationally given as

(Q[w]70) - (A<w7 :1;7 y’ z)’ D) - (A(x7 y’ Z)7d)7
where |w| = |z| =2, |y| = |z| = 3, dy = 22, d2 = 0, Dz = wz and Dy = 2* + aw?

for « € Q — {0}. There are infinitely many rationally different classes of fibrations
{&,} and they are G-type of (2,0,1;2,0,0).
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4 Appendix
In this section, we put the G-types of fibrations ¢ : X — F ~ Bas (a,b,c;s,t,u).
Lemma A. When B ~q) S*"*, £ is rationally trivial if and only if u = 1.

Proof. The ‘only if ’ part is trivial from
u = rankG (B, E; p) = rankG(B) = rankG(S*"™!) = 1.

Show the ‘if’ part. Put (Aw,0) — (Aw ® AV,D) — (AV,d) be the model
of & When u = 1, dg(w*) = dg(o) for some o € Dery,1AV. Then 0 @ w €
Dery(Aw®AV, D) (see Notation in §2). Put the algebra isomorphism ¢ : Aw®AV —
Aw ® AV as ¢ := id — 0 ® w. Then we can define a differential D" on Aw @ AV
by D' := =1 o D o), which is said as change of KS-basis in [9, page 119]. In
fact, we can easily check D'(zy) = D'(x)y + (=1)*lzD'(y) and D' o D’ = 0. From
Do =1 oD we have an isomorphism of models

(Aw, 0) % (Aw @ AV, D') 225 (AV, d)

| “|s |

(Aw, 0) —% (Aw @ AV, D) 2% (AV, d).
Notice that (Aw @ AV, D’) = (Aw,0) ® (AV,d). In fact,
D'=(id+o®w)oDo(id—oc®@w)=D—(Dooc+ocoD)Q@w

:D—5E(U)®w:D—5E(w*)®w:D—(w*oD)®w(:)d,
where d(w) := 0. For Dv =dv+w-7(v) with v € V and 7 € Dery, AV, (x) is given
by ((w*oD)@w)(v) = (=1)"|(w e D)(v)w = (=1)!7(v)-w = (=) hw.7(v) =
w - 7(v). Thus ¢ is rationally trivial. u

Suppose that X is an Fy-space, i.e., H*(X;Q) = Qlxy, -, z]/(f1, -, fi) with
a regular sequence (fy,---, f;) in Q[xy,--- , 2], where |z,| are even. Then M(X)
is given by (A(zy, -, 2,01, ,v),d) with dz; = 0,dv; = f; € A(xq, -+ ,3;) for
i =1,---,0 and rankG(X) = rankm,4q(X) = [. Halperin conjectures that any fi-
bration X % E — B c-splits (is T.N.C.Z.), i.e., H*(E; Q) = H*(X;Q) ® H*(B;Q)
additively (j* : H*(E; Q) — H*(X; Q) is surjective) [2, p.516]. It is proved in many
cases, for example, when [ < 3 [8] and when X is a homogeneous space [12]. It
is equivalent to that any fibration X — E — S?"*! (n > 0) is rationally trivial
[9, Theorem 2.2]. It is known that there are interactions with certain numerical
invariants as in [9, §4] and [14].

Corollary A. Let X be an Fy-space. The followings are equivalent.
(1) Any fibration X —FE — B c-splits.

(2) For any fibration X — E — S*"T1 4 = 1.

(3) For any fibration X — E — S?"*! rankG(E) = rankG(X) + 1
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(4) Any fibration X — E — S*"*1 is G-type of (rankG(X), 0, 1;rankG(X), 0, 1).

Proof. “(1) = (2),(3), (4)” follows from [9, Theorem 2.2]. “(2) = (1)” follows from
Lemma A. “(3) = (2)” is given as follows. Since M (X) is pure, t = 0 (see Claim
in §2). Then we have v > 1 from the inequations s +u = s+t + u = rankG(F) =
rankG(X) + 1 and s < rankG(X). “(4) = (2)” is trivial. n

Note that the condition: “ (5) Any fibration X — E — B is G-type of
(rankG(X), 0, rankG(B); rankG(X ), 0, rankG(B)) 7 is sufficient but not necessary for
the conditions in Corollary A. In fact, there is a c-split fibration S* — E — S x S5
with the model

(A(wy, ws),0) = (A(wy, we, x1,v1), D) — (A(x1,v1),d)

where |wi| = 3, |ws| = 5,|z1| = 4,|v1| = 7, dvy = Dxy = 0, dvy = 2% and Dv; =
7?2 + wiwsy. Tt is G-type of (1,0,2;1,0,0).
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