An estimate in Gottlieb ranks of fibration

Toshihiro Yamaguchi

Dedicated to Professor Hiroo Shiga on his 60th birthday

Abstract

As an application of the Gottlieb sequence [11]([7]) of fibration, we give an upper bound of the rank of Gottlieb group $G(E) = \bigoplus_{i>0} G_i(E)$ of the total space E of a fibration $\xi: X \to E \to B$ and define the Gottlieb type (a,b,c;s,t,u), which describes a rational homotopical condition of fibration with rankG(E) = s + t + u. We also note various examples showing the different situations that can occur. Finally we comment about an interaction with a Halperin's conjecture on fibration.

1 Introduction

The *n*th Gottlieb group $G_n(X)$ of a space X is the subgroup of the *n*th homotopy group $\pi_n(X)$ of X consisting of homotopy classes of maps $a: S^n \to X$ such that the wedge $(a|id_X): S^n \vee X \to X$ extends to a map $F_a: S^n \times X \to X$ [3]. The *n*th evaluation subgroup $G_n(Y,X;f)$ of a map $f: X \to Y$ is the subgroup of $\pi_n(Y)$ represented by maps $a: S^n \to Y$ such that $(a|f): S^n \vee X \to Y$ extends to a map $F_a: S^n \times X \to Y$. Note $G_n(Y) \subset G_n(Y,X;f)$ in general and $G_n(X) = G_n(X,X;id_X)$. Put $G(X) = \bigoplus_{i>0} G_i(X)$.

For a fibration $X \to E \to B$ of simply connected spaces, various inequations between their LS categories are known. For example, there is an upper bound of $\operatorname{cat}(E)$ by $\operatorname{cat}(X)$ and $\operatorname{cat}(B)$: $\operatorname{cat}(E) + 1 \le (\operatorname{cat}(X) + 1)(\operatorname{cat}(B) + 1)$ [2, Prop.30.6]. It is well known that there is an inequation $\operatorname{rank} \pi_*(E) \le \operatorname{rank} \pi_*(X) + \operatorname{rank} \pi_*(B)$ induced by the exact homotopy sequence of fibration. If both X and B have the rational homotopy types of homogeneous spaces, it is restricted as $\operatorname{rank} G(E) \le \operatorname{rank} \pi_*(B)$

Received by the editors August 2007.

Communicated by Y. Félix.

²⁰⁰⁰ Mathematics Subject Classification: 55P62,55R05,55Q70.

Key words and phrases: rational Gottlieb group, Gottlieb sequence of fibration, Gottlieb homology group, Gottlieb type, Sullivan minimal model.

 $\operatorname{rank} G(X) + \operatorname{rank} G(B)$ (see Proposition B). But, in general, we can't hope such a good inequation only between the ranks of Gottlieb groups of spaces X, E, B. In fact, $\operatorname{rank} G(X)$, $\operatorname{rank} G(E)$ and $\operatorname{rank} G(B)$ can be arbitary natural numbers (see Example 1). So we must make a compromise.

In this paper, all spaces are simply connected with rational homology of finite type. Let $\xi: X \xrightarrow{j} E \xrightarrow{p} B$ be a Hurewicz fibration. Restricting the homomorphisms in the exact homotopy sequence of ξ yields a sequence

$$\cdots \to \pi_{n+1}(B) \xrightarrow[\partial]{} G_n(X) \xrightarrow[j_{\sharp}]{} G_n(E,X;j) \xrightarrow[p_{\sharp}]{} \pi_n(B) \to \cdots, \quad (*)$$

which is called as the Gottlieb sequence of ξ [11]. The nth Gottlieb homology group of ξ , $GH_n(\xi)$, is defined by the subquotient $\operatorname{Ker} p_{\sharp}/\operatorname{Im} j_{\sharp}$ in (*) [11](the n-th ω -homology group of j in [7]). We give an effective upper bound of $\operatorname{rank} G_n(E)$ by adding the supplementary " $\operatorname{rank} GH_n(\xi)$ " and by expanding $G_n(B)$ somewhat.

Proposition A. Let $\xi: X \to E \xrightarrow{p} B$ be a fibration. Then

$$\operatorname{rank} G_n(E) \leq \operatorname{rank} G_n(X) + \operatorname{rank} GH_n(\xi) + \operatorname{rank} G_n(B, E; p)$$

for all n > 1.

If ξ is a fibre-homotopically trivial fibration, the left and right hand sides are equal. The gap between them may represent a distance from the triviality. Note that $GH(\xi) := \bigoplus_{n>0} GH_n(\xi) = 0$ and G(B, E; p) = G(B) in this case. Although notice that there are rationally non-trivial examples as Example 2 (9),(10),(11) and (13). For the rational number field \mathbb{Q} , denote $G \otimes \mathbb{Q}$ as $G_{\mathbb{Q}}$ for an abelian group G and $f \otimes \mathbb{Q}$ as $f_{\mathbb{Q}}$ for a group homomorphism f. There is a monomorphism of \mathbb{Q} -spaces $G(Y)_{\mathbb{Q}} \to G(Y_{(0)})$ for the rationalization $Y_{(0)}$ of Y [2, p.378]. In the following without mention, suppose that the spaces Y = X, E of ξ are finite complexes. Then $\dim G(Y_{(0)}) \leq \operatorname{cat} Y < \infty$ [2, Prop.28.8], $G(Y)_{\mathbb{Q}} \cong G(Y_{(0)})$ [9] and $G(Z,Y;f)_{\mathbb{Q}} \cong G(Z_{(0)},Y_{(0)};f_{(0)})$ for a map $f:Y \to Z$ [13]. Therefore we see $GH(\xi)_{\mathbb{Q}} \cong GH(\xi_{(0)})$ and it is possible to consider the sequence (*) by the derivation argument of Sullivan model [1],[10],[11] (see Section 2). Proposition A is realized as an inclusion of positively graded \mathbb{Q} -spaces.

Theorem A. Let $\xi: X \xrightarrow{j} E \xrightarrow{p} B$ be a fibration. Then there is a decomposition $G(E)_{\mathbb{Q}} = S \oplus T \oplus U$ with $S \subset G(X)_{\mathbb{Q}}$, $T \subset GH(\xi)_{\mathbb{Q}}$ and $U \subset G(B, E; p)_{\mathbb{Q}}$, whose dimensions are uniquely determined.

Here, for $S = \bigoplus_{n>1} S_n$, $T = \bigoplus_{n>1} T_n$ and $U = \bigoplus_{n>1} U_n$, elements of S_n , T_n and U_n are respectively represented by the rationalizations of elements α, β and γ of $G_n(E)$ satisfying the conditions: there are maps $\{F_\alpha, F'_\alpha\}$, F_β and F_γ which make respectively the homotopy commutative diagrams (i), (ii) and (iii),

Then our inclusion

$$i_{\xi} : G(E)_{\mathbb{Q}} = S \oplus T \oplus U \subset G(X)_{\mathbb{Q}} \oplus GH(\xi)_{\mathbb{Q}} \oplus G(B, E; p)_{\mathbb{Q}}$$

is given by

$$i_{\xi} ((\alpha_{(0)}, [\beta_{(0)}], \gamma_{(0)})) = (F'_{\alpha}|_{S^{n}(0)}, [\beta_{(0)}], p \circ \gamma_{(0)}),$$

where $[\beta_{(0)}] = [\beta'_{(0)}]$ if and only if $\phi := \beta_{(0)} - \beta'_{(0)} \in Imj_{\sharp_{\mathbb{Q}}}$, i.e., ϕ can be embedded in the rationalized diagram of (i) with some F_{ϕ} and F'_{ϕ} .

Note that i_{ξ} depends on the choice of a map F'_{α} in (i) in general (see Remark 2). Anyway we can define a rational homotopy invariant of fibration.

Definition. We say that the fibration ξ is Gottlieb type of (a, b, c; s, t, u) for $a = \operatorname{rank} G(X)$, $b = \operatorname{rank} GH(\xi)$, $c = \operatorname{rank} G(B, E; p)$, $s = \dim S$, $t = \dim T$ and $u = \dim U$.

We often say simply 'G-type of (a,b,c;s,t,u)'. Then $a\geq s\geq 0,\ b\geq t\geq 0,\ c\geq u\geq 0$ and $\mathrm{rank}G(E)=s+t+u$. It may be useful for estimating $\mathrm{rank}G(E)$. We see that i_ξ is 'equal' if and only if ξ is G-type of (a,b,c;a,b,c) for some a,b,c. If a fibration is fibre-homotopically trivial, i_ξ is 'equal' with G-type of $(\mathrm{rank}G(X),0,\mathrm{rank}G(B);\mathrm{rank}G(X),0,\mathrm{rank}G(B))$, especially $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}}\oplus G(B)_{\mathbb{Q}}$. If a fibration satisfies $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}}\oplus G(B)_{\mathbb{Q}}$, it is rationally weak-homotopy trivial, that is, the rational connecting homomorphism $\partial_{\mathbb{Q}}$ is zero. But i_ξ may not be 'equal' as we can see in Example 2 (5) and (8). In §3, we give the proofs of Proposition A and Theorem A, and note various examples of small homotopy ranks, by the derivation argument of Sullivan model as in [11]. In §4, we comment about an interaction with G-type and a Halperin's conjecture on the rational cohomological splittings, i.e., $H^*(E;\mathbb{Q})\cong H^*(X;\mathbb{Q})\otimes H^*(B;\mathbb{Q})$ additively, of certain fibrations $X\to E\to B$.

2 Preliminary

We use the Sullivan minimal model M(Y) of a simply connected space Y of finite type. It is a free \mathbb{Q} -commutative differential graded algebra (DGA) ($\Lambda V, d$) with a \mathbb{Q} -graded vector space $V = \bigoplus_{i>1} V^i$ where $\dim V^i < \infty$ and a decomposable differential, i.e., $d(V^i) \subset (\Lambda^+ V \cdot \Lambda^+ V)^{i+1}$ and $d \circ d = 0$. Here $\Lambda V = (\text{the } \mathbb{Q}$ -polynomial algebra over $V^{even}) \otimes (\text{the } \mathbb{Q}$ -exterior algebra over V^{odd}) and $\Lambda^+ V$ is the ideal of ΛV generated by elements of positive degree. Denote the degree of a homogeneous element x of a graded algebra as |x| and the \mathbb{Q} -vector space of basis $\{v_i\}_i$ as $\mathbb{Q}\{v_i\}_i$. Then $xy = (-1)^{|x||y|}yx$ and $d(xy) = d(x)y + (-1)^{|x|}xd(y)$. A map $f: X \to Y$ has a minimal model which is a DGA-map $f^*: M(Y) \to M(X)$. Notice that M(Y) determines the rational homotopy type of Y. Especially there is an isomorphism $Hom_i(V, \mathbb{Q}) \cong \pi_i(X)_{\mathbb{Q}}$. See [2] for a general introduction and the standard notations.

The detailed discussion of the followings are in [10],[11]. Let A be a DGA $A = (A^*, d_A)$ with $A^* = \bigoplus_{i \geq 0} A^i$, $A^0 = \mathbb{Q}$ and the augmentation $\epsilon : A \to \mathbb{Q}$. Define Der_iA the vector space of derivations of A decreasing the degree by i > 0, where $\theta(xy) = \theta(x)y + (-1)^{i|x|}x\theta(y)$ for $\theta \in Der_iA$. We denote $\bigoplus_{i>0} Der_iA$ by DerA. The boundary operator $\delta : Der_*A \to Der_{*-1}A$ is defined by $\delta(\sigma) = d_A \circ \sigma - (-1)^{|\sigma|}\sigma \circ d_A$. For a DGA-map $\phi : A \to B$, define a ϕ -derivation of degree n to be a linear map $\theta : A^* \to B^{*-n}$ with $\theta(xy) = \theta(x)\phi(y) + (-1)^{n|x|}\phi(x)\theta(y)$ and $Der(A, B; \phi)$ the vector space of ϕ -derivations. The boundary operator $\delta_{\phi} : Der_*(A, B; \phi) \to Der_{*-1}(A, B; \phi)$ is defined by $\delta_{\phi}(\sigma) = d_B \circ \sigma - (-1)^{|\sigma|}\sigma \circ d_A$. Note $Der_*(A, A; id_A) = Der_*(A)$. For $\phi : A = (\Lambda Z, d_A) \to B$, the composition with the augmentation $\epsilon' : B \to \mathbb{Q}$ induces a chain map $\epsilon'_* : Der_n(A, B; \phi) \to Der_n(A, \mathbb{Q}; \epsilon)$. Define

$$G_n(A, B; \phi) := \operatorname{Im}(H(\epsilon'_*) : H_n(Der(A, B; \phi)) \to Hom_n(Z, \mathbb{Q})).$$

Especially

$$G_n(\Lambda Z, d_A) := \operatorname{Im}(H_n(\epsilon_*) : H_n(\operatorname{Der}(\Lambda Z, d_A)) \to \operatorname{Hom}_n(Z, \mathbb{Q})),$$

that is, $G_*(A, A; id_A) = G_*(A)$. Note that $z^* \in Hom_n(Z, \mathbb{Q})$ (z^* is the dual of the basis element z of Z^n) is in $G_n(A, B; \phi)$ if and only if z^* extends to a derivation θ of $Der_n(A, B; \phi)$ with $\delta_{\phi}(\theta) = 0$. For example, see [2, p.392-393]. Let $\xi: X \to B$ be a fibration. Consider the rationalization of the Gottlieb sequence (*) of ξ :

$$\cdots \to \pi_{n+1}(B)_{\mathbb{Q}} \xrightarrow[\partial_{\mathbb{Q}}]{} G_n(X)_{\mathbb{Q}} \xrightarrow[j_{\sharp_{\mathbb{Q}}}]{} G_n(E,X;j)_{\mathbb{Q}} \xrightarrow[p_{\sharp_{\mathbb{Q}}}]{} \pi_n(B)_{\mathbb{Q}} \to \cdots \qquad (**)$$

Write $M(B) = (\Lambda W, d_B)$ and $M(X) = (\Lambda V, d)$. Then the model (not minimal in general) of E is given by $(\Lambda W \otimes \Lambda V, D)$ with $D \circ D = 0$, $D|_{\Lambda W} = d_B$ and $\overline{D} = d$. The DGA-maps $J : (\Lambda(W \oplus V), D) \to (\Lambda V, \overline{D}) = (\Lambda V, d)$ (projection) and $P : (\Lambda W, d_B) \to (\Lambda(W \oplus V), D)$ (injection) are the Sullivan models for j and p, respectively. They induce linearization maps $Q(J) : W \oplus V \to V$ and $Q(P) : W \to W \oplus V$. Then we obtain the model version of (**) as

$$\cdots \to Hom_{n+1}(W,\mathbb{Q}) \xrightarrow[\partial_{\mathbb{Q}}]{} G_n(\Lambda V) \xrightarrow[Q(J)^*]{} G_n(\Lambda(W \oplus V),\Lambda V;J) \xrightarrow[Q(P)^*]{} Hom_n(W,\mathbb{Q}) \to \cdots$$

and $GH_n(\xi)_{\mathbb{Q}} \cong GH_n(\Lambda(W \oplus V), \Lambda V; J) := \operatorname{Ker}Q(P)^*/\operatorname{Im}Q(J)^*$ [11]. Note that there is a monomorphism $GH_n(\xi)_{\mathbb{Q}} \to Hom_n(V, \mathbb{Q}) \cong \pi_n(X)_{\mathbb{Q}}$ for n > 1.

Proposition B. If X and B have the rational homotopy types of homogeneous spaces, then $G(E)_{\mathbb{Q}} \subset G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$ for any fibration $X \to E \to B$.

Proof. We can put $M(X)\cong (\Lambda(x_1,\cdots,x_k,v_1,\cdots,v_l),d)$ with $|x_i|$ even for $1\leq i\leq k,\ |v_i|$ odd for $1\leq i\leq l,\ dx_*=0$ and $dv_*\in\Lambda(x_1,\cdots,x_k)$ for some k and l [2, Proposition 15.16]. Also $M(B)\cong (\Lambda(y_1,\cdots,y_m,w_1,\cdots,w_n),d_B)$ with $|y_i|$ even for $1\leq i\leq m,\ |w_i|$ odd for $1\leq i\leq n,\ d_By_*=0$ and $d_Bw_*\in\Lambda(y_1,\cdots,y_m)$ for some m and n. Since $G(X)_{\mathbb{Q}}\supset\mathbb{Q}\{v_1^*,\cdots,v_l^*\}$ and $G(B)_{\mathbb{Q}}\supset\mathbb{Q}\{w_1^*,\cdots,w_n^*\}$, we have $G_{odd}(E)_{\mathbb{Q}}\subset\pi_{odd}(E)_{\mathbb{Q}}\subset G(X)_{\mathbb{Q}}\oplus G(B)_{\mathbb{Q}}$. On the other hand, we know that $G_{2n}(Y)_{\mathbb{Q}}=0$ (n>0) for any simply connected finite complex Y [2, Proposition 28.8].

Claim. A space X or a minimal model $M(X) = (\Lambda V, d)$ with dim $H^*(X; \mathbb{Q}) < \infty$ (dim $H^*(\Lambda V, d) < \infty$) and rank $\pi_*(X) < \infty$ (dim $V < \infty$) is said to be *elliptic*. If the fiber of a rationally weak-homotopy trivial fibration is elliptic, then s > 0 in its G-type since the dual of a top degree element in V is in $G(E)_{\mathbb{Q}}$. An elliptic minimal model $M(X) = (\Lambda V, d)$ with $dV^{even} = 0$ and $dV^{odd} \subset \Lambda V^{even}$ is said to be *pure*. For example, homogeneous spaces are pure. If the fiber X of a fibration has a pure model M(X), then t = 0 in its G-type from $T \subset \pi_{odd}(X)_{\mathbb{Q}} = G(X)_{\mathbb{Q}}$.

Notation. Denote by $\sigma \otimes f$ for $\sigma \in Der_n(\Lambda Z)$ and $f \in \Lambda Z$ the derivation of degree $|\sigma \otimes f| = n - |f|$ on $(\Lambda Z, d)$ given by $(\sigma \otimes f)(z) := (-1)^{|z||f|} \sigma(z) \cdot f$, which satisfies for $x, y \in \Lambda Z$

$$(\sigma \otimes f)(xy) = (\sigma \otimes f)(x) \cdot y + (-1)^{|x||\sigma \otimes f|} x \cdot (\sigma \otimes f)(y)$$

and $(\sigma \otimes f) \circ D = -\sigma \circ D \otimes f$. Especially, note that $z^* \otimes f$ means the derivation sending z to f and extending by linearity.

3 Gottlieb type and examples

First we give two examples (1) and (2), which motivate our estimate. Note that these models are realized as certain fibrations of finite complexes $X \to E \to B$ since their cohomologies are finite. Especially the following spaces are elliptic.

Example 1. For any three natural numbers l, m and n, there is a fibration $\xi: X \to E \to B$ with $\operatorname{rank} G(X) = l$, $\operatorname{rank} G(E) = m$ and $\operatorname{rank} G(B) = n$. In the following models, the degrees of all elements $v_*, v_*', w_*, w_*', v, v', u$ are odd.

(1) Suppose $M(B) \cong (\Lambda(w_1, ..., w_n), 0)$, i.e., $B \simeq_{(0)} S^{|w_1|} \times S^{|w_2|} \times \cdots \times S^{|w_n|}$ (B has the rational homotopy type of the product of n-odd spheres). Note that it induces $\operatorname{rank} G(B, E; p) = \operatorname{rank} G(B) = n$.

(a): m>l+n-1. If m-l-n is even, for an even integer $s (\geq 2)$, put $M(X)=(\Lambda(v_1,..,v_s,v,v_1',..,v_{l-1}'),d)$ with $dv=v_1\cdots v_s$ and $dv_*=dv_*'=0$. Put $Dv=v_1\cdots v_s+w_1v_1$. Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v_2^*, \cdots, v_s^*, v^*, v_1^{\prime *}, \cdots, v_{l-1}^{\prime *}, w_2^*, \cdots, w_n^*\}.$$

If m-l-n is odd, for an odd integer s(>1), put $M(X) = (\Lambda(v_1, ..., v_{s+1}, v, v'_1, ..., v'_{l-1}),$ d) with $dv = v_1 \cdots v_{s+1}$ and $dv_* = dv'_* = 0$. Put $Dv = dv + w_1v_1$, $Dv_3 = w_1v_2$. Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v_3^*, \cdots, v_s^*, v_{s+1}^*, v^*, v_1^{\prime *}, \cdots, v_{l-1}^{\prime *}, w_2^*, \cdots, w_n^*\}.$$

Thus $\operatorname{rank} G(E) = l + n + s - 2$.

(b): m = l + n - 1. Put $M(X) = (\Lambda(v_1, ..., v_{l+2}), d)$ with $dv_3 = v_1v_2$ and $dv_i = 0$ for $i \neq 3$. Put $Dv_2 = w_1v_1$ and $Dv_i = dv_i$ for $i \neq 2$. Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v_3^*, \cdots, v_{l+2}^*, w_2^*, \cdots, w_n^*\},\$$

that is, rankG(E) = l + n - 1.

(c): m < l + n - 1. If l + n - m is even, put $M(X) = (\Lambda(v_1, ..., v_l), 0)$. Put $Dv_1 = 0, ..., Dv_{l-1} = 0$ and $Dv_l = w_1 \cdots w_i v_1 \cdots v_k$ (i + k:even) for some $i \ge 1$ and $k \ge 0$. If l + n - m is odd and l > 1, put $Dv_l = w_1 v_1 + w_2 \cdots w_i$ (i:odd) and $Dv_{l-1} = w_1 v_2 \cdots v_k$ (k:even) for $M(X) = (\Lambda(v_1, ..., v_l), 0)$. Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v_{k+1}^*, \cdots, v_l^*, w_{i+1}^*, \cdots, w_n^*\},\$$

that is, rankG(E) = l + n - (i + k).

If l + n - m is odd and l = 1, put $M(X) = (\Lambda(v_1, v_2, v_3, v_4, v), d)$ with $dv_1 = \cdots = dv_4 = 0$ and $dv = v_1v_2v_3v_4$. Put $Dv = v_1v_2v_3v_4 + w_1 \cdots w_kv_1$ (k:odd> 1). Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v^*, w_{k+1}^*, \cdots, w_n^*\},\$$

that is, rankG(E) = 1 + n - k.

- (2) Suppose $M(X) \cong (\Lambda(v_1, ..., v_l), 0)$, i.e, $X \simeq_{(0)} S^{|v_1|} \times S^{|v_2|} \times \cdots \times S^{|v_l|}$. Note that it induces rankG(X) = l and rank $GH(\xi) = 0$.
- (d): $m \ge l+n-1$ and l+m+n is even. Put $M(B) = (\Lambda(w_1, ..., w_{n+k-1}, u), d_B)$ with $d_B w_* = 0$ and $d_B u = w_1 \cdots w_k$ (k:even). Put $Dv_1 = w_1 w_2$ and $Dv_i = 0$ for i > 1. Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v_1^*, \cdots, v_l^*, w_3^*, \cdots, w_{n+k-1}^*, u^*\},\$$

that is, $\operatorname{rank} G(E) = l + n + k - 2$.

(e): $m \ge l + n - 1$ and l + m + n is odd. Put $M(B) = (\Lambda(w_1, ..., w_{n+k-2}, u), d_B)$ with $d_B w_* = 0$ and $d_B u = w_1 \cdots w_{k-1}$ (k:odd). Put $Dv_1 = w_1 w_2$, $Dv_2 = w_1 v_1$ and $Dv_i = 0$ for i > 2. Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v_2^*, \dots, v_l^*, w_3^*, \dots, w_{n+k-2}^*, u^*\},$$

that is, $\operatorname{rank} G(E) = l + n + k - 4$.

(f): m < l + n - 1. If l > 1, see the example in (c) . If l = 1, put $M(B) = (\Lambda(w_1, w_2, w_3, w_4, u, w_1', \dots, w_{n-1}'), d_B)$ with $d_B w_* = d_B w_*' = 0$ and $d_B u = 0$

 $w_1w_2w_3w_4$. Put $Dv=w_1w_1'\cdots w_j'$ (j:odd) or $Dv=w_1w_2w_1'\cdots w_j'$ (j:even> 0). Then

$$G(E)_{\mathbb{Q}} = \mathbb{Q}\{v^*, w'^*_{i+1}, \cdots, w'^*_{n-1}\},\$$

that is, $\operatorname{rank} G(E) = n - j$.

Remark 1. Even if $\operatorname{rank} G(E) = \operatorname{rank} G(X) + \operatorname{rank} G(B)$, notice that $G(E)_{\mathbb{Q}}$ may not be equal to $G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$. For example, put $M(X) = (\Lambda(v_1, v_2, v_3, v_4, v, v', v''), d)$ with $dv_* = dv' = dv'' = 0$, $dv = v_1v_2v_3v_4$ and $M(B) = (\Lambda(w), 0)$. Put $Dv = v_1v_2v_3v_4 + wv_4$, $Dv' = wv_1$ and $Dv'' = wv_2$. Then $\operatorname{rank} G(E) = 4 = 3 + 1 = \operatorname{rank} G(X) + \operatorname{rank} G(B)$ but $T = \mathbb{Q}\{v_3^*\} = GH(\xi)_{\mathbb{Q}}$ and ξ is G-type of (3, 1, 1; 3, 1, 0), i.e., $G(E)_{\mathbb{Q}} = \mathbb{Q}\{v^*, v'^*, v''^*\} \oplus \mathbb{Q}\{v_3^*\} = G(X)_{\mathbb{Q}} \oplus GH(\xi)_{\mathbb{Q}} \neq G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.

Proof of Proposition A. Consider the following commutative diagram:

$$G_n(E) \xrightarrow{p_{\sharp}^1} G_n(B, E; p)$$

$$inc. \downarrow \qquad \qquad \downarrow inc.$$

$$G_n(E, X; j) \xrightarrow{p_{\sharp}^2} \pi_n(B)$$

where p_{\sharp}^{i} is defined by $[p \circ a]$ for $a: S^{n} \to E$. From this, Ker $p_{\sharp}^{1} \subset \text{Ker } p_{\sharp}^{2}$. From the definition of Gottlieb homology group, the sequence $G_{n}(X) \xrightarrow{j_{\sharp}} \text{Ker } p_{\sharp}^{2} \to GH_{n}(\xi) \to 0$ is exact. Thus

rank Ker $p_{\sharp}^{1} \leq \operatorname{rank} \operatorname{Ker} p_{\sharp}^{2} \leq \operatorname{rank} G_{n}(X) + \operatorname{rank} GH_{n}(\xi).$

From rank $G_n(E) \leq \text{rank Ker } p_{\sharp}^1 + \text{rank } G_n(B, E; p)$, we have done.

Proof of Theorem A. Denote by U the image of $p_{\sharp \mathbb{Q}} : G(E)_{\mathbb{Q}} \to G(B, E)_{\mathbb{Q}}$ and put the kernel as K. Then $G(E)_{\mathbb{Q}} = K \oplus U$. Denote by S the kernel of the map

$$K \hookrightarrow G(E)_{\mathbb{Q}} \hookrightarrow G(E,X)_{\mathbb{Q}} \stackrel{proj.}{\to} G(E,X)_{\mathbb{Q}}/j_{\sharp\mathbb{Q}}(G(X)_{\mathbb{Q}})$$

and by T the image. Then $K = S \oplus T$ with the natural inclusion $S \stackrel{i}{\hookrightarrow} j_{\sharp \mathbb{Q}}(G(X)_{\mathbb{Q}})$ and $T \subset G(E,X)_{\mathbb{Q}}/j_{\sharp \mathbb{Q}}(G(X)_{\mathbb{Q}})$. By choosing a lift \tilde{i} of i to $G(X)_{\mathbb{Q}}$, S injects into $G(X)_{\mathbb{Q}}$. Since $\overline{p}_{\sharp \mathbb{Q}}(T) = 0$ for $\overline{p}_{\sharp \mathbb{Q}} : G(E,X)_{\mathbb{Q}}/j_{\sharp \mathbb{Q}}(G(X)_{\mathbb{Q}}) \to \pi_*(B)_{\mathbb{Q}}$, we have

$$T \subset \operatorname{Ker} \overline{p}_{\sharp \mathbb{Q}} = \frac{\operatorname{Ker}(\ p_{\sharp \mathbb{Q}} : G(E, X)_{\mathbb{Q}} \to \pi_{*}(B)_{\mathbb{Q}})}{j_{\sharp \mathbb{Q}}(G(X)_{\mathbb{Q}})} = GH(\xi)_{\mathbb{Q}}.$$

Remark 2. An inclusion $i_{\xi}|_{S}: S \to G(X)_{\mathbb{Q}}$ in §1 corresponds to a lift $\tilde{i}: S \to G(X)_{\mathbb{Q}}$ in the proof of Theorem A. For example, consider the product fibration $S^{3} \times S^{3} \to S^{7} \times S^{3} \to S^{4}$ of the Hopf fibration $S^{3} \to S^{7} \to S^{4}$ (see Example 2 (1)) and the trivial fibration $S^{3} \to S^{3} \to *$. Put $M(S^{3} \times S^{3}) = (\Lambda(v, v'), 0)$ with |v| = |v'| = 3 and $M(S^{4}) = (\Lambda(w_{1}, w_{2}), d_{B})$ with $|w_{1}| = 4$ and $|w_{2}| = 7$. The model is given by $Dv = w_{1}$ and Dv' = 0. Then $S = \mathbb{Q}\{v'^{*}\}$ and a lift

 $\tilde{i}: S \hookrightarrow G(X)_{\mathbb{Q}} = \mathbb{Q}\{v^*, v'^*\}$ is given by $\tilde{i}(v'^*) = av^* + v'^*$ for $a \in \mathbb{Q}$. Note that \tilde{i} is not unique and depends on a. S is identified as $\mathbb{Q}\{av^* + v'^*\}$ in $G(X)_{\mathbb{Q}}$ and $j_{\sharp_{\mathbb{Q}}}(av^* + v'^*) = v'^*$ in $\mathbb{Q}\{w_2^*, v'^*\} = G(E, X; j)_{\mathbb{Q}}$.

If a rationallized Gottlieb sequence (**) deduces the short exact sequence $0 \rightarrow G_n(X)_{\mathbb{Q}} \rightarrow G_n(E,X;j)_{\mathbb{Q}} \rightarrow \pi_n(B)_{\mathbb{Q}} \rightarrow 0$ for all n > 1, the fibration ξ is said as rationally Gottlieb-trivial (r.G-trivial). Especially, if a fibration is r.G-trivial, $GH(\xi)_{\mathbb{Q}} = 0$. Recall that ξ is r.G-trivial if and only if $p_{\sharp_{\mathbb{Q}}} : G_n(E,X;j)_{\mathbb{Q}} \rightarrow \pi_n(B)_{\mathbb{Q}}$ is surjective for n > 1 [11, Theorem 4.2 (2) \Leftrightarrow (3)].

- **Example 2.** The following examples are fibrations or the models of certain fibrations $\xi: X \xrightarrow{j} E \xrightarrow{p} B$. The degrees of elements of the models without mention are odd.
- (1) The Hopf fibration : $S^3 \to S^7 \to S^4$, where $M(S^3) = (\Lambda v, 0)$ with |v| = 3, $M(S^4) = (\Lambda(w_1, w_2), d_B)$ with $|w_1| = 4$, $|w_2| = 7$, $d_B w_1 = 0$, $d_B w_2 = w_1^2$ and $Dv = w_1$. Note that there is a quasi-isomorphism $\rho: (\Lambda(w_2), 0) \to (\Lambda(w_1, w_2, v), D)$ with $\rho(w_2) = w_2 w_1 v$. It is G-type of (1, 0, 2; 0, 0, 1) from $G(B, E; p)_{\mathbb{Q}} = \mathbb{Q}\{w_1^*, w_2^*\}$ and $G(E)_{\mathbb{Q}} = G(B)_{\mathbb{Q}}$. Since δ_J -cycle v^* is exact by $\delta_J(w_1^*) = v^*$, $G(E, X; j)_{\mathbb{Q}} \to \pi_*(B)_{\mathbb{Q}} = \mathbb{Q}\{w_1^*, w_2^*\}$ in (**) is not surjective.
- (2) $S^5 \to E \to S^3 \times S^3$ with $M(S^5) = (\Lambda v, 0), M(S^3 \times S^3) = (\Lambda(w_1, w_2), 0)$ and $Dv = w_1w_2$. It is G-type of (1, 0, 2; 1, 0, 0). Since $G(E, X)_{\mathbb{Q}} = \mathbb{Q}\{v^*, w_1^*, w_2^*\} \supset \mathbb{Q}\{w_1^*, w_2^*\} = \pi_*(B)_{\mathbb{Q}}, \xi$ is r.G-trivial.
- (3) $S^3 \times S^5 \to E \to S^3$ with $M(S^3 \times S^5) = (\Lambda(v_1, v_2), 0) |v_1| = 3, |v_2| = 5$ and $M(S^3) = (\Lambda w, 0)$ and $Dv_2 = wv_1$. It is G-type of (2, 0, 1; 1, 0, 0). Since $G(E, X)_{\mathbb{Q}} = \mathbb{Q}\{v_1^*, v_2^*\} \not\ni w^*, \xi$ is not r.G-trivial.
- (4) $M(X) = (\Lambda(v_1, v_2, v_3), d)$ and $M(B) = (\Lambda w, 0)$ with $dv_1 = dv_2 = 0$, $dv_3 = Dv_3 = v_1v_2$, $Dv_1 = 0$ and $Dv_2 = wv_1$. Then ξ is G-type of (1, 0, 1; 1, 0, 0). Since $G(E, X)_{\mathbb{Q}} \not\ni w^*$, ξ is not r.G-trivial.
- (5) Recall the non-trivial fibration $\mathbb{C}P^2 \to E \to S^4$ of [11, Ex.4.4]. The model is given by $M(\mathbb{C}P^2) = (\Lambda(v_1, v_2), d)$ with $|v_1| = 2, |v_2| = 5, dv_1 = 0, dv_2 = v_1^3$ and $M(S^4) = (\Lambda(w_1, w_2), d_B)$ with $|w_1| = 4, |w_2| = 7, d_Bw_1 = 0, d_Bw_2 = w_1^2$, and $Dv_1 = 0, Dv_2 = v_1^3 + w_1v_1$. Since $\delta_J(v_1^* 3w_1^* \otimes v_1) = 0, GH(\xi)_{\mathbb{Q}} = \mathbb{Q}\{v_1^*\}$. In fact, $\delta_J(v_1^* 3w_1^* \otimes v_1)(v_2) = v_1^*(dv_2) 3(w_1^* \otimes v_1)(w_1v_1) = v_1^*(v_1^3) 3w_1^*(w_1v_1) \cdot v_1 = 3v_1^2 3v_1^2 = 0$ and $\delta_J(v_1^* 3w_1^* \otimes v_1)(z) = 0$ for $z = w_*, v_1$. It is G-type of (1, 1, 1; 1, 0, 1) and $G(E)_{\mathbb{Q}} = G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.
- (6)[11, Ex.4.5] $M(X) = (\Lambda(v_1, v_2, \dots, v_{n+1}, v), d)$ (n:odd) with $dv_* = 0$, $dv = v_1v_2 \cdots v_{n+1}$ and $M(B) = (\Lambda w, 0)$. Put $Dv = v_1v_2 \cdots v_{n+1} + wv_{n+1}$ and $Dv_* = 0$. Then $GH(\xi)_{\mathbb{Q}} = T = \mathbb{Q}\{v_1^*, \dots, v_n^*\}$ if n > 1. In fact, $\delta_J(v_i^* + (-1)^i w^* \otimes v_1 \cdots \check{v_i} \cdots v_n) = 0$ for $i \leq n$. Thus ξ is G-type of (1, n, 1; 1, n, 0) if n > 1. If $n = 1, \xi$ is G-type of (1, 0, 1; 1, 0, 1). Note that it is rationally trivial. In fact, there is a DGA-

- isomorphism $\rho: (\Lambda(w, v_1, v_2, v), D) \to (\Lambda w, 0) \otimes (\Lambda(v_1, v_2, v), d)$ given $\rho(v_1) = v_1 w$ and $\rho(z) = z$ for the other elements z.
- (7) $M(X) = (\Lambda(v_1, ..., v_n, v), d)$ with $dv_* = 0$ and $dv = v_1 \cdots v_n$ (n:even). If $Dv = v_1 \cdots v_n + w_1 w_2 w_3 v_n$ for $M(B) = (\Lambda(w_1, w_2, w_3), 0)$, then ξ is G-type of (1, 0, 3; 1, 0, 0) if n > 2. Since $G(E, X)_{\mathbb{Q}} \ni w_1^*, w_2^*, w_3^*, \xi$ is r.G-trivial. If $n = 2, \xi$ is G-type of (1, 0, 3; 1, 0, 3). Note that it is rationally trivial by $\rho(v_1) = v_1 w_1 w_2 w_3$ as in (6).
- (8) $M(X) = (\Lambda(v_1, v_2, v_3, v_4, v), d)$ with $dv_* = 0$ and $dv = v_1v_2v_3v_4$. $M(B) = (\Lambda(w, w', u), d_B)$ with $d_Bw = d_Bw' = 0$ and $d_Bu = ww'$. Put $Dv_* = 0$ and $Dv = v_1v_2v_3v_4 + wv_4$. Then ξ is G-type of (1, 3, 1; 1, 0, 1). Especially $GH(\xi)_{\mathbb{Q}} = \mathbb{Q}\{v_1^*, v_2^*, v_3^*\}$ and $G(E)_{\mathbb{Q}} = G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.
- (9) $M(X) = (\Lambda(v_1, v_2, v_3, v_4, v_5, v), d)$ with $dv_1 = dv_2 = dv_3 = dv_4 = 0$, $dv_5 = v_1v_4$, $dv = v_1v_2v_3v_5$ and $M(B) = (\Lambda(w, w', u), d_B)$ with $d_Bw = d_Bw' = 0$, $d_Bu = ww'$. Put $Dv = v_1v_2v_3v_5 + wv_4$ and $Dv_* = dv_*$. Then ξ is G-type of (1, 0, 1; 1, 0, 1) and $G(E)_{\mathbb{Q}} = G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$. Since $G(E, X)_{\mathbb{Q}} \not\ni w^*$, ξ is not r.G-trivial.
- (10) $M(X) = (\Lambda(v_1, v_2, v_3, v_4, v, v', v''), d)$ with $dv_1 = dv_2 = dv_3 = dv_4 = dv' = dv'' = 0$, $dv = v_1v_2v_3v_4$ and $M(B) = (\Lambda(w, w', u), d_B)$ with $d_Bw = d_Bw' = 0$, $d_Bu = ww'$. Put $Dv = v_1v_2v_3v_4 + wv_4$, $Dv' = wv_3$, $Dv'' = w'v_3$ and $Dv_* = 0$. Then ξ is G-type of (3, 2, 1; 3, 2, 1) with $GH(\xi)_{\mathbb{Q}} = T = \mathbb{Q}\{v_1^*, v_2^*\}$.
- (11) $M(X) = (\Lambda v, 0)$ and $M(B) = (\Lambda(w_1, w_2, w_3, w_4, u), d_B)$ with $d_B w_* = 0$ and $d_B u = w_1 w_2 w_3 w_4$. If $D v = w_1 w_2$, then ξ is G-type of (1, 0, 3; 1, 0, 3). Since $G(E, X)_{\mathbb{Q}} \ni w_1^*, w_2^*, w_3^*, w_4^*, u^*, \xi$ is r.G-trivial. Note that $G(B)_{\mathbb{Q}} = \mathbb{Q}\{u^*\}$ but $G(B, E)_{\mathbb{Q}} = \mathbb{Q}\{w_3^*, w_4^*, u^*\}$. Thus $G(E)_{\mathbb{Q}} \neq G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$ but $G(E)_{\mathbb{Q}} = G(X)_{\mathbb{Q}} \oplus G(B, E; p)_{\mathbb{Q}}$.
- (12) $M(X) = (\Lambda(v, v'), 0)$ and $M(B) = (\Lambda(w_1, w_2, w_3, w_4, u), d_B)$ with $d_B w_* = 0$ and $d_B u = w_1 w_2 w_3 w_4$. Put $Dv = w_1 w_2$ and $Dv' = w_3 w_4 + w_1 v$. Then ξ is G-type of (2, 0, 4; 1, 0, 1) from $G(B, E)_{\mathbb{Q}} = \mathbb{Q}\{w_2^*, w_3^*, w_4^*, u^*\}$. Here $w_1^* \notin G(B, E)_{\mathbb{Q}}$ from the reason that the D-cocycle $w_1 w_2 v$ is not exact. Since $G(E, X)_{\mathbb{Q}} \not\ni w_1^*$, ξ is not r.G-trivial. Note that $G(E)_{\mathbb{Q}} \subsetneq G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.
- (13) There is a rationally non-trivial fibration $\eta: S^2 \vee S^2 \to E' \to S^3$, which is rationally constructed as [5, (6.5)]. Then η is G-type of (0,0,1;0,0,0) since the Gottlieb rank of the one point union of spheres is zero [13, Theorem 5.4] and $GH(\eta)_{\mathbb{Q}} = 0$ from degree argument. The pull back fibration $\xi: S^2 \vee S^2 \to E \to S^3 \vee S^3$ of η by the map $(id_{S^3}|*): S^3 \vee S^3 \to S^3$. Then ξ is G-type of (0,0,0;0,0,0) and $G(E,S^2\vee S^2;j)_{\mathbb{Q}}=0$ from degree argument. Since $\mathrm{rank}\pi_*(S^3\vee S^3)=\infty$, ξ is not r.G-trivial.
- **Remark 3.** In general (especially without finite condition), if a fibration $X \to E \to B$ has a section, then $G_n(B, E; p) = G_n(B)$ for all n. In fact, we can see that $G_n(B, E; p) \subset G_n(B)$ as follows. Put $s: B \to E$ a section of ξ , i.e.,

 $p \circ s \simeq id_B$. For an element $a \in G(B, E; p)$, there is a map $F' : E \times S^n \to B$ satisfying $F' \circ inc_1 \simeq (p|a)$. Put $F := F' \circ (s \times id_{S^n})$. Then we have $F \circ inc_2 = F' \circ (s \times id_{S^n}) \circ inc_2 = F' \circ inc_1 \circ (s \vee id_{S^n}) \simeq (p|a) \circ (s \vee id_{S^n}) \simeq (id_B|a)$ in the diagram:

that is, the left triangle homotopically commutes. Thus we have $a \in G_n(B)$. For example, since the free loop fibration of $X \xi_X : \Omega X \to LX \to X$ has the section s: s(q) =the constant loop map to q for a point q of X, G(X, LX; p) = G(X). Finally, the rationalized fibration $\xi_{(0)} : X_{(0)} \to E_{(0)} \to B_{(0)}$ of ξ has a section if and only if a model of it has the property : $(D - d)V \subset \Lambda W \otimes \Lambda^+ V$, where $\Lambda^+ V$ is the ideal of ΛV generated by positive degree elements [2]. The rationalized fibrations of (3) \sim (10) and (13) of Example 2 satisfy it. For them we see $G(B, E; p)_{\mathbb{Q}} = G(B_{(0)}, E_{(0)}; p_{(0)}) = G(B_{(0)}) = G(B)_{\mathbb{Q}}$.

Remark 4. From a fixed fiber X, base B and G-type, we can not determine the rational homotopy equivalent class of fibration $X \to E \to B$ uniquely. We give such two examples (i) and (ii), in which X is the product of spheres, E is finite and $B = K(\mathbb{Z}, 2) = \mathbb{C}P^{\infty}$. Note that there is a free S^1 -action on X for each fibration, which is rationally realized as a Borel fibration $X \to ES^1 \times_{S^1} X \to BS^1$ [4, Proposition 4.2].

(i) A fibration $S^3 \times S^5 \times S^9 \to E \to K(\mathbb{Z},2)$ is rationally given as

$$(\mathbb{Q}[w],0) \to (\Lambda(w,x,y,z),D) \to (\Lambda(x,y,z),0),$$

where |w|=2, |x|=3, |y|=5, |z|=9. From degree argument, it is given by one of (1) $Dx=w^2$ and Dy=Dz=0, (2) $Dy=w^3$ and Dx=Dz=0, (3) $Dz=w^5$ and Dx=Dy=0 or (4) $Dz=wxy+w^5$ and Dx=Dy=0. Then E has the rational homotopy type of (1) $S^2\times S^5\times S^9$, (2) $S^3\times \mathbb{C}P^2\times S^9$, (3) $S^3\times S^5\times \mathbb{C}P^4$ or (4) a 16-dimensional c-symplectic space, i.e., E satisfies that $[w^8]\neq 0\in H^{16}(E;\mathbb{Q})$, respectively. The G-types of (1), (2) and (3) are (3,0,1;3,0,0) and the G-type of (4) is (3,0,1;1,0,0).

(ii) A fibration $\xi_{\alpha}: S^2 \times S^3 \to E \to K(\mathbb{Z},2)$ is rationally given as

$$(\mathbb{Q}[w],0) \to (\Lambda(w,x,y,z),D) \to (\Lambda(x,y,z),d),$$

where |w| = |x| = 2, |y| = |z| = 3, $dy = x^2$, dz = 0, Dz = wx and $Dy = x^2 + \alpha w^2$ for $\alpha \in \mathbb{Q} - \{0\}$. There are infinitely many rationally different classes of fibrations $\{\xi_{\alpha}\}$ and they are G-type of (2, 0, 1; 2, 0, 0).

4 Appendix

In this section, we put the G-types of fibrations $\xi: X \to E \xrightarrow{p} B$ as (a, b, c; s, t, u).

Lemma A. When $B \simeq_{(0)} S^{2n+1}$, ξ is rationally trivial if and only if u = 1.

Proof. The 'only if' part is trivial from

$$u = \operatorname{rank}G(B, E; p) = \operatorname{rank}G(B) = \operatorname{rank}G(S^{2n+1}) = 1.$$

Show the 'if' part. Put $(\Lambda w, 0) \to (\Lambda w \otimes \Lambda V, D) \to (\Lambda V, d)$ be the model of ξ . When u = 1, $\delta_E(w^*) = \delta_E(\sigma)$ for some $\sigma \in Der_{2n+1}\Lambda V$. Then $\sigma \otimes w \in Der_0(\Lambda w \otimes \Lambda V, D)$ (see Notation in §2). Put the algebra isomorphism $\psi : \Lambda w \otimes \Lambda V \to \Lambda w \otimes \Lambda V$ as $\psi := id - \sigma \otimes w$. Then we can define a differential D' on $\Lambda w \otimes \Lambda V$ by $D' := \psi^{-1} \circ D \circ \psi$, which is said as *change of KS-basis* in [9, page 119]. In fact, we can easily check $D'(xy) = D'(x)y + (-1)^{|x|}xD'(y)$ and $D' \circ D' = 0$. From $D \circ \psi = \psi \circ D'$, we have an isomorphism of models

$$(\Lambda w, 0) \xrightarrow{inc.} (\Lambda w \otimes \Lambda V, D') \xrightarrow{proj.} (\Lambda V, d)$$

$$\parallel \qquad \qquad \cong \downarrow \psi \qquad \qquad \parallel$$

$$(\Lambda w, 0) \xrightarrow{inc.} (\Lambda w \otimes \Lambda V, D) \xrightarrow{proj.} (\Lambda V, d).$$

Notice that $(\Lambda w \otimes \Lambda V, D') = (\Lambda w, 0) \otimes (\Lambda V, d)$. In fact,

$$D' = (id + \sigma \otimes w) \circ D \circ (id - \sigma \otimes w) = D - (D \circ \sigma + \sigma \circ D) \otimes w$$
$$= D - \delta_E(\sigma) \otimes w = D - \delta_E(w^*) \otimes w = D - (w^* \circ D) \otimes w = d,$$

where d(w) := 0. For $Dv = dv + w \cdot \tau(v)$ with $v \in V$ and $\tau \in Der_{2n}\Lambda V$, (*) is given by $((w^* \circ D) \otimes w)(v) = (-1)^{|v|}(w^* \circ D)(v) \cdot w = (-1)^{|v|}\tau(v) \cdot w = (-1)^{|v|+|\tau(v)|}w \cdot \tau(v) = w \cdot \tau(v)$. Thus ξ is rationally trivial.

Suppose that X is an F_0 -space, i.e., $H^*(X;\mathbb{Q}) \cong \mathbb{Q}[x_1, \cdots, x_l]/(f_1, \cdots, f_l)$ with a regular sequence (f_1, \cdots, f_l) in $\mathbb{Q}[x_1, \cdots, x_l]$, where $|x_*|$ are even. Then M(X) is given by $(\Lambda(x_1, \cdots, x_l, v_1, \cdots, v_l), d)$ with $dx_i = 0, dv_i = f_i \in \Lambda(x_1, \cdots, x_l)$ for $i = 1, \cdots, l$ and rank $G(X) = \operatorname{rank} \pi_{odd}(X) = l$. Halperin conjectures that any fibration $X \xrightarrow{j} E \to B$ c-splits (is T.N.C.Z.), i.e., $H^*(E;\mathbb{Q}) \cong H^*(X;\mathbb{Q}) \otimes H^*(B;\mathbb{Q})$ additively $(j^*: H^*(E;\mathbb{Q}) \to H^*(X;\mathbb{Q})$ is surjective) [2, p.516]. It is proved in many cases, for example, when $l \leq 3$ [8] and when X is a homogeneous space [12]. It is equivalent to that any fibration $X \to E \to S^{2n+1}$ (n > 0) is rationally trivial [9, Theorem 2.2]. It is known that there are interactions with certain numerical invariants as in [9, §4] and [14].

Corollary A. Let X be an F_0 -space. The followings are equivalent.

- (1) Any fibration $X \rightarrow E \rightarrow B$ c-splits.
- (2) For any fibration $X \to E \to S^{2n+1}$, u = 1.
- (3) For any fibration $X \to E \to S^{2n+1}$, rank $G(E) = \operatorname{rank} G(X) + 1$.

(4) Any fibration $X \to E \to S^{2n+1}$ is G-type of $(\operatorname{rank} G(X), 0, 1; \operatorname{rank} G(X), 0, 1)$.

Proof. "(1) \Rightarrow (2), (3), (4)" follows from [9, Theorem 2.2]. "(2) \Rightarrow (1)" follows from Lemma A. "(3) \Rightarrow (2)" is given as follows. Since M(X) is pure, t = 0 (see Claim in §2). Then we have $u \geq 1$ from the inequations $s + u = s + t + u = \operatorname{rank}G(E) = \operatorname{rank}G(X) + 1$ and $s \leq \operatorname{rank}G(X)$. "(4) \Rightarrow (2)" is trivial.

Note that the condition: "(5) Any fibration $X \to E \to B$ is G-type of $(\operatorname{rank} G(X), 0, \operatorname{rank} G(B); \operatorname{rank} G(X), 0, \operatorname{rank} G(B))$ " is sufficient but not necessary for the conditions in Corollary A. In fact, there is a c-split fibration $S^4 \to E \to S^3 \times S^5$ with the model

$$(\Lambda(w_1, w_2), 0) \to (\Lambda(w_1, w_2, x_1, v_1), D) \to (\Lambda(x_1, v_1), d)$$

where $|w_1| = 3$, $|w_2| = 5$, $|x_1| = 4$, $|v_1| = 7$, $dx_1 = Dx_1 = 0$, $dv_1 = x_1^2$ and $Dv_1 = x_1^2 + w_1w_2$. It is G-type of (1, 0, 2; 1, 0, 0).

Acknowledgement

The author would like to thank the referee for pointing the mistakes of examples and proofs, and for valuable suggestions.

References

- [1] Y.Félix and S.Halperin, Rational L.-S. category and its applications, Trans.A.M.S. **273** (1982) 1-37
- [2] Y.Félix, S.Halperin and J.C.Thomas, Rational homotopy theory, Springer G.T.M. 205 [2001].
- [3] D.H.Gottlieb, Evaluation subgroups of homotopy groups, Amer.J.of Math. 91 (1969) 729-756
- [4] S.Halperin, *Rational homotopy and torus actions*, London math. Lecture Note **93** (1985) 293-306
- [5] S.Halperin and J.Stasheff, *Obstruction to homtopy equivalences*, Advances in Math. **32** (1979) 233-279
- [6] G.Lang, Localizations and evaluation subgroups, Proc.Amer.Math.Soc.50 (1975) 489-494
- [7] K.-Y.Lee and M.H.Woo, The G-sequence and ω -homology of a CW-pair, Topology and its Applications **52** (3) (1993) 221-236
- [8] G.Lupton, Note on a conjecture of Stephen Halperin, Springer L.N.M. **1440** (1990) 148-163

- [9] G.Lupton, Variations on a conjecture of Halperin, Homotopy and Geometry Banach Center Publ. **45** (1998) 115-135
- [10] G.Lupton and S.B.Smith, Rationalized evaluation subgroups of a map. I. Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra **209** (1) (2007) 159–171
- [11] G.Lupton and S.B.Smith, *The evaluation subgroup of a fibre inclusion*, Topology and its Applications **154** (2007) 1107-1118
- [12] H.Shiga and M.Tezuka, Rational fibrations, homogeneous spaces with Positive Euler characteristic and Jacobians, Ann.Inst.Fourier 37 (1987) 81-106
- [13] S.B.Smith, Rational evaluation subgroups, Math.Z. 221(3) (1996) 387-400
- [14] T.Yamaguchi, A comment on toral rank for a conjecture of Halperin, JP J. Geom. Topol. 3 (2003) 221-224.

Faculty of Education, Kochi University, 2-5-1, Kochi,780-8520, JAPAN email: tyamag@cc.kochi-u.ac.jp