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Abstract

As an application of the Gottlieb sequence [11]([7]) of fibration, we give
an upper bound of the rank of Gottlieb group G(E) = ⊕i>0Gi(E) of the
total space E of a fibration ξ : X → E → B and define the Gottlieb type
(a, b, c; s, t, u), which describes a rational homotopical condition of fibration
with rankG(E) = s + t + u. We also note various examples showing the
different situations that can occur. Finally we comment about an interaction
with a Halperin’s conjecture on fibration.

1 Introduction

The nth Gottlieb group Gn(X) of a space X is the subgroup of the nth homotopy
group πn(X) of X consisting of homotopy classes of maps a : Sn → X such that
the wedge (a|idX) : Sn ∨ X → X extends to a map Fa : Sn × X → X [3]. The
nth evaluation subgroup Gn(Y,X; f) of a map f : X → Y is the subgroup of πn(Y )
represented by maps a : Sn → Y such that (a|f) : Sn∨X → Y extends to a map Fa :
Sn ×X → Y . Note Gn(Y ) ⊂ Gn(Y,X; f) in general and Gn(X) = Gn(X,X; idX).
Put G(X) = ⊕i>0Gi(X).

For a fibration X → E → B of simply connected spaces, various inequations
between their LS categories are known. For example, there is an upper bound of
cat(E) by cat(X) and cat(B): cat(E)+1 ≤ (cat(X)+1)(cat(B)+1) [2, Prop.30.6].
It is well known that there is an inequation rankπ∗(E) ≤ rankπ∗(X) + rankπ∗(B)
induced by the exact homotopy sequence of fibration. If both X and B have the
rational homotopy types of homogeneous spaces, it is restricted as rankG(E) ≤
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rankG(X) + rankG(B) (see Proposition B). But, in general, we can’t hope such
a good inequation only between the ranks of Gottlieb groups of spaces X,E,B.
In fact, rankG(X), rankG(E) and rankG(B) can be arbitary natural numbers (see
Example 1). So we must make a compromise.

In this paper, all spaces are simply connected with rational homology of finite
type. Let ξ : X →

j
E →

p
B be a Hurewicz fibration. Restricting the homomorphisms

in the exact homotopy sequence of ξ yields a sequence

· · · → πn+1(B) →
∂
Gn(X) →

j♯
Gn(E,X; j) →

p♯

πn(B) → · · · , (∗)

which is called as the Gottlieb sequence of ξ [11]. The nth Gottlieb homology group of
ξ, GHn(ξ), is defined by the subquotient Kerp♯/Imj♯ in (∗) [11](the n-th ω-homology
group of j in [7]). We give an effective upper bound of rankGn(E) by adding the
supplementary “rankGHn(ξ)” and by expanding Gn(B) somewhat.

Proposition A. Let ξ : X → E
p
→ B be a fibration. Then

rankGn(E) ≤ rankGn(X) + rankGHn(ξ) + rankGn(B,E; p)

for all n > 1.

If ξ is a fibre-homotopically trivial fibration, the left and right hand sides are
equal. The gap between them may represent a distance from the triviality. Note
that GH(ξ) := ⊕n>0GHn(ξ) = 0 and G(B,E; p) = G(B) in this case. Although
notice that there are rationally non-trivial examples as Example 2 (9),(10),(11)
and (13). For the rational number field Q, denote G ⊗ Q as GQ for an abelian
group G and f ⊗ Q as fQ for a group homomorphism f . There is a monomor-
phism of Q-spaces G(Y )Q → G(Y(0)) for the rationalization Y(0) of Y [2, p.378]. In
the following without mention, suppose that the spaces Y = X,E of ξ are finite
complexes. Then dimG(Y(0)) ≤ catY < ∞ [2, Prop.28.8], G(Y )Q

∼= G(Y(0)) [9]
and G(Z, Y ; f)Q

∼= G(Z(0), Y(0); f(0)) for a map f : Y → Z [13]. Therefore we see
GH(ξ)Q

∼= GH(ξ(0)) and it is possible to consider the sequence (∗) by the derivation
argument of Sullivan model [1],[10],[11] (see Section 2). Proposition A is realized as
an inclusion of positively graded Q-spaces.

Theorem A. Let ξ : X
j
→ E

p
→ B be a fibration. Then there is a decomposition

G(E)Q = S ⊕ T ⊕ U with S ⊂ G(X)Q, T ⊂ GH(ξ)Q and U ⊂ G(B,E; p)Q, whose
dimensions are uniquely determined.

Here, for S = ⊕n>1Sn, T = ⊕n>1Tn and U = ⊕n>1Un, elements of Sn, Tn and
Un are respectively represented by the rationaliztions of elements α, β and γ of
Gn(E) satisfying the conditions: there are maps {Fα, F

′
α}, Fβ and Fγ which make

respectively the homotopy commutative diagrams (i), (ii) and (iii),
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(i) X ∨ Sn
j∨idSn

//

(idX | F ′

α|Sn)

��

inc2

xxqqqqqqqqqq
E ∨ Sn

(idE |α)

��

inc1

xxrrrrrrrrrr

X × Sn

F ′

α
&&

j×idSn

// E × Sn

Fα
%%

X
j

// E,

(ii) E ∨ Sn
(idE |β)

&&MMMMMMMMMMM

inc1 //

(p|∗)

��

E × Sn

Fβ

��

B Ep
oo

and (iii) E ∨ Sn
(idE |γ)

&&MMMMMMMMMMM

inc1 //

(p|p◦γ)

��

E × Sn

Fγ

��

B E.p
oo

Then our inclusion

iξ : G(E)Q = S ⊕ T ⊕ U ⊂ G(X)Q ⊕GH(ξ)Q ⊕G(B,E; p)Q

is given by
iξ ((α(0), [β(0)], γ(0))) = (F ′

α|Sn(0), [β(0)], p ◦ γ(0)),

where [β(0)] = [β ′
(0)] if and only if φ := β(0) − β ′

(0) ∈ Imj♯Q, i.e., φ can be embedded
in the rationalized diagram of (i) with some Fφ and F ′

φ.
Note that iξ depends on the choice of a map F ′

α in (i) in general (see Remark 2).
Anyway we can define a rational homotopy invariant of fibration.

Definition. We say that the fibration ξ is Gottlieb type of (a, b, c; s, t, u) for a =
rankG(X), b = rankGH(ξ), c = rankG(B,E; p), s = dimS, t = dimT and
u = dimU .

We often say simply ‘G-type of (a, b, c; s, t, u)’. Then a ≥ s ≥ 0, b ≥ t ≥
0, c ≥ u ≥ 0 and rankG(E) = s + t + u. It may be useful for estimating
rankG(E). We see that iξ is ‘equal’ if and only if ξ is G-type of (a, b, c; a, b, c)
for some a, b, c. If a fibration is fibre-homotopically trivial, iξ is ‘equal’ with G-type
of (rankG(X), 0, rankG(B); rankG(X), 0, rankG(B)), especially G(E)Q = G(X)Q ⊕
G(B)Q. If a fibration satisfies G(E)Q = G(X)Q ⊕ G(B)Q, it is rationally weak-
homotopy trivial, that is, the rational connecting homomorphism ∂Q is zero. But iξ
may not be ‘equal’ as we can see in Example 2 (5) and (8). In §3, we give the proofs
of Proposition A and Theorem A, and note various examples of small homotopy
ranks, by the derivation argument of Sullivan model as in [11]. In §4, we comment
about an interaction with G-type and a Halperin’s conjecture on the rational co-
homological splittings, i.e., H∗(E; Q) ∼= H∗(X; Q)⊗H∗(B; Q) additively, of certain
fibrations X → E → B.
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2 Preliminary

We use the Sullivan minimal model M(Y ) of a simply connected space Y of finite
type. It is a free Q-commutative differential graded algebra (DGA) (ΛV, d) with
a Q-graded vector space V =

⊕
i>1 V

i where dimV i < ∞ and a decomposable
differential, i.e., d(V i) ⊂ (Λ+V · Λ+V )i+1 and d ◦ d = 0. Here ΛV = (the Q-
polynomial algebra over V even) ⊗ (the Q-exterior algebra over V odd) and Λ+V is
the ideal of ΛV generated by elements of positive degree. Denote the degree of a
homogeneous element x of a graded algebra as |x| and the Q-vector space of basis
{vi}i as Q{vi}i. Then xy = (−1)|x||y|yx and d(xy) = d(x)y + (−1)|x|xd(y). A map
f : X → Y has a minimal model which is a DGA-map f ∗ : M(Y ) → M(X).
Notice that M(Y ) determines the rational homotopy type of Y . Especially there is
an isomorphism Homi(V,Q) ∼= πi(X)Q. See [2] for a general introduction and the
standard notations.

The detailed discussion of the followings are in [10],[11]. Let A be a DGA A =
(A∗, dA) with A∗ = ⊕i≥0A

i, A0 = Q and the augmentation ǫ : A→ Q. Define DeriA
the vector space of derivations of A decreasing the degree by i > 0, where θ(xy) =
θ(x)y+(−1)i|x|xθ(y) for θ ∈ DeriA. We denote ⊕i>0DeriA by DerA. The boundary
operator δ : Der∗A → Der∗−1A is defined by δ(σ) = dA ◦ σ − (−1)|σ|σ ◦ dA. For a
DGA-map φ : A→ B, define a φ-derivation of degree n to be a linear map θ : A∗ →
B∗−n with θ(xy) = θ(x)φ(y) + (−1)n|x|φ(x)θ(y) and Der(A,B;φ) the vector space
of φ-derivations. The boundary operator δφ : Der∗(A,B;φ) → Der∗−1(A,B;φ) is
defined by δφ(σ) = dB ◦ σ − (−1)|σ|σ ◦ dA. Note Der∗(A,A; idA) = Der∗(A). For
φ : A = (ΛZ, dA) → B, the composition with the augmentation ǫ′ : B → Q induces
a chain map ǫ′∗ : Dern(A,B;φ) → Dern(A,Q; ǫ). Define

Gn(A,B;φ) := Im(H(ǫ′∗) : Hn(Der(A,B;φ)) → Homn(Z,Q)).

Especially

Gn(ΛZ, dA) := Im(Hn(ǫ∗) : Hn(Der(ΛZ, dA)) → Homn(Z,Q)),

that is, G∗(A,A; idA) = G∗(A). Note that z∗ ∈ Homn(Z,Q) (z∗ is the dual of the
basis element z of Zn) is in Gn(A,B;φ) if and only if z∗ extends to a derivation θ of
Dern(A,B;φ) with δφ(θ) = 0. For example, see [2, p.392-393]. Let ξ : X →

j
E →

p
B

be a fibration. Consider the rationalization of the Gottlieb sequence (∗) of ξ:

· · · → πn+1(B)Q →
∂Q

Gn(X)Q →
j♯Q

Gn(E,X; j)Q →
p♯Q

πn(B)Q → · · · . (∗∗)

Write M(B) = (ΛW, dB) and M(X) = (ΛV, d). Then the model (not minimal
in general) of E is given by (ΛW ⊗ ΛV,D) with D ◦ D = 0, D|ΛW = dB and
D = d. The DGA-maps J : (Λ(W ⊕ V ), D) → (ΛV,D) = (ΛV, d) (projection) and
P : (ΛW, dB) → (Λ(W ⊕ V ), D) (injection) are the Sullivan models for j and p,
respectively. They induce linearization maps Q(J) : W ⊕ V → V and Q(P ) : W →
W ⊕ V . Then we obtain the model version of (∗∗) as

· · · → Homn+1(W,Q) →
∂Q

Gn(ΛV ) →
Q(J)∗

Gn(Λ(W⊕V ),ΛV ; J) →
Q(P )∗

Homn(W,Q) → · · ·
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and GHn(ξ)Q
∼= GHn(Λ(W ⊕ V ),ΛV ; J) := KerQ(P )∗/ImQ(J)∗ [11]. Note that

there is a monomorphism GHn(ξ)Q → Homn(V,Q) ∼= πn(X)Q for n > 1.

Proposition B. If X and B have the rational homotopy types of homogeneous
spaces, then G(E)Q ⊂ G(X)Q ⊕G(B)Q for any fibration X → E → B.

Proof. We can put M(X) ∼= (Λ(x1, · · · , xk, v1, · · · , vl), d) with |xi| even for 1 ≤
i ≤ k, |vi| odd for 1 ≤ i ≤ l, dx∗ = 0 and dv∗ ∈ Λ(x1, · · · , xk) for some k and l
[2, Proposition 15.16]. Also M(B) ∼= (Λ(y1, · · · , ym, w1, · · · , wn), dB) with |yi| even
for 1 ≤ i ≤ m, |wi| odd for 1 ≤ i ≤ n, dBy∗ = 0 and dBw∗ ∈ Λ(y1, · · · , ym) for
some m and n. Since G(X)Q ⊃ Q{v∗1 , · · · , v

∗
l } and G(B)Q ⊃ Q{w∗

1, · · · , w
∗
n}, we

have Godd(E)Q ⊂ πodd(E)Q ⊂ G(X)Q ⊕ G(B)Q. On the other hand, we know that
G2n(Y )Q = 0 (n > 0) for any simply connected finite complex Y [2, Proposition
28.8].

Claim. A space X or a minimal model M(X) = (ΛV, d) with dimH∗(X; Q) < ∞
(dimH∗(ΛV, d) < ∞) and rankπ∗(X) < ∞ (dimV < ∞) is said to be elliptic.
If the fiber of a rationally weak-homotopy trivial fibration is elliptic, then s > 0
in its G-type since the dual of a top degree element in V is in G(E)Q. An ellip-
tic minimal model M(X) = (ΛV, d) with dV even = 0 and dV odd ⊂ ΛV even is said
to be pure. For example, homogeneous spaces are pure. If the fiber X of a fibra-
tion has a pure model M(X), then t = 0 in its G-type from T ⊂ πodd(X)Q = G(X)Q.

Notation. Denote by σ⊗f for σ ∈ Dern(ΛZ) and f ∈ ΛZ the derivation of degree
|σ ⊗ f | = n− |f | on (ΛZ, d) given by (σ ⊗ f)(z) := (−1)|z||f |σ(z) · f , which satisfies
for x, y ∈ ΛZ

(σ ⊗ f)(xy) = (σ ⊗ f)(x) · y + (−1)|x||σ⊗f |x · (σ ⊗ f)(y)

and (σ ⊗ f) ◦D = −σ ◦D ⊗ f . Especially, note that z∗ ⊗ f means the derivation
sending z to f and extending by linearity.

3 Gottlieb type and examples

First we give two examples (1) and (2), which motivate our estimate. Note that
these models are realized as certain fibrations of finite complexes X → E → B since
their cohomologies are finite. Especially the following spaces are elliptic.

Example 1. For any three natural numbers l,m and n, there is a fibration
ξ : X → E → B with rankG(X) = l, rankG(E) = m and rankG(B) = n. In
the following models, the degrees of all elements v∗, v

′
∗, w∗, w

′
∗, v, v

′, u are odd.

(1) Suppose M(B) ∼= (Λ(w1, .., wn), 0), i.e., B ≃(0) S
|w1| × S |w2| × · · · × S |wn| (B has

the rational homotopy type of the product of n-odd spheres). Note that it induces
rankG(B,E; p) = rankG(B) = n.
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(a): m > l + n − 1. If m − l − n is even, for an even integer s (≥ 2), put
M(X) = (Λ(v1, .., vs, v, v

′
1, .., v

′
l−1), d) with dv = v1 · · · vs and dv∗ = dv′∗ = 0. Put

Dv = v1 · · · vs + w1v1. Then

G(E)Q = Q{v∗2, · · · , v
∗
s , v

∗, v′
∗
1, · · · , v

′∗
l−1, w

∗
2, · · · , w

∗
n}.

Ifm−l−n is odd, for an odd integer s(> 1), putM(X) = (Λ(v1, .., vs+1, v, v
′
1, .., v

′
l−1),

d) with dv = v1 · · · vs+1 and dv∗ = dv′∗ = 0. Put Dv = dv+w1v1, Dv3 = w1v2. Then

G(E)Q = Q{v∗3, · · · , v
∗
s , v

∗
s+1, v

∗, v′
∗
1, · · · , v

′∗
l−1, w

∗
2, · · · , w

∗
n}.

Thus rankG(E) = l + n + s− 2.
(b): m = l + n− 1. Put M(X) = (Λ(v1, .., vl+2), d) with dv3 = v1v2 and dvi = 0

for i 6= 3. Put Dv2 = w1v1 and Dvi = dvi for i 6= 2. Then

G(E)Q = Q{v∗3 , · · · , v
∗
l+2, w

∗
2, · · · , w

∗
n},

that is, rankG(E) = l + n− 1.
(c): m < l + n − 1. If l + n − m is even, put M(X) = (Λ(v1, .., vl), 0). Put

Dv1 = 0, .., Dvl−1 = 0 and Dvl = w1 · · ·wiv1 · · · vk (i + k:even) for some i ≥ 1 and
k ≥ 0. If l + n − m is odd and l > 1, put Dvl = w1v1 + w2 · · ·wi (i:odd) and
Dvl−1 = w1v2 · · · vk (k:even) for M(X) = (Λ(v1, .., vl), 0). Then

G(E)Q = Q{v∗k+1, · · · , v
∗
l , w

∗
i+1, · · · , w

∗
n},

that is, rankG(E) = l + n− (i+ k).
If l + n − m is odd and l = 1, put M(X) = (Λ(v1, v2, v3, v4, v), d) with dv1 =

· · · = dv4 = 0 and dv = v1v2v3v4. Put Dv = v1v2v3v4 + w1 · · ·wkv1 (k:odd> 1).
Then

G(E)Q = Q{v∗, w∗
k+1, · · · , w

∗
n},

that is, rankG(E) = 1 + n− k.

(2) Suppose M(X) ∼= (Λ(v1, .., vl), 0), i.e, X ≃(0) S
|v1| × S |v2| × · · ·× S |vl|. Note that

it induces rankG(X) = l and rankGH(ξ) = 0.

(d): m ≥ l+ n− 1 and l+m+ n is even. Put M(B) = (Λ(w1, .., wn+k−1, u), dB)
with dBw∗ = 0 and dBu = w1 · · ·wk (k:even). Put Dv1 = w1w2 and Dvi = 0 for
i > 1. Then

G(E)Q = Q{v∗1, · · · , v
∗
l , w

∗
3, · · · , w

∗
n+k−1, u

∗},

that is, rankG(E) = l + n+ k − 2.
(e): m ≥ l + n− 1 and l +m+ n is odd. Put M(B) = (Λ(w1, .., wn+k−2, u), dB)

with dBw∗ = 0 and dBu = w1 · · ·wk−1 (k:odd). Put Dv1 = w1w2, Dv2 = w1v1 and
Dvi = 0 for i > 2. Then

G(E)Q = Q{v∗2, · · · , v
∗
l , w

∗
3, · · · , w

∗
n+k−2, u

∗},

that is, rankG(E) = l + n+ k − 4.
(f): m < l + n − 1. If l > 1, see the example in (c) . If l = 1, put

M(B) = (Λ(w1, w2, w3, w4, u, w
′
1, · · · , w

′
n−1), dB) with dBw∗ = dBw

′
∗ = 0 and dBu =
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w1w2w3w4. Put Dv = w1w
′
1 · · ·w

′
j (j:odd) or Dv = w1w2w

′
1 · · ·w

′
j (j:even> 0).

Then
G(E)Q = Q{v∗, w′∗

j+1, · · · , w
′∗
n−1},

that is, rankG(E) = n− j.

Remark 1. Even if rankG(E) = rankG(X)+rankG(B), notice thatG(E)Q may not
be equal to G(X)Q⊕G(B)Q. For example, put M(X) = (Λ(v1, v2, v3, v4, v, v

′, v′′), d)
with dv∗ = dv′ = dv′′ = 0, dv = v1v2v3v4 and M(B) = (Λ(w), 0). Put Dv =
v1v2v3v4 + wv4, Dv

′ = wv1 and Dv′′ = wv2. Then rankG(E) = 4 = 3 + 1 =
rankG(X)+rankG(B) but T = Q{v∗3} = GH(ξ)Q and ξ is G-type of (3, 1, 1; 3, 1, 0),
i.e., G(E)Q = Q{v∗, v′∗, v′′∗} ⊕ Q{v∗3} = G(X)Q ⊕GH(ξ)Q 6= G(X)Q ⊕G(B)Q.

Proof of Proposition A. Consider the following commutative diagram:

Gn(E)
p1

♯
//

inc.
��

Gn(B,E; p)

inc.
��

Gn(E,X; j)
p2

♯
// πn(B)

where pi♯ is defined by [p ◦ a] for a : Sn → E. From this, Ker p1
♯ ⊂ Ker p2

♯ . From the
definition of Gottlieb homology group, the sequence Gn(X) →

j♯
Ker p2

♯ → GHn(ξ) →

0 is exact. Thus

rank Kerp1
♯ ≤ rank Kerp2

♯ ≤ rank Gn(X) + rank GHn(ξ).

From rank Gn(E) ≤ rank Ker p1
♯ + rank Gn(B,E; p), we have done.

Proof of Theorem A. Denote by U the image of p♯Q : G(E)Q → G(B,E)Q and put
the kernel as K. Then G(E)Q = K ⊕ U . Denote by S the kernel of the map

K →֒ G(E)Q →֒ G(E,X)Q
proj.
→ G(E,X)Q/j♯Q(G(X)Q)

and by T the image. Then K = S ⊕ T with the natural inclusion S
i
→֒ j♯Q(G(X)Q)

and T ⊂ G(E,X)Q/j♯Q(G(X)Q). By choosing a lift ĩ of i to G(X)Q, S injects into
G(X)Q. Since p♯Q(T ) = 0 for p♯Q : G(E,X)Q/j♯Q(G(X)Q) → π∗(B)Q, we have

T ⊂ Kerp♯Q =
Ker( p♯Q : G(E,X)Q → π∗(B)Q )

j♯Q(G(X)Q)
= GH(ξ)Q.

Remark 2. An inclusion iξ|S : S → G(X)Q in §1 corresponds to a lift ĩ : S →
G(X)Q in the proof of Theorem A. For example, consider the product fibration
S3 × S3 → S7 × S3 → S4 of the Hopf fibration S3 → S7 → S4 (see Example
2 (1)) and the trivial fibration S3 → S3 → ∗. Put M(S3 × S3) = (Λ(v, v′), 0)
with |v| = |v′| = 3 and M(S4) = (Λ(w1, w2), dB) with |w1| = 4 and |w2| = 7.
The model is given by Dv = w1 and Dv′ = 0. Then S = Q{v′∗} and a lift
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ĩ : S →֒ G(X)Q = Q{v∗, v′∗} is given by ĩ(v′∗) = av∗ + v′∗ for a ∈ Q. Note that
ĩ is not unique and depends on a. S is identified as Q{av∗ + v′∗} in G(X)Q and
j♯Q(av∗ + v′∗) = v′∗ in Q{w∗

2, v
′∗} = G(E,X; j)Q.

If a rationallized Gottlieb sequence (∗∗) deduces the short exact sequence
0→Gn(X)Q→Gn(E,X; j)Q→πn(B)Q → 0 for all n > 1, the fibration ξ is said
as rationally Gottlieb-trivial (r.G-trivial). Especially, if a fibration is r.G-trivial,
GH(ξ)Q = 0. Recall that ξ is r.G-trivial if and only if p♯Q : Gn(E,X; j)Q→πn(B)Q

is surjective for n > 1 [11, Theorem 4.2 (2) ⇔ (3)].

Example 2. The following examples are fibrations or the models of certain fibra-

tions ξ : X
j
→ E

p
→ B. The degrees of elements of the models without mention are

odd.

(1) The Hopf fibration : S3 → S7 → S4, where M(S3) = (Λv, 0) with |v| = 3,
M(S4) = (Λ(w1, w2), dB) with |w1| = 4, |w2| = 7, dBw1 = 0, dBw2 = w2

1 and Dv =
w1. Note that there is a quasi-isomorphism ρ : (Λ(w2), 0) → (Λ(w1, w2, v), D) with
ρ(w2) = w2−w1v. It is G-type of (1, 0, 2; 0, 0, 1) from G(B,E; p)Q = Q{w∗

1, w
∗
2} and

G(E)Q = G(B)Q. Since δJ -cycle v∗ is exact by δJ (w
∗
1) = v∗, G(E,X; j)Q = Q{w∗

2}.
Note that GH(ξ)Q = 0 but ξ is not r.G-trivial since p♯Q : G(E,X; j)Q→π∗(B)Q =
Q{w∗

1, w
∗
2} in (∗∗) is not surjective.

(2) S5 → E → S3 × S3 with M(S5) = (Λv, 0), M(S3 × S3) = (Λ(w1, w2), 0)
and Dv = w1w2. It is G-type of (1, 0, 2; 1, 0, 0). Since G(E,X)Q = Q{v∗, w∗

1, w
∗
2} ⊃

Q{w∗
1, w

∗
2} = π∗(B)Q, ξ is r.G-trivial.

(3) S3 × S5 → E → S3 with M(S3 × S5) = (Λ(v1, v2), 0) |v1| = 3, |v2| = 5
and M(S3) = (Λw, 0) and Dv2 = wv1. It is G-type of (2, 0, 1; 1, 0, 0). Since
G(E,X)Q = Q{v∗1, v

∗
2} 6∋ w∗, ξ is not r.G-trivial.

(4) M(X) = (Λ(v1, v2, v3), d) and M(B) = (Λw, 0) with dv1 = dv2 = 0, dv3 =
Dv3 = v1v2, Dv1 = 0 and Dv2 = wv1. Then ξ is G-type of (1, 0, 1; 1, 0, 0). Since
G(E,X)Q 6∋ w∗, ξ is not r.G-trivial.

(5) Recall the non-trivial fibration CP 2 → E → S4 of [11, Ex.4.4]. The model
is given by M(CP 2) = (Λ(v1, v2), d) with |v1| = 2, |v2| = 5, dv1 = 0, dv2 = v3

1

and M(S4) = (Λ(w1, w2), dB) with |w1| = 4, |w2| = 7, dBw1 = 0, dBw2 = w2
1, and

Dv1 = 0, Dv2 = v3
1 + w1v1. Since δJ(v

∗
1 − 3w∗

1 ⊗ v1) = 0, GH(ξ)Q = Q{v∗1}. In
fact, δJ(v

∗
1 − 3w∗

1 ⊗ v1)(v2) = v∗1(dv2)− 3(w∗
1 ⊗ v1)(w1v1) = v∗1(v

3
1)− 3w∗

1(w1v1) · v1 =
3v2

1−3v2
1 = 0 and δJ (v

∗
1−3w∗

1⊗v1)(z) = 0 for z = w∗, v1. It is G-type of (1, 1, 1; 1, 0, 1)
and G(E)Q = G(X)Q ⊕G(B)Q.

(6)[11, Ex.4.5] M(X) = (Λ(v1, v2, · · · , vn+1, v), d) (n:odd) with dv∗ = 0, dv =
v1v2 · · · vn+1 and M(B) = (Λw, 0). Put Dv = v1v2 · · · vn+1 + wvn+1 and Dv∗ =
0. Then GH(ξ)Q = T = Q{v∗1, · · · , v

∗
n} if n > 1. In fact, δJ(v

∗
i + (−1)iw∗ ⊗

v1 · · · v̌i · · · vn) = 0 for i ≤ n. Thus ξ is G-type of (1, n, 1; 1, n, 0) if n > 1. If n = 1, ξ
is G-type of (1, 0, 1; 1, 0, 1). Note that it is rationally trivial. In fact, there is a DGA-
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isomorphism ρ : (Λ(w, v1, v2, v), D) → (Λw, 0)⊗ (Λ(v1, v2, v), d) given ρ(v1) = v1−w
and ρ(z) = z for the other elements z.

(7) M(X) = (Λ(v1, .., vn, v), d) with dv∗ = 0 and dv = v1 · · · vn (n:even). If
Dv = v1 · · · vn + w1w2w3vn for M(B) = (Λ(w1, w2, w3), 0), then ξ is G-type of
(1, 0, 3; 1, 0, 0) if n > 2. Since G(E,X)Q ∋ w∗

1, w
∗
2, w

∗
3, ξ is r.G-trivial. If n = 2, ξ is

G-type of (1, 0, 3; 1, 0, 3). Note that it is rationally trivial by ρ(v1) = v1 − w1w2w3

as in (6).

(8) M(X) = (Λ(v1, v2, v3, v4, v), d) with dv∗ = 0 and dv = v1v2v3v4. M(B) =
(Λ(w,w′, u), dB) with dBw = dBw

′ = 0 and dBu = ww′. Put Dv∗ = 0 and
Dv = v1v2v3v4 + wv4. Then ξ is G-type of (1, 3, 1; 1, 0, 1). Especially GH(ξ)Q =
Q{v∗1, v

∗
2, v

∗
3} and G(E)Q = G(X)Q ⊕G(B)Q.

(9) M(X) = (Λ(v1, v2, v3, v4, v5, v), d) with dv1 = dv2 = dv3 = dv4 = 0, dv5 =
v1v4, dv = v1v2v3v5 and M(B) = (Λ(w,w′, u), dB) with dBw = dBw

′ = 0, dBu =
ww′. Put Dv = v1v2v3v5 + wv4 and Dv∗ = dv∗. Then ξ is G-type of (1, 0, 1; 1, 0, 1)
and G(E)Q = G(X)Q ⊕G(B)Q. Since G(E,X)Q 6∋ w∗, ξ is not r.G-trivial.

(10) M(X) = (Λ(v1, v2, v3, v4, v, v
′, v′′), d) with dv1 = dv2 = dv3 = dv4 = dv′ =

dv′′ = 0, dv = v1v2v3v4 and M(B) = (Λ(w,w′, u), dB) with dBw = dBw
′ = 0, dBu =

ww′. Put Dv = v1v2v3v4 + wv4, Dv
′ = wv3, Dv

′′ = w′v3 and Dv∗ = 0. Then ξ is
G-type of (3, 2, 1; 3, 2, 1) with GH(ξ)Q = T = Q{v∗1, v

∗
2}.

(11) M(X) = (Λv, 0) and M(B) = (Λ(w1, w2, w3, w4, u), dB) with dBw∗ = 0
and dBu = w1w2w3w4. If Dv = w1w2, then ξ is G-type of (1, 0, 3; 1, 0, 3). Since
G(E,X)Q ∋ w∗

1, w
∗
2, w

∗
3, w

∗
4, u

∗, ξ is r.G-trivial. Note that G(B)Q = Q{u∗} but
G(B,E)Q = Q{w∗

3, w
∗
4, u

∗}. Thus G(E)Q 6= G(X)Q⊕G(B)Q but G(E)Q = G(X)Q⊕
G(B,E; p)Q.

(12) M(X) = (Λ(v, v′), 0) and M(B) = (Λ(w1, w2, w3, w4, u), dB) with dBw∗ = 0
and dBu = w1w2w3w4. Put Dv = w1w2 and Dv′ = w3w4 + w1v. Then ξ is G-type
of (2, 0, 4; 1, 0, 1) from G(B,E)Q = Q{w∗

2, w
∗
3, w

∗
4, u

∗}. Here w∗
1 6∈ G(B,E)Q from

the reason that the D-cocycle w1w2v is not exact. Since G(E,X)Q 6∋ w∗
1, ξ is not

r.G-trivial. Note that G(E)Q $ G(X)Q ⊕G(B)Q.

(13) There is a rationally non-trivial fibration η : S2 ∨ S2 → E ′ → S3, which is
rationally constructed as [5, (6.5)]. Then η is G-type of (0, 0, 1; 0, 0, 0) since the Got-
tlieb rank of the one point union of spheres is zero [13, Theorem 5.4] andGH(η)Q = 0
from degree argument. The pull back fibration ξ : S2 ∨ S2 → E → S3 ∨ S3 of η
by the map (idS3|∗) : S3 ∨ S3 → S3. Then ξ is G-type of (0, 0, 0; 0, 0, 0) and
G(E, S2 ∨ S2; j)Q = 0 from degree argument. Since rankπ∗(S

3 ∨ S3) = ∞, ξ is not
r.G-trivial.

Remark 3. In general (especially without finite condition), if a fibration X →
E → B has a section, then Gn(B,E; p) = Gn(B) for all n. In fact, we can
see that Gn(B,E; p) ⊂ Gn(B) as follows. Put s : B → E a section of ξ, i.e.,
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p ◦ s ≃ idB. For an element a ∈ G(B,E; p), there is a map F ′ : E × Sn → B
satisying F ′ ◦ inc1 ≃ (p|a). Put F := F ′ ◦ (s × idSn). Then we have F ◦ inc2 =
F ′ ◦ (s × idSn) ◦ inc2 = F ′ ◦ inc1 ◦ (s ∨ idSn) ≃ (p|a) ◦ (s ∨ idSn) ≃ (idB|a) in the
diagram:

B ∨ Sn
s∨idSn

//

(idB |a)

��

inc2

xxrrrrrrrrrr
E ∨ Sn

(p|a)

��

inc1

xxrrrrrrrrrr

B × Sn

F
%%

s×idSn

// E × Sn

F ′

%%LLLLLLLLLLL

B B,

that is, the left triangle homotopically commutes. Thus we have a ∈ Gn(B). For
example, since the free loop fibration of X ξX : ΩX → LX → X has the section
s: s(q) =the constant loop map to q for a point q of X, G(X,LX; p) = G(X).
Finally, the rationalized fibration ξ(0) : X(0) → E(0) → B(0) of ξ has a section
if and only if a model of it has the property : (D − d)V ⊂ ΛW ⊗ Λ+V, where
Λ+V is the ideal of ΛV generated by positive degree elements [2]. The rational-
ized fibrations of (3) ∼ (10) and (13) of Example 2 satisfy it. For them we see
G(B,E; p)Q = G(B(0), E(0); p(0)) = G(B(0)) = G(B)Q.

Remark 4. From a fixed fiber X, base B and G-type, we can not determine the
rational homotopy equivalent class of fibration X → E → B uniquely. We give
such two examples (i) and (ii), in which X is the product of spheres, E is finite
and B = K(Z, 2) = CP∞. Note that there is a free S1-action on X for each
fibration, which is rationally realized as a Borel fibration X → ES1 ×S1 X → BS1

[4, Proposition 4.2].
(i) A fibration S3 × S5 × S9 → E → K(Z, 2) is rationally given as

(Q[w], 0) → (Λ(w, x, y, z), D) → (Λ(x, y, z), 0),

where |w| = 2, |x| = 3, |y| = 5, |z| = 9. From degree argument, it is given by one
of (1) Dx = w2 and Dy = Dz = 0, (2) Dy = w3 and Dx = Dz = 0, (3) Dz = w5

and Dx = Dy = 0 or (4) Dz = wxy + w5 and Dx = Dy = 0. Then E has the
rational homotopy type of (1) S2×S5×S9, (2) S3×CP 2×S9, (3) S3×S5×CP 4 or
(4) a 16-dimensional c-symplectic space, i.e., E satisfies that [w8] 6= 0 ∈ H16(E; Q),
respectively. The G-types of (1), (2) and (3) are (3, 0, 1; 3, 0, 0) and the G-type of
(4) is (3, 0, 1; 1, 0, 0).

(ii) A fibration ξα : S2 × S3 → E → K(Z, 2) is rationally given as

(Q[w], 0) → (Λ(w, x, y, z), D) → (Λ(x, y, z), d),

where |w| = |x| = 2, |y| = |z| = 3, dy = x2, dz = 0, Dz = wx and Dy = x2 + αw2

for α ∈ Q − {0}. There are infinitely many rationally different classes of fibrations
{ξα} and they are G-type of (2, 0, 1; 2, 0, 0).
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4 Appendix

In this section, we put the G-types of fibrations ξ : X → E →
p
B as (a, b, c; s, t, u).

Lemma A. When B ≃(0) S
2n+1, ξ is rationally trivial if and only if u = 1.

Proof. The ‘only if ’ part is trivial from

u = rankG(B,E; p) = rankG(B) = rankG(S2n+1) = 1.

Show the ‘if’ part. Put (Λw, 0) → (Λw ⊗ ΛV,D) → (ΛV, d) be the model
of ξ. When u = 1, δE(w∗) = δE(σ) for some σ ∈ Der2n+1ΛV . Then σ ⊗ w ∈
Der0(Λw⊗ΛV,D) (see Notation in §2). Put the algebra isomorphism ψ : Λw⊗ΛV →
Λw ⊗ ΛV as ψ := id − σ ⊗ w. Then we can define a differential D′ on Λw ⊗ ΛV
by D′ := ψ−1 ◦ D ◦ ψ, which is said as change of KS-basis in [9, page 119]. In
fact, we can easily check D′(xy) = D′(x)y + (−1)|x|xD′(y) and D′ ◦ D′ = 0. From
D ◦ ψ = ψ ◦D′, we have an isomorphism of models

(Λw, 0)
inc. // (Λw ⊗ ΛV,D′)

proj.
//

ψ∼=
��

(ΛV, d)

(Λw, 0)
inc. // (Λw ⊗ ΛV,D)

proj.
// (ΛV, d).

Notice that (Λw ⊗ ΛV,D′) = (Λw, 0) ⊗ (ΛV, d). In fact,

D′ = (id+ σ ⊗ w) ◦D ◦ (id− σ ⊗ w) = D − (D ◦ σ + σ ◦D) ⊗ w

= D − δE(σ) ⊗ w = D − δE(w∗) ⊗ w = D − (w∗ ◦D) ⊗ w =
(∗)
d,

where d(w) := 0. For Dv = dv+w · τ(v) with v ∈ V and τ ∈ Der2nΛV , (∗) is given
by ((w∗◦D)⊗w)(v) = (−1)|v|(w∗◦D)(v)·w = (−1)|v|τ(v)·w = (−1)|v|+|τ(v)|w·τ(v) =
w · τ(v). Thus ξ is rationally trivial.

Suppose that X is an F0-space, i.e., H∗(X; Q) ∼= Q[x1, · · · , xl]/(f1, · · · , fl) with
a regular sequence (f1, · · · , fl) in Q[x1, · · · , xl], where |x∗| are even. Then M(X)
is given by (Λ(x1, · · · , xl, v1, · · · , vl), d) with dxi = 0, dvi = fi ∈ Λ(x1, · · · , xl) for
i = 1, · · · , l and rankG(X) = rankπodd(X) = l. Halperin conjectures that any fi-

bration X
j
→ E → B c-splits (is T.N.C.Z.), i.e., H∗(E; Q) ∼= H∗(X; Q) ⊗H∗(B; Q)

additively (j∗ : H∗(E; Q) → H∗(X; Q) is surjective) [2, p.516]. It is proved in many
cases, for example, when l ≤ 3 [8] and when X is a homogeneous space [12]. It
is equivalent to that any fibration X → E → S2n+1 (n > 0) is rationally trivial
[9, Theorem 2.2]. It is known that there are interactions with certain numerical
invariants as in [9, §4] and [14].

Corollary A. Let X be an F0-space. The followings are equivalent.
(1) Any fibration X→E → B c-splits.
(2) For any fibration X → E → S2n+1, u = 1.
(3) For any fibration X → E → S2n+1, rankG(E) = rankG(X) + 1.
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(4) Any fibration X → E → S2n+1 is G-type of (rankG(X), 0, 1; rankG(X), 0, 1).

Proof. “(1) ⇒ (2), (3), (4)” follows from [9, Theorem 2.2]. “(2) ⇒ (1)” follows from
Lemma A. “(3) ⇒ (2)” is given as follows. Since M(X) is pure, t = 0 (see Claim
in §2). Then we have u ≥ 1 from the inequations s + u = s + t + u = rankG(E) =
rankG(X) + 1 and s ≤ rankG(X). “(4) ⇒ (2)” is trivial.

Note that the condition: “ (5) Any fibration X → E → B is G-type of
(rankG(X), 0, rankG(B); rankG(X), 0, rankG(B))” is sufficient but not necessary for
the conditions in Corollary A. In fact, there is a c-split fibration S4 → E → S3 ×S5

with the model

(Λ(w1, w2), 0) → (Λ(w1, w2, x1, v1), D) → (Λ(x1, v1), d)

where |w1| = 3, |w2| = 5, |x1| = 4, |v1| = 7, dx1 = Dx1 = 0, dv1 = x2
1 and Dv1 =

x2
1 + w1w2. It is G-type of (1, 0, 2; 1, 0, 0).
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