An estimate in Gottlieb ranks of fibration

Toshihiro Yamaguchi
Dedicated to Professor Hiroo Shiga on his 60th birthday

Abstract

As an application of the Gottlieb sequence $[11]([7])$ of fibration, we give an upper bound of the rank of Gottlieb group $G(E)=\oplus_{i>0} G_{i}(E)$ of the total space E of a fibration $\xi: X \rightarrow E \rightarrow B$ and define the Gottlieb type ($a, b, c ; s, t, u$), which describes a rational homotopical condition of fibration with $\operatorname{rank} G(E)=s+t+u$. We also note various examples showing the different situations that can occur. Finally we comment about an interaction with a Halperin's conjecture on fibration.

1 Introduction

The nth Gottlieb group $G_{n}(X)$ of a space X is the subgroup of the nth homotopy group $\pi_{n}(X)$ of X consisting of homotopy classes of maps $a: S^{n} \rightarrow X$ such that the wedge $\left(a \mid i d_{X}\right): S^{n} \vee X \rightarrow X$ extends to a map $F_{a}: S^{n} \times X \rightarrow X$ [3]. The nth evaluation subgroup $G_{n}(Y, X ; f)$ of a map $f: X \rightarrow Y$ is the subgroup of $\pi_{n}(Y)$ represented by maps $a: S^{n} \rightarrow Y$ such that $(a \mid f): S^{n} \vee X \rightarrow Y$ extends to a map F_{a} : $S^{n} \times X \rightarrow Y$. Note $G_{n}(Y) \subset G_{n}(Y, X ; f)$ in general and $G_{n}(X)=G_{n}\left(X, X ; i d_{X}\right)$. Put $G(X)=\oplus_{i>0} G_{i}(X)$.

For a fibration $X \rightarrow E \rightarrow B$ of simply connected spaces, various inequations between their LS categories are known. For example, there is an upper bound of $\operatorname{cat}(E)$ by $\operatorname{cat}(X)$ and $\operatorname{cat}(B): \operatorname{cat}(E)+1 \leq(\operatorname{cat}(X)+1)(\operatorname{cat}(B)+1)[2, \operatorname{Prop} .30 .6]$. It is well known that there is an inequation $\operatorname{rank} \pi_{*}(E) \leq \operatorname{rank} \pi_{*}(X)+\operatorname{rank} \pi_{*}(B)$ induced by the exact homotopy sequence of fibration. If both X and B have the rational homotopy types of homogeneous spaces, it is restricted as $\operatorname{rank} G(E) \leq$

[^0]$\operatorname{rank} G(X)+\operatorname{rank} G(B)$ (see Proposition B). But, in general, we can't hope such a good inequation only between the ranks of Gottlieb groups of spaces X, E, B. In fact, $\operatorname{rank} G(X), \operatorname{rank} G(E)$ and $\operatorname{rank} G(B)$ can be arbitary natural numbers (see Example 1). So we must make a compromise.

In this paper, all spaces are simply connected with rational homology of finite type. Let $\xi: X \underset{j}{\rightarrow} E \underset{p}{\vec{p}} B$ be a Hurewicz fibration. Restricting the homomorphisms in the exact homotopy sequence of ξ yields a sequence

$$
\begin{equation*}
\cdots \rightarrow \pi_{n+1}(B) \underset{\partial}{\rightarrow} G_{n}(X) \underset{j_{\sharp}}{\rightarrow} G_{n}(E, X ; j) \underset{p_{\sharp}}{\vec{n}} \pi_{n}(B) \rightarrow \cdots, \tag{*}
\end{equation*}
$$

which is called as the Gottlieb sequence of ξ [11]. The nth Gottlieb homology group of $\xi, G H_{n}(\xi)$, is defined by the subquotient $\operatorname{Ker} p_{\sharp} / \operatorname{Im} j_{\sharp}$ in $(*)[11]$ (the n-th ω-homology group of j in [7]). We give an effective upper bound of $\operatorname{rank} G_{n}(E)$ by adding the supplementary " $\operatorname{rank} G H_{n}(\xi)$ " and by expanding $G_{n}(B)$ somewhat.

Proposition A. Let $\xi: X \rightarrow E \xrightarrow{p} B$ be a fibration. Then

$$
\operatorname{rank} G_{n}(E) \leq \operatorname{rank} G_{n}(X)+\operatorname{rank} G H_{n}(\xi)+\operatorname{rank} G_{n}(B, E ; p)
$$

for all $n>1$.

If ξ is a fibre-homotopically trivial fibration, the left and right hand sides are equal. The gap between them may represent a distance from the triviality. Note that $G H(\xi):=\oplus_{n>0} G H_{n}(\xi)=0$ and $G(B, E ; p)=G(B)$ in this case. Although notice that there are rationally non-trivial examples as Example 2 (9),(10),(11) and (13). For the rational number field \mathbb{Q}, denote $G \otimes \mathbb{Q}$ as $G_{\mathbb{Q}}$ for an abelian group G and $f \otimes \mathbb{Q}$ as $f_{\mathbb{Q}}$ for a group homomorphism f. There is a monomorphism of \mathbb{Q}-spaces $G(Y)_{\mathbb{Q}} \rightarrow G\left(Y_{(0)}\right)$ for the rationalization $Y_{(0)}$ of Y [2, p.378]. In the following without mention, suppose that the spaces $Y=X, E$ of ξ are finite complexes. Then $\operatorname{dim} G\left(Y_{(0)}\right) \leq \operatorname{cat} Y<\infty$ [2, Prop.28.8], $G(Y)_{\mathbb{Q}} \cong G\left(Y_{(0)}\right)$ [9] and $G(Z, Y ; f)_{\mathbb{Q}} \cong G\left(Z_{(0)}, Y_{(0)} ; f_{(0)}\right)$ for a map $f: Y \rightarrow Z[13]$. Therefore we see $G H(\xi)_{\mathbb{Q}} \cong G H\left(\xi_{(0)}\right)$ and it is possible to consider the sequence $(*)$ by the derivation argument of Sullivan model [1],[10],[11] (see Section 2). Proposition A is realized as an inclusion of positively graded \mathbb{Q}-spaces.

Theorem A. Let $\xi: X \xrightarrow{j} E \xrightarrow{p} B$ be a fibration. Then there is a decomposition $G(E)_{\mathbb{Q}}=S \oplus T \oplus U$ with $S \subset G(X)_{\mathbb{Q}}, T \subset G H(\xi)_{\mathbb{Q}}$ and $U \subset G(B, E ; p)_{\mathbb{Q}}$, whose dimensions are uniquely determined.

Here, for $S=\oplus_{n>1} S_{n}, T=\oplus_{n>1} T_{n}$ and $U=\oplus_{n>1} U_{n}$, elements of S_{n}, T_{n} and U_{n} are respectively represented by the rationaliztions of elements α, β and γ of $G_{n}(E)$ satisfying the conditions: there are maps $\left\{F_{\alpha}, F_{\alpha}^{\prime}\right\}, F_{\beta}$ and F_{γ} which make respectively the homotopy commutative diagrams (i), (ii) and (iii),
(i)

Then our inclusion

$$
i_{\xi}: G(E)_{\mathbb{Q}}=S \oplus T \oplus U \subset G(X)_{\mathbb{Q}} \oplus G H(\xi)_{\mathbb{Q}} \oplus G(B, E ; p)_{\mathbb{Q}}
$$

is given by

$$
i_{\xi}\left(\left(\alpha_{(0)},\left[\beta_{(0)}\right], \gamma_{(0)}\right)\right)=\left(F_{\alpha}^{\prime} \mid S^{n}(0),\left[\beta_{(0)}\right], p \circ \gamma_{(0)}\right),
$$

where $\left[\beta_{(0)}\right]=\left[\beta_{(0)}^{\prime}\right]$ if and only if $\phi:=\beta_{(0)}-\beta_{(0)}^{\prime} \in \operatorname{Im} j_{\not{ }_{\mathbb{Q}}}$, i.e., ϕ can be embedded in the rationalized diagram of (i) with some F_{ϕ} and F_{ϕ}^{\prime}.

Note that i_{ξ} depends on the choice of a map F_{α}^{\prime} in (i) in general (see Remark 2). Anyway we can define a rational homotopy invariant of fibration.

Definition. We say that the fibration ξ is Gottlieb type of $(a, b, c ; s, t, u)$ for $a=$ $\operatorname{rank} G(X), b=\operatorname{rank} G H(\xi), c=\operatorname{rank} G(B, E ; p), s=\operatorname{dim} S, t=\operatorname{dim} T$ and $u=\operatorname{dim} U$.

We often say simply 'G-type of $(a, b, c ; s, t, u)$ '. Then $a \geq s \geq 0, b \geq t \geq$ $0, c \geq u \geq 0$ and $\operatorname{rank} G(E)=s+t+u$. It may be useful for estimating $\operatorname{rank} G(E)$. We see that i_{ξ} is 'equal' if and only if ξ is G-type of $(a, b, c ; a, b, c)$ for some a, b, c. If a fibration is fibre-homotopically trivial, i_{ξ} is 'equal' with G-type of $(\operatorname{rank} G(X), 0, \operatorname{rank} G(B) ; \operatorname{rank} G(X), 0, \operatorname{rank} G(B))$, especially $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}} \oplus$ $G(B)_{\mathbb{Q}}$. If a fibration satisfies $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$, it is rationally weakhomotopy trivial, that is, the rational connecting homomorphism $\partial_{\mathbb{Q}}$ is zero. But i_{ξ} may not be 'equal' as we can see in Example 2 (5) and (8). In $\S 3$, we give the proofs of Proposition A and Theorem A, and note various examples of small homotopy ranks, by the derivation argument of Sullivan model as in [11]. In §4, we comment about an interaction with G-type and a Halperin's conjecture on the rational cohomological splittings, i.e., $H^{*}(E ; \mathbb{Q}) \cong H^{*}(X ; \mathbb{Q}) \otimes H^{*}(B ; \mathbb{Q})$ additively, of certain fibrations $X \rightarrow E \rightarrow B$.

2 Preliminary

We use the Sullivan minimal model $M(Y)$ of a simply connected space Y of finite type. It is a free \mathbb{Q}-commutative differential graded algebra (DGA) $(\Lambda V, d)$ with a \mathbb{Q}-graded vector space $V=\bigoplus_{i>1} V^{i}$ where $\operatorname{dim} V^{i}<\infty$ and a decomposable differential, i.e., $d\left(V^{i}\right) \subset\left(\Lambda^{+} V \cdot \Lambda^{+} V\right)^{i+1}$ and $d \circ d=0$. Here $\Lambda V=$ (the \mathbb{Q} polynomial algebra over $\left.V^{\text {even }}\right) \otimes\left(\right.$ the \mathbb{Q}-exterior algebra over $V^{\text {odd }}$) and $\Lambda^{+} V$ is the ideal of ΛV generated by elements of positive degree. Denote the degree of a homogeneous element x of a graded algebra as $|x|$ and the \mathbb{Q}-vector space of basis $\left\{v_{i}\right\}_{i}$ as $\mathbb{Q}\left\{v_{i}\right\}_{i}$. Then $x y=(-1)^{|x||y|} y x$ and $d(x y)=d(x) y+(-1)^{|x|} x d(y)$. A map $f: X \rightarrow Y$ has a minimal model which is a DGA-map $f^{*}: M(Y) \rightarrow M(X)$. Notice that $M(Y)$ determines the rational homotopy type of Y. Especially there is an isomorphism $\operatorname{Hom}_{i}(V, \mathbb{Q}) \cong \pi_{i}(X)_{\mathbb{Q}}$. See [2] for a general introduction and the standard notations.

The detailed discussion of the followings are in [10],[11]. Let A be a DGA $A=$ $\left(A^{*}, d_{A}\right)$ with $A^{*}=\oplus_{i \geq 0} A^{i}, A^{0}=\mathbb{Q}$ and the augmentation $\epsilon: A \rightarrow \mathbb{Q}$. Define $\operatorname{Der}_{i} A$ the vector space of derivations of A decreasing the degree by $i>0$, where $\theta(x y)=$ $\theta(x) y+(-1)^{i|x|} x \theta(y)$ for $\theta \in \operatorname{Der}_{i} A$. We denote $\oplus_{i>0} \operatorname{Der}_{i} A$ by $\operatorname{Der} A$. The boundary operator $\delta: \operatorname{Der}_{*} A \rightarrow \operatorname{Der}_{*-1} A$ is defined by $\delta(\sigma)=d_{A} \circ \sigma-(-1)^{|\sigma|} \sigma \circ d_{A}$. For a DGA-map $\phi: A \rightarrow B$, define a ϕ-derivation of degree n to be a linear map $\theta: A^{*} \rightarrow$ B^{*-n} with $\theta(x y)=\theta(x) \phi(y)+(-1)^{n|x|} \phi(x) \theta(y)$ and $\operatorname{Der}(A, B ; \phi)$ the vector space of ϕ-derivations. The boundary operator $\delta_{\phi}: \operatorname{Der}_{*}(A, B ; \phi) \rightarrow \operatorname{Der}_{*-1}(A, B ; \phi)$ is defined by $\delta_{\phi}(\sigma)=d_{B} \circ \sigma-(-1)^{|\sigma|} \sigma \circ d_{A}$. Note $\operatorname{Der}_{*}\left(A, A ; i d_{A}\right)=\operatorname{Der}_{*}(A)$. For $\phi: A=\left(\Lambda Z, d_{A}\right) \rightarrow B$, the composition with the augmentation $\epsilon^{\prime}: B \rightarrow \mathbb{Q}$ induces a chain map $\epsilon_{*}^{\prime}: \operatorname{Der}_{n}(A, B ; \phi) \rightarrow \operatorname{Der}_{n}(A, \mathbb{Q} ; \epsilon)$. Define

$$
G_{n}(A, B ; \phi):=\operatorname{Im}\left(H\left(\epsilon_{*}^{\prime}\right): H_{n}(\operatorname{Der}(A, B ; \phi)) \rightarrow \operatorname{Hom}_{n}(Z, \mathbb{Q})\right) .
$$

Especially

$$
G_{n}\left(\Lambda Z, d_{A}\right):=\operatorname{Im}\left(H_{n}\left(\epsilon_{*}\right): H_{n}\left(\operatorname{Der}\left(\Lambda Z, d_{A}\right)\right) \rightarrow \operatorname{Hom}_{n}(Z, \mathbb{Q})\right),
$$

that is, $G_{*}\left(A, A ; i d_{A}\right)=G_{*}(A)$. Note that $z^{*} \in \operatorname{Hom}_{n}(Z, \mathbb{Q})\left(z^{*}\right.$ is the dual of the basis element z of $\left.Z^{n}\right)$ is in $G_{n}(A, B ; \phi)$ if and only if z^{*} extends to a derivation θ of $\operatorname{Der}_{n}(A, B ; \phi)$ with $\delta_{\phi}(\theta)=0$. For example, see [2, p.392-393]. Let $\xi: X \underset{j}{\rightarrow} E \underset{p}{\rightarrow} B$ be a fibration. Consider the rationalization of the Gottlieb sequence $(*)$ of ξ :

$$
\cdots \rightarrow \pi_{n+1}(B)_{\mathbb{Q}} \overrightarrow{\partial_{\mathbb{Q}}} G_{n}(X)_{\mathbb{Q}} \rightarrow{ }_{j_{\mathbb{Q}_{\mathbb{Q}}}} G_{n}(E, X ; j)_{\mathbb{Q}}^{\overrightarrow{p_{\mathbb{Q}}}} \vec{\rightarrow} \pi_{n}(B)_{\mathbb{Q}} \rightarrow \cdots . \quad(* *)
$$

Write $M(B)=\left(\Lambda W, d_{B}\right)$ and $M(X)=(\Lambda V, d)$. Then the model (not minimal in general) of E is given by $(\Lambda W \otimes \Lambda V, D)$ with $D \circ D=0,\left.D\right|_{\Lambda W}=d_{B}$ and $\bar{D}=d$. The DGA-maps $J:(\Lambda(W \oplus V), D) \rightarrow(\Lambda V, \bar{D})=(\Lambda V, d)$ (projection) and $P:\left(\Lambda W, d_{B}\right) \rightarrow(\Lambda(W \oplus V), D)$ (injection) are the Sullivan models for j and p, respectively. They induce linearization maps $Q(J): W \oplus V \rightarrow V$ and $Q(P): W \rightarrow$ $W \oplus V$. Then we obtain the model version of $(* *)$ as

$$
\cdots \rightarrow \operatorname{Hom}_{n+1}(W, \mathbb{Q}) \underset{\partial_{\mathbb{Q}}}{\rightarrow} G_{n}(\Lambda V) \underset{Q(J)^{*}}{\rightarrow} G_{n}(\Lambda(W \oplus V), \Lambda V ; J) \underset{Q(P)^{*}}{\vec{*}} \operatorname{Hom}_{n}(W, \mathbb{Q}) \rightarrow \cdots
$$

and $G H_{n}(\xi)_{\mathbb{Q}} \cong G H_{n}(\Lambda(W \oplus V), \Lambda V ; J):=\operatorname{Ker} Q(P)^{*} / \operatorname{Im} Q(J)^{*}[11]$. Note that there is a monomorphism $G H_{n}(\xi)_{\mathbb{Q}} \rightarrow \operatorname{Hom}_{n}(V, \mathbb{Q}) \cong \pi_{n}(X)_{\mathbb{Q}}$ for $n>1$.

Proposition B. If X and B have the rational homotopy types of homogeneous spaces, then $G(E)_{\mathbb{Q}} \subset G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$ for any fibration $X \rightarrow E \rightarrow B$.

Proof. We can put $M(X) \cong\left(\Lambda\left(x_{1}, \cdots, x_{k}, v_{1}, \cdots, v_{l}\right), d\right)$ with $\left|x_{i}\right|$ even for $1 \leq$ $i \leq k,\left|v_{i}\right|$ odd for $1 \leq i \leq l, d x_{*}=0$ and $d v_{*} \in \Lambda\left(x_{1}, \cdots, x_{k}\right)$ for some k and l [2, Proposition 15.16]. Also $M(B) \cong\left(\Lambda\left(y_{1}, \cdots, y_{m}, w_{1}, \cdots, w_{n}\right), d_{B}\right)$ with $\left|y_{i}\right|$ even for $1 \leq i \leq m,\left|w_{i}\right|$ odd for $1 \leq i \leq n, d_{B} y_{*}=0$ and $d_{B} w_{*} \in \Lambda\left(y_{1}, \cdots, y_{m}\right)$ for some m and n. Since $G(X)_{\mathbb{Q}} \supset \mathbb{Q}\left\{v_{1}^{*}, \cdots, v_{l}^{*}\right\}$ and $G(B)_{\mathbb{Q}} \supset \mathbb{Q}\left\{w_{1}^{*}, \cdots, w_{n}^{*}\right\}$, we have $G_{\text {odd }}(E)_{\mathbb{Q}} \subset \pi_{\text {odd }}(E)_{\mathbb{Q}} \subset G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$. On the other hand, we know that $G_{2 n}(Y)_{\mathbb{Q}}=0(n>0)$ for any simply connected finite complex Y [2, Proposition 28.8].

Claim. A space X or a minimal model $M(X)=(\Lambda V, d)$ with $\operatorname{dim} H^{*}(X ; \mathbb{Q})<\infty$ $\left(\operatorname{dim} H^{*}(\Lambda V, d)<\infty\right)$ and $\operatorname{rank} \pi_{*}(X)<\infty(\operatorname{dim} V<\infty)$ is said to be elliptic. If the fiber of a rationally weak-homotopy trivial fibration is elliptic, then $s>0$ in its G-type since the dual of a top degree element in V is in $G(E)_{\mathbb{Q}}$. An elliptic minimal model $M(X)=(\Lambda V, d)$ with $d V^{\text {even }}=0$ and $d V^{\text {odd }} \subset \Lambda V^{\text {even }}$ is said to be pure. For example, homogeneous spaces are pure. If the fiber X of a fibration has a pure model $M(X)$, then $t=0$ in its G-type from $T \subset \pi_{o d d}(X)_{\mathbb{Q}}=G(X)_{\mathbb{Q}}$.

Notation. Denote by $\sigma \otimes f$ for $\sigma \in \operatorname{Der}_{n}(\Lambda Z)$ and $f \in \Lambda Z$ the derivation of degree $|\sigma \otimes f|=n-|f|$ on $(\Lambda Z, d)$ given by $(\sigma \otimes f)(z):=(-1)^{|z||f|} \sigma(z) \cdot f$, which satisfies for $x, y \in \Lambda Z$

$$
(\sigma \otimes f)(x y)=(\sigma \otimes f)(x) \cdot y+(-1)^{|x||\sigma \otimes f|} x \cdot(\sigma \otimes f)(y)
$$

and $(\sigma \otimes f) \circ D=-\sigma \circ D \otimes f$. Especially, note that $z^{*} \otimes f$ means the derivation sending z to f and extending by linearity.

3 Gottlieb type and examples

First we give two examples (1) and (2), which motivate our estimate. Note that these models are realized as certain fibrations of finite complexes $X \rightarrow E \rightarrow B$ since their cohomologies are finite. Especially the following spaces are elliptic.

Example 1. For any three natural numbers l, m and n, there is a fibration $\xi: X \rightarrow E \rightarrow B$ with $\operatorname{rank} G(X)=l, \operatorname{rank} G(E)=m$ and $\operatorname{rank} G(B)=n$. In the following models, the degrees of all elements $v_{*}, v_{*}^{\prime}, w_{*}, w_{*}^{\prime}, v, v^{\prime}, u$ are odd.
(1) Suppose $M(B) \cong\left(\Lambda\left(w_{1}, . ., w_{n}\right), 0\right)$, i.e., $B \simeq_{(0)} S^{\left|w_{1}\right|} \times S^{\left|w_{2}\right|} \times \cdots \times S^{\left|w_{n}\right|}(B$ has the rational homotopy type of the product of n-odd spheres). Note that it induces $\operatorname{rank} G(B, E ; p)=\operatorname{rank} G(B)=n$.
(a): $m>l+n-1$. If $m-l-n$ is even, for an even integer $s(\geq 2)$, put $M(X)=\left(\Lambda\left(v_{1}, . ., v_{s}, v, v_{1}^{\prime}, . ., v_{l-1}^{\prime}\right), d\right)$ with $d v=v_{1} \cdots v_{s}$ and $d v_{*}=d v_{*}^{\prime}=0$. Put $D v=v_{1} \cdots v_{s}+w_{1} v_{1}$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{2}^{*}, \cdots, v_{s}^{*}, v^{*}, v_{1}^{\prime *}, \cdots, v_{l-1}^{\prime *}, w_{2}^{*}, \cdots, w_{n}^{*}\right\} .
$$

If $m-l-n$ is odd, for an odd integer $s(>1)$, put $M(X)=\left(\Lambda\left(v_{1}, . ., v_{s+1}, v, v_{1}^{\prime}, . ., v_{l-1}^{\prime}\right)\right.$, $d)$ with $d v=v_{1} \cdots v_{s+1}$ and $d v_{*}=d v_{*}^{\prime}=0$. Put $D v=d v+w_{1} v_{1}, D v_{3}=w_{1} v_{2}$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{3}^{*}, \cdots, v_{s}^{*}, v_{s+1}^{*}, v^{*}, v_{1}^{\prime *}, \cdots, v_{l-1}^{\prime *}, w_{2}^{*}, \cdots, w_{n}^{*}\right\}
$$

Thus $\operatorname{rank} G(E)=l+n+s-2$.
(b): $m=l+n-1$. Put $M(X)=\left(\Lambda\left(v_{1}, . ., v_{l+2}\right), d\right)$ with $d v_{3}=v_{1} v_{2}$ and $d v_{i}=0$ for $i \neq 3$. Put $D v_{2}=w_{1} v_{1}$ and $D v_{i}=d v_{i}$ for $i \neq 2$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{3}^{*}, \cdots, v_{l+2}^{*}, w_{2}^{*}, \cdots, w_{n}^{*}\right\},
$$

that is, $\operatorname{rank} G(E)=l+n-1$.
(c): $m<l+n-1$. If $l+n-m$ is even, put $M(X)=\left(\Lambda\left(v_{1}, . ., v_{l}\right), 0\right)$. Put $D v_{1}=0, . ., D v_{l-1}=0$ and $D v_{l}=w_{1} \cdots w_{i} v_{1} \cdots v_{k}(i+k$:even) for some $i \geq 1$ and $k \geq 0$. If $l+n-m$ is odd and $l>1$, put $D v_{l}=w_{1} v_{1}+w_{2} \cdots w_{i}$ (i :odd) and $D v_{l-1}=w_{1} v_{2} \cdots v_{k}(k:$ even $)$ for $M(X)=\left(\Lambda\left(v_{1}, . ., v_{l}\right), 0\right)$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{k+1}^{*}, \cdots, v_{l}^{*}, w_{i+1}^{*}, \cdots, w_{n}^{*}\right\},
$$

that is, $\operatorname{rank} G(E)=l+n-(i+k)$.
If $l+n-m$ is odd and $l=1$, put $M(X)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}, v_{4}, v\right), d\right)$ with $d v_{1}=$ $\cdots=d v_{4}=0$ and $d v=v_{1} v_{2} v_{3} v_{4}$. Put $D v=v_{1} v_{2} v_{3} v_{4}+w_{1} \cdots w_{k} v_{1}(k:$ odd $>1)$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v^{*}, w_{k+1}^{*}, \cdots, w_{n}^{*}\right\},
$$

that is, $\operatorname{rank} G(E)=1+n-k$.
(2) Suppose $M(X) \cong\left(\Lambda\left(v_{1}, . ., v_{l}\right), 0\right)$, i.e, $X \simeq{ }_{(0)} S^{\left|v_{1}\right|} \times S^{\left|v_{2}\right|} \times \cdots \times S^{\left|v_{l}\right|}$. Note that it induces $\operatorname{rank} G(X)=l$ and $\operatorname{rank} G H(\xi)=0$.
(d): $m \geq l+n-1$ and $l+m+n$ is even. Put $M(B)=\left(\Lambda\left(w_{1}, . ., w_{n+k-1}, u\right), d_{B}\right)$ with $d_{B} w_{*}=0$ and $d_{B} u=w_{1} \cdots w_{k}$ (k:even). Put $D v_{1}=w_{1} w_{2}$ and $D v_{i}=0$ for $i>1$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{1}^{*}, \cdots, v_{l}^{*}, w_{3}^{*}, \cdots, w_{n+k-1}^{*}, u^{*}\right\},
$$

that is, $\operatorname{rank} G(E)=l+n+k-2$.
(e): $m \geq l+n-1$ and $l+m+n$ is odd. Put $M(B)=\left(\Lambda\left(w_{1}, . ., w_{n+k-2}, u\right), d_{B}\right)$ with $d_{B} w_{*}=0$ and $d_{B} u=w_{1} \cdots w_{k-1}$ (k :odd). Put $D v_{1}=w_{1} w_{2}, D v_{2}=w_{1} v_{1}$ and $D v_{i}=0$ for $i>2$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{2}^{*}, \cdots, v_{l}^{*}, w_{3}^{*}, \cdots, w_{n+k-2}^{*}, u^{*}\right\}
$$

that is, $\operatorname{rank} G(E)=l+n+k-4$.
(f): $m<l+n-1$. If $l>1$, see the example in (c). If $l=1$, put $M(B)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}, w_{4}, u, w_{1}^{\prime}, \cdots, w_{n-1}^{\prime}\right), d_{B}\right)$ with $d_{B} w_{*}=d_{B} w_{*}^{\prime}=0$ and $d_{B} u=$
$w_{1} w_{2} w_{3} w_{4}$. Put $D v=w_{1} w_{1}^{\prime} \cdots w_{j}^{\prime}(j$:odd $)$ or $D v=w_{1} w_{2} w_{1}^{\prime} \cdots w_{j}^{\prime}(j$:even $>0)$. Then

$$
G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v^{*}, w_{j+1}^{\prime *}, \cdots, w_{n-1}^{\prime *}\right\},
$$

that is, $\operatorname{rank} G(E)=n-j$.
Remark 1. Even if $\operatorname{rank} G(E)=\operatorname{rank} G(X)+\operatorname{rank} G(B)$, notice that $G(E)_{\mathbb{Q}}$ may not be equal to $G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$. For example, put $M(X)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}, v_{4}, v, v^{\prime}, v^{\prime \prime}\right), d\right)$ with $d v_{*}=d v^{\prime}=d v^{\prime \prime}=0, d v=v_{1} v_{2} v_{3} v_{4}$ and $M(B)=(\Lambda(w), 0)$. Put $D v=$ $v_{1} v_{2} v_{3} v_{4}+w v_{4}, D v^{\prime}=w v_{1}$ and $D v^{\prime \prime}=w v_{2}$. Then $\operatorname{rank} G(E)=4=3+1=$ $\operatorname{rank} G(X)+\operatorname{rank} G(B)$ but $T=\mathbb{Q}\left\{v_{3}^{*}\right\}=G H(\xi)_{\mathbb{Q}}$ and ξ is G-type of $(3,1,1 ; 3,1,0)$, i.e., $G(E)_{\mathbb{Q}}=\mathbb{Q}\left\{v^{*}, v^{\prime *}, v^{\prime \prime *}\right\} \oplus \mathbb{Q}\left\{v_{3}^{*}\right\}=G(X)_{\mathbb{Q}} \oplus G H(\xi)_{\mathbb{Q}} \neq G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.

Proof of Proposition A. Consider the following commutative diagram:

where p_{\sharp}^{i} is defined by $[p \circ a]$ for $a: S^{n} \rightarrow E$. From this, Ker $p_{\sharp}^{1} \subset \operatorname{Ker} p_{\sharp}^{2}$. From the definition of Gottlieb homology group, the sequence $G_{n}(X) \xrightarrow[j_{\sharp}]{\rightarrow} \operatorname{Ker} p_{\sharp}^{2} \rightarrow G H_{n}(\xi) \rightarrow$ 0 is exact. Thus

$$
\operatorname{rank} \operatorname{Ker} p_{\sharp}^{1} \leq \operatorname{rank} \operatorname{Ker} p_{\sharp}^{2} \leq \operatorname{rank} G_{n}(X)+\operatorname{rank} G H_{n}(\xi)
$$

From rank $G_{n}(E) \leq \operatorname{rank} \operatorname{Ker} p_{\sharp}^{1}+\operatorname{rank} G_{n}(B, E ; p)$, we have done.
Proof of Theorem A. Denote by U the image of $p_{\notin \mathbb{Q}}: G(E)_{\mathbb{Q}} \rightarrow G(B, E)_{\mathbb{Q}}$ and put the kernel as K. Then $G(E)_{\mathbb{Q}}=K \oplus U$. Denote by S the kernel of the map

$$
K \hookrightarrow G(E)_{\mathbb{Q}} \hookrightarrow G(E, X)_{\mathbb{Q}} \xrightarrow{\text { proj. }} G(E, X)_{\mathbb{Q}} / j_{\notin \mathbb{Q}}\left(G(X)_{\mathbb{Q}}\right)
$$

and by T the image. Then $K=S \oplus T$ with the natural inclusion $S \stackrel{i}{\hookrightarrow} j_{\sharp \mathbb{Q}}\left(G(X)_{\mathbb{Q}}\right)$ and $T \subset G(E, X)_{\mathbb{Q}} / j_{\notin \mathbb{Q}}\left(G(X)_{\mathbb{Q}}\right)$. By choosing a lift \tilde{i} of i to $G(X)_{\mathbb{Q}}, S$ injects into $G(X)_{\mathbb{Q}}$. Since $\bar{p}_{\notin \mathbb{Q}}(T)=0$ for $\bar{p}_{\mathbb{Q} \mathbb{Q}}: G(E, X)_{\mathbb{Q}} / j_{\notin \mathbb{Q}}\left(G(X)_{\mathbb{Q}}\right) \rightarrow \pi_{*}(B)_{\mathbb{Q}}$, we have

$$
T \subset \operatorname{Ker}_{\bar{p}_{\mathbb{Q}}}=\frac{\operatorname{Ker}\left(p_{\notin \mathbb{Q}}: G(E, X)_{\mathbb{Q}} \rightarrow \pi_{*}(B)_{\mathbb{Q}}\right)}{j_{\sharp \mathbb{Q}}\left(G(X)_{\mathbb{Q}}\right)}=G H(\xi)_{\mathbb{Q}} .
$$

Remark 2. An inclusion $\left.i_{\xi}\right|_{S}: S \rightarrow G(X)_{\mathbb{Q}}$ in $\S 1$ corresponds to a lift $\tilde{i}: S \rightarrow$ $G(X)_{\mathbb{Q}}$ in the proof of Theorem A. For example, consider the product fibration $S^{3} \times S^{3} \rightarrow S^{7} \times S^{3} \rightarrow S^{4}$ of the Hopf fibration $S^{3} \rightarrow S^{7} \rightarrow S^{4}$ (see Example 2 (1)) and the trivial fibration $S^{3} \rightarrow S^{3} \rightarrow *$. Put $M\left(S^{3} \times S^{3}\right)=\left(\Lambda\left(v, v^{\prime}\right), 0\right)$ with $|v|=\left|v^{\prime}\right|=3$ and $M\left(S^{4}\right)=\left(\Lambda\left(w_{1}, w_{2}\right), d_{B}\right)$ with $\left|w_{1}\right|=4$ and $\left|w_{2}\right|=7$. The model is given by $D v=w_{1}$ and $D v^{\prime}=0$. Then $S=\mathbb{Q}\left\{v^{\prime *}\right\}$ and a lift
$\tilde{i}: S \hookrightarrow G(X)_{\mathbb{Q}}=\mathbb{Q}\left\{v^{*}, v^{\prime *}\right\}$ is given by $\tilde{i}\left(v^{\prime *}\right)=a v^{*}+v^{\prime *}$ for $a \in \mathbb{Q}$. Note that \tilde{i} is not unique and depends on $a . S$ is identified as $\mathbb{Q}\left\{a v^{*}+v^{\prime *}\right\}$ in $G(X)_{\mathbb{Q}}$ and $j_{\sharp \mathbb{Q}}\left(a v^{*}+v^{\prime *}\right)=v^{\prime *}$ in $\mathbb{Q}\left\{w_{2}^{*}, v^{\prime *}\right\}=G(E, X ; j)_{\mathbb{Q}}$.

If a rationallized Gottlieb sequence $(* *)$ deduces the short exact sequence $0 \rightarrow G_{n}(X)_{\mathbb{Q}} \rightarrow G_{n}(E, X ; j)_{\mathbb{Q}} \rightarrow \pi_{n}(B)_{\mathbb{Q}} \rightarrow 0$ for all $n>1$, the fibration ξ is said as rationally Gottlieb-trivial (r.G-trivial). Especially, if a fibration is r.G-trivial, $G H(\xi)_{\mathbb{Q}}=0$. Recall that ξ is r.G-trivial if and only if $p_{\notin \mathbb{Q}}: G_{n}(E, X ; j)_{\mathbb{Q}} \rightarrow \pi_{n}(B)_{\mathbb{Q}}$ is surjective for $n>1[11$, Theorem $4.2(2) \Leftrightarrow(3)]$.

Example 2. The following examples are fibrations or the models of certain fibrations $\xi: X \xrightarrow{j} E \xrightarrow{p} B$. The degrees of elements of the models without mention are odd.
(1) The Hopf fibration : $S^{3} \rightarrow S^{7} \rightarrow S^{4}$, where $M\left(S^{3}\right)=(\Lambda v, 0)$ with $|v|=3$, $M\left(S^{4}\right)=\left(\Lambda\left(w_{1}, w_{2}\right), d_{B}\right)$ with $\left|w_{1}\right|=4,\left|w_{2}\right|=7, d_{B} w_{1}=0, d_{B} w_{2}=w_{1}^{2}$ and $D v=$ w_{1}. Note that there is a quasi-isomorphism $\rho:\left(\Lambda\left(w_{2}\right), 0\right) \rightarrow\left(\Lambda\left(w_{1}, w_{2}, v\right), D\right)$ with $\rho\left(w_{2}\right)=w_{2}-w_{1} v$. It is G-type of $(1,0,2 ; 0,0,1)$ from $G(B, E ; p)_{\mathbb{Q}}=\mathbb{Q}\left\{w_{1}^{*}, w_{2}^{*}\right\}$ and $G(E)_{\mathbb{Q}}=G(B)_{\mathbb{Q}}$. Since δ_{J}-cycle v^{*} is exact by $\delta_{J}\left(w_{1}^{*}\right)=v^{*}, G(E, X ; j)_{\mathbb{Q}}=\mathbb{Q}\left\{w_{2}^{*}\right\}$. Note that $G H(\xi)_{\mathbb{Q}}=0$ but ξ is not r.G-trivial since $p_{\sharp \mathbb{Q}}: G(E, X ; j)_{\mathbb{Q}} \rightarrow \pi_{*}(B)_{\mathbb{Q}}=$ $\mathbb{Q}\left\{w_{1}^{*}, w_{2}^{*}\right\}$ in (**) is not surjective.
(2) $S^{5} \rightarrow E \rightarrow S^{3} \times S^{3}$ with $M\left(S^{5}\right)=(\Lambda v, 0), M\left(S^{3} \times S^{3}\right)=\left(\Lambda\left(w_{1}, w_{2}\right), 0\right)$ and $D v=w_{1} w_{2}$. It is G-type of $(1,0,2 ; 1,0,0)$. Since $G(E, X)_{\mathbb{Q}}=\mathbb{Q}\left\{v^{*}, w_{1}^{*}, w_{2}^{*}\right\} \supset$ $\mathbb{Q}\left\{w_{1}^{*}, w_{2}^{*}\right\}=\pi_{*}(B)_{\mathbb{Q}}, \xi$ is r.G-trivial.
(3) $S^{3} \times S^{5} \rightarrow E \rightarrow S^{3}$ with $M\left(S^{3} \times S^{5}\right)=\left(\Lambda\left(v_{1}, v_{2}\right), 0\right)\left|v_{1}\right|=3,\left|v_{2}\right|=5$ and $M\left(S^{3}\right)=(\Lambda w, 0)$ and $D v_{2}=w v_{1}$. It is G-type of $(2,0,1 ; 1,0,0)$. Since $G(E, X)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{1}^{*}, v_{2}^{*}\right\} \not \nexists w^{*}, \xi$ is not r.G-trivial.
(4) $M(X)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}\right), d\right)$ and $M(B)=(\Lambda w, 0)$ with $d v_{1}=d v_{2}=0, d v_{3}=$ $D v_{3}=v_{1} v_{2}, D v_{1}=0$ and $D v_{2}=w v_{1}$. Then ξ is G-type of $(1,0,1 ; 1,0,0)$. Since $G(E, X)_{\mathbb{Q}} \nexists w^{*}, \xi$ is not r.G-trivial.
(5) Recall the non-trivial fibration $\mathbb{C} P^{2} \rightarrow E \rightarrow S^{4}$ of [11, Ex.4.4]. The model is given by $M\left(\mathbb{C} P^{2}\right)=\left(\Lambda\left(v_{1}, v_{2}\right), d\right)$ with $\left|v_{1}\right|=2,\left|v_{2}\right|=5, d v_{1}=0, d v_{2}=v_{1}^{3}$ and $M\left(S^{4}\right)=\left(\Lambda\left(w_{1}, w_{2}\right), d_{B}\right)$ with $\left|w_{1}\right|=4,\left|w_{2}\right|=7, d_{B} w_{1}=0, d_{B} w_{2}=w_{1}^{2}$, and $D v_{1}=0, D v_{2}=v_{1}^{3}+w_{1} v_{1}$. Since $\delta_{J}\left(v_{1}^{*}-3 w_{1}^{*} \otimes v_{1}\right)=0, G H(\xi)_{\mathbb{Q}}=\mathbb{Q}\left\{v_{1}^{*}\right\}$. In fact, $\delta_{J}\left(v_{1}^{*}-3 w_{1}^{*} \otimes v_{1}\right)\left(v_{2}\right)=v_{1}^{*}\left(d v_{2}\right)-3\left(w_{1}^{*} \otimes v_{1}\right)\left(w_{1} v_{1}\right)=v_{1}^{*}\left(v_{1}^{3}\right)-3 w_{1}^{*}\left(w_{1} v_{1}\right) \cdot v_{1}=$ $3 v_{1}^{2}-3 v_{1}^{2}=0$ and $\delta_{J}\left(v_{1}^{*}-3 w_{1}^{*} \otimes v_{1}\right)(z)=0$ for $z=w_{*}, v_{1}$. It is G-type of $(1,1,1 ; 1,0,1)$ and $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.
(6)[11, Ex.4.5] $M(X)=\left(\Lambda\left(v_{1}, v_{2}, \cdots, v_{n+1}, v\right), d\right)\left(n\right.$:odd) with $d v_{*}=0, d v=$ $v_{1} v_{2} \cdots v_{n+1}$ and $M(B)=(\Lambda w, 0)$. Put $D v=v_{1} v_{2} \cdots v_{n+1}+w v_{n+1}$ and $D v_{*}=$ 0 . Then $G H(\xi)_{\mathbb{Q}}=T=\mathbb{Q}\left\{v_{1}^{*}, \cdots, v_{n}^{*}\right\}$ if $n>1$. In fact, $\delta_{J}\left(v_{i}^{*}+(-1)^{i} w^{*} \otimes\right.$ $\left.v_{1} \cdots \check{v}_{i} \cdots v_{n}\right)=0$ for $i \leq n$. Thus ξ is G-type of $(1, n, 1 ; 1, n, 0)$ if $n>1$. If $n=1, \xi$ is G-type of $(1,0,1 ; 1,0,1)$. Note that it is rationally trivial. In fact, there is a DGA-
isomorphism $\rho:\left(\Lambda\left(w, v_{1}, v_{2}, v\right), D\right) \rightarrow(\Lambda w, 0) \otimes\left(\Lambda\left(v_{1}, v_{2}, v\right), d\right)$ given $\rho\left(v_{1}\right)=v_{1}-w$ and $\rho(z)=z$ for the other elements z.
(7) $M(X)=\left(\Lambda\left(v_{1}, . ., v_{n}, v\right), d\right)$ with $d v_{*}=0$ and $d v=v_{1} \cdots v_{n}$ (n :even). If $D v=v_{1} \cdots v_{n}+w_{1} w_{2} w_{3} v_{n}$ for $M(B)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}\right), 0\right)$, then ξ is G-type of $(1,0,3 ; 1,0,0)$ if $n>2$. Since $G(E, X)_{\mathbb{Q}} \ni w_{1}^{*}, w_{2}^{*}, w_{3}^{*}, \xi$ is r.G-trivial. If $n=2, \xi$ is G-type of $(1,0,3 ; 1,0,3)$. Note that it is rationally trivial by $\rho\left(v_{1}\right)=v_{1}-w_{1} w_{2} w_{3}$ as in (6).
(8) $M(X)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}, v_{4}, v\right), d\right)$ with $d v_{*}=0$ and $d v=v_{1} v_{2} v_{3} v_{4} . M(B)=$ $\left(\Lambda\left(w, w^{\prime}, u\right), d_{B}\right)$ with $d_{B} w=d_{B} w^{\prime}=0$ and $d_{B} u=w w^{\prime}$. Put $D v_{*}=0$ and $D v=v_{1} v_{2} v_{3} v_{4}+w v_{4}$. Then ξ is G-type of $(1,3,1 ; 1,0,1)$. Especially $G H(\xi)_{\mathbb{Q}}=$ $\mathbb{Q}\left\{v_{1}^{*}, v_{2}^{*}, v_{3}^{*}\right\}$ and $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.
(9) $M(X)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v\right), d\right)$ with $d v_{1}=d v_{2}=d v_{3}=d v_{4}=0, d v_{5}=$ $v_{1} v_{4}, d v=v_{1} v_{2} v_{3} v_{5}$ and $M(B)=\left(\Lambda\left(w, w^{\prime}, u\right), d_{B}\right)$ with $d_{B} w=d_{B} w^{\prime}=0, d_{B} u=$ $w w^{\prime}$. Put $D v=v_{1} v_{2} v_{3} v_{5}+w v_{4}$ and $D v_{*}=d v_{*}$. Then ξ is G-type of $(1,0,1 ; 1,0,1)$ and $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$. Since $G(E, X)_{\mathbb{Q}} \nexists w^{*}, \xi$ is not r.G-trivial.
(10) $M(X)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}, v_{4}, v, v^{\prime}, v^{\prime \prime}\right), d\right)$ with $d v_{1}=d v_{2}=d v_{3}=d v_{4}=d v^{\prime}=$ $d v^{\prime \prime}=0, d v=v_{1} v_{2} v_{3} v_{4}$ and $M(B)=\left(\Lambda\left(w, w^{\prime}, u\right), d_{B}\right)$ with $d_{B} w=d_{B} w^{\prime}=0, d_{B} u=$ $w w^{\prime}$. Put $D v=v_{1} v_{2} v_{3} v_{4}+w v_{4}, D v^{\prime}=w v_{3}, D v^{\prime \prime}=w^{\prime} v_{3}$ and $D v_{*}=0$. Then ξ is G-type of $(3,2,1 ; 3,2,1)$ with $G H(\xi)_{\mathbb{Q}}=T=\mathbb{Q}\left\{v_{1}^{*}, v_{2}^{*}\right\}$.
(11) $M(X)=(\Lambda v, 0)$ and $M(B)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}, w_{4}, u\right), d_{B}\right)$ with $d_{B} w_{*}=0$ and $d_{B} u=w_{1} w_{2} w_{3} w_{4}$. If $D v=w_{1} w_{2}$, then ξ is G-type of $(1,0,3 ; 1,0,3)$. Since $G(E, X)_{\mathbb{Q}} \ni w_{1}^{*}, w_{2}^{*}, w_{3}^{*}, w_{4}^{*}, u^{*}, \xi$ is r.G-trivial. Note that $G(B)_{\mathbb{Q}}=\mathbb{Q}\left\{u^{*}\right\}$ but $G(B, E)_{\mathbb{Q}}=\mathbb{Q}\left\{w_{3}^{*}, w_{4}^{*}, u^{*}\right\}$. Thus $G(E)_{\mathbb{Q}} \neq G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$ but $G(E)_{\mathbb{Q}}=G(X)_{\mathbb{Q}} \oplus$ $G(B, E ; p)_{\mathbb{Q}}$.
(12) $M(X)=\left(\Lambda\left(v, v^{\prime}\right), 0\right)$ and $M(B)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}, w_{4}, u\right), d_{B}\right)$ with $d_{B} w_{*}=0$ and $d_{B} u=w_{1} w_{2} w_{3} w_{4}$. Put $D v=w_{1} w_{2}$ and $D v^{\prime}=w_{3} w_{4}+w_{1} v$. Then ξ is G-type of $(2,0,4 ; 1,0,1)$ from $G(B, E)_{\mathbb{Q}}=\mathbb{Q}\left\{w_{2}^{*}, w_{3}^{*}, w_{4}^{*}, u^{*}\right\}$. Here $w_{1}^{*} \notin G(B, E)_{\mathbb{Q}}$ from the reason that the D-cocycle $w_{1} w_{2} v$ is not exact. Since $G(E, X)_{\mathbb{Q}} \not \nexists w_{1}^{*}, \xi$ is not r.G-trivial. Note that $G(E)_{\mathbb{Q}} \not \ni G(X)_{\mathbb{Q}} \oplus G(B)_{\mathbb{Q}}$.
(13) There is a rationally non-trivial fibration $\eta: S^{2} \vee S^{2} \rightarrow E^{\prime} \rightarrow S^{3}$, which is rationally constructed as [5, (6.5)]. Then η is G-type of $(0,0,1 ; 0,0,0)$ since the Gottlieb rank of the one point union of spheres is zero [13, Theorem 5.4] and $G H(\eta)_{\mathbb{Q}}=0$ from degree argument. The pull back fibration $\xi: S^{2} \vee S^{2} \rightarrow E \rightarrow S^{3} \vee S^{3}$ of η by the map $\left(i d_{S^{3}} \mid *\right): S^{3} \vee S^{3} \rightarrow S^{3}$. Then ξ is G-type of $(0,0,0 ; 0,0,0)$ and $G\left(E, S^{2} \vee S^{2} ; j\right)_{\mathbb{Q}}=0$ from degree argument. Since $\operatorname{rank} \pi_{*}\left(S^{3} \vee S^{3}\right)=\infty, \xi$ is not r.G-trivial.

Remark 3. In general (especially without finite condition), if a fibration $X \rightarrow$ $E \rightarrow B$ has a section, then $G_{n}(B, E ; p)=G_{n}(B)$ for all n. In fact, we can see that $G_{n}(B, E ; p) \subset G_{n}(B)$ as follows. Put $s: B \rightarrow E$ a section of ξ, i.e.,
$p \circ s \simeq i d_{B}$. For an element $a \in G(B, E ; p)$, there is a map $F^{\prime}: E \times S^{n} \rightarrow B$ satisying $F^{\prime} \circ i n c_{1} \simeq(p \mid a)$. Put $F:=F^{\prime} \circ\left(s \times i d_{S^{n}}\right)$. Then we have $F \circ i n c_{2}=$ $F^{\prime} \circ\left(s \times i d_{S^{n}}\right) \circ i n c_{2}=F^{\prime} \circ i n c_{1} \circ\left(s \vee i d_{S^{n}}\right) \simeq(p \mid a) \circ\left(s \vee i d_{S^{n}}\right) \simeq\left(i d_{B} \mid a\right)$ in the diagram:

that is, the left triangle homotopically commutes. Thus we have $a \in G_{n}(B)$. For example, since the free loop fibration of $X \xi_{X}: \Omega X \rightarrow L X \rightarrow X$ has the section $s: s(q)=$ the constant loop map to q for a point q of $X, G(X, L X ; p)=G(X)$. Finally, the rationalized fibration $\xi_{(0)}: X_{(0)} \rightarrow E_{(0)} \rightarrow B_{(0)}$ of ξ has a section if and only if a model of it has the property : $(D-d) V \subset \Lambda W \otimes \Lambda^{+} V$, where $\Lambda^{+} V$ is the ideal of ΛV generated by positive degree elements [2]. The rationalized fibrations of (3) $\sim(10)$ and (13) of Example 2 satisfy it. For them we see $G(B, E ; p)_{\mathbb{Q}}=G\left(B_{(0)}, E_{(0)} ; p_{(0)}\right)=G\left(B_{(0)}\right)=G(B)_{\mathbb{Q}}$.

Remark 4. From a fixed fiber X, base B and G-type, we can not determine the rational homotopy equivalent class of fibration $X \rightarrow E \rightarrow B$ uniquely. We give such two examples (i) and (ii), in which X is the product of spheres, E is finite and $B=K(\mathbb{Z}, 2)=\mathbb{C} P^{\infty}$. Note that there is a free S^{1}-action on X for each fibration, which is rationally realized as a Borel fibration $X \rightarrow E S^{1} \times{ }_{S^{1}} X \rightarrow B S^{1}$ [4, Proposition 4.2].
(i) A fibration $S^{3} \times S^{5} \times S^{9} \rightarrow E \rightarrow K(\mathbb{Z}, 2)$ is rationally given as

$$
(\mathbb{Q}[w], 0) \rightarrow(\Lambda(w, x, y, z), D) \rightarrow(\Lambda(x, y, z), 0)
$$

where $|w|=2,|x|=3,|y|=5,|z|=9$. From degree argument, it is given by one of (1) $D x=w^{2}$ and $D y=D z=0$, (2) $D y=w^{3}$ and $D x=D z=0$, (3) $D z=w^{5}$ and $D x=D y=0$ or (4) $D z=w x y+w^{5}$ and $D x=D y=0$. Then E has the rational homotopy type of (1) $S^{2} \times S^{5} \times S^{9}$, (2) $S^{3} \times \mathbb{C} P^{2} \times S^{9}$, (3) $S^{3} \times S^{5} \times \mathbb{C} P^{4}$ or (4) a 16 -dimensional c-symplectic space, i.e., E satisfies that $\left[w^{8}\right] \neq 0 \in H^{16}(E ; \mathbb{Q})$, respectively. The G-types of (1), (2) and (3) are ($3,0,1 ; 3,0,0$) and the G-type of (4) is $(3,0,1 ; 1,0,0)$.
(ii) A fibration $\xi_{\alpha}: S^{2} \times S^{3} \rightarrow E \rightarrow K(\mathbb{Z}, 2)$ is rationally given as

$$
(\mathbb{Q}[w], 0) \rightarrow(\Lambda(w, x, y, z), D) \rightarrow(\Lambda(x, y, z), d)
$$

where $|w|=|x|=2,|y|=|z|=3, d y=x^{2}, d z=0, D z=w x$ and $D y=x^{2}+\alpha w^{2}$ for $\alpha \in \mathbb{Q}-\{0\}$. There are infinitely many rationally different classes of fibrations $\left\{\xi_{\alpha}\right\}$ and they are G-type of $(2,0,1 ; 2,0,0)$.

4 Appendix

In this section, we put the G-types of fibrations $\xi: X \rightarrow E \underset{p}{\rightarrow} B$ as $(a, b, c ; s, t, u)$.
Lemma A. When $B \simeq_{(0)} S^{2 n+1}, \xi$ is rationally trivial if and only if $u=1$.
Proof. The 'only if ' part is trivial from

$$
u=\operatorname{rank} G(B, E ; p)=\operatorname{rank} G(B)=\operatorname{rank} G\left(S^{2 n+1}\right)=1
$$

Show the 'if' part. Put $(\Lambda w, 0) \rightarrow(\Lambda w \otimes \Lambda V, D) \rightarrow(\Lambda V, d)$ be the model of ξ. When $u=1, \delta_{E}\left(w^{*}\right)=\delta_{E}(\sigma)$ for some $\sigma \in \operatorname{Der}_{2 n+1} \Lambda V$. Then $\sigma \otimes w \in$ $D e r_{0}(\Lambda w \otimes \Lambda V, D)$ (see Notation in §2). Put the algebra isomorphism $\psi: \Lambda w \otimes \Lambda V \rightarrow$ $\Lambda w \otimes \Lambda V$ as $\psi:=i d-\sigma \otimes w$. Then we can define a differential D^{\prime} on $\Lambda w \otimes \Lambda V$ by $D^{\prime}:=\psi^{-1} \circ D \circ \psi$, which is said as change of $K S$-basis in [9, page 119]. In fact, we can easily check $D^{\prime}(x y)=D^{\prime}(x) y+(-1)^{|x|} x D^{\prime}(y)$ and $D^{\prime} \circ D^{\prime}=0$. From $D \circ \psi=\psi \circ D^{\prime}$, we have an isomorphism of models

Notice that $\left(\Lambda w \otimes \Lambda V, D^{\prime}\right)=(\Lambda w, 0) \otimes(\Lambda V, d)$. In fact,

$$
\begin{aligned}
& D^{\prime}=(i d+\sigma \otimes w) \circ D \circ(i d-\sigma \otimes w)=D-(D \circ \sigma+\sigma \circ D) \otimes w \\
& \quad=D-\delta_{E}(\sigma) \otimes w=D-\delta_{E}\left(w^{*}\right) \otimes w=D-\left(w^{*} \circ D\right) \otimes w \underset{(*)}{=} d
\end{aligned}
$$

where $d(w):=0$. For $D v=d v+w \cdot \tau(v)$ with $v \in V$ and $\tau \in \operatorname{Der}_{2 n} \Lambda V,(*)$ is given by $\left(\left(w^{*} \circ D\right) \otimes w\right)(v)=(-1)^{|v|}\left(w^{*} \circ D\right)(v) \cdot w=(-1)^{|v|} \tau(v) \cdot w=(-1)^{|v|+|\tau(v)|} w \cdot \tau(v)=$ $w \cdot \tau(v)$. Thus ξ is rationally trivial.

Suppose that X is an F_{0}-space, i.e., $H^{*}(X ; \mathbb{Q}) \cong \mathbb{Q}\left[x_{1}, \cdots, x_{l}\right] /\left(f_{1}, \cdots, f_{l}\right)$ with a regular sequence $\left(f_{1}, \cdots, f_{l}\right)$ in $\mathbb{Q}\left[x_{1}, \cdots, x_{l}\right]$, where $\left|x_{*}\right|$ are even. Then $M(X)$ is given by $\left(\Lambda\left(x_{1}, \cdots, x_{l}, v_{1}, \cdots, v_{l}\right), d\right)$ with $d x_{i}=0, d v_{i}=f_{i} \in \Lambda\left(x_{1}, \cdots, x_{l}\right)$ for $i=1, \cdots, l$ and $\operatorname{rank} G(X)=\operatorname{rank} \pi_{o d d}(X)=l$. Halperin conjectures that any fibration $X \xrightarrow{j} E \rightarrow B$ c-splits (is T.N.C.Z.), i.e., $H^{*}(E ; \mathbb{Q}) \cong H^{*}(X ; \mathbb{Q}) \otimes H^{*}(B ; \mathbb{Q})$ additively $\left(j^{*}: H^{*}(E ; \mathbb{Q}) \rightarrow H^{*}(X ; \mathbb{Q})\right.$ is surjective) [2, p.516]. It is proved in many cases, for example, when $l \leq 3$ [8] and when X is a homogeneous space [12]. It is equivalent to that any fibration $X \rightarrow E \rightarrow S^{2 n+1}(n>0)$ is rationally trivial [9, Theorem 2.2]. It is known that there are interactions with certain numerical invariants as in $[9, \S 4]$ and [14].

Corollary A. Let X be an F_{0}-space. The followings are equivalent.
(1) Any fibration $X \rightarrow E \rightarrow B$ c-splits.
(2) For any fibration $X \rightarrow E \rightarrow S^{2 n+1}, u=1$.
(3) For any fibration $X \rightarrow E \rightarrow S^{2 n+1}, \operatorname{rank} G(E)=\operatorname{rank} G(X)+1$.
(4) Any fibration $X \rightarrow E \rightarrow S^{2 n+1}$ is G-type of $(\operatorname{rank} G(X), 0,1 ; \operatorname{rank} G(X), 0,1)$.

Proof. " 1) $\Rightarrow(2),(3),(4)$ " follows from [9, Theorem 2.2]. " 2) $\Rightarrow(1)$ " follows from Lemma A. "(3) $\Rightarrow(2)$ " is given as follows. Since $M(X)$ is pure, $t=0$ (see Claim in $\S 2$). Then we have $u \geq 1$ from the inequations $s+u=s+t+u=\operatorname{rank} G(E)=$ $\operatorname{rank} G(X)+1$ and $s \leq \operatorname{rank} G(X)$. " $(4) \Rightarrow(2)$ " is trivial.

Note that the condition: " (5) Any fibration $X \rightarrow E \rightarrow B$ is G-type of $(\operatorname{rank} G(X), 0, \operatorname{rank} G(B) ; \operatorname{rank} G(X), 0, \operatorname{rank} G(B)) "$ is sufficient but not necessary for the conditions in Corollary A. In fact, there is a c-split fibration $S^{4} \rightarrow E \rightarrow S^{3} \times S^{5}$ with the model

$$
\left(\Lambda\left(w_{1}, w_{2}\right), 0\right) \rightarrow\left(\Lambda\left(w_{1}, w_{2}, x_{1}, v_{1}\right), D\right) \rightarrow\left(\Lambda\left(x_{1}, v_{1}\right), d\right)
$$

where $\left|w_{1}\right|=3,\left|w_{2}\right|=5,\left|x_{1}\right|=4,\left|v_{1}\right|=7, d x_{1}=D x_{1}=0, d v_{1}=x_{1}^{2}$ and $D v_{1}=$ $x_{1}^{2}+w_{1} w_{2}$. It is G-type of $(1,0,2 ; 1,0,0)$.

Acknowledgement

The author would like to thank the referee for pointing the mistakes of examples and proofs, and for valuable suggestions.

References

[1] Y.Félix and S.Halperin, Rational L.-S. category and its applications, Trans.A.M.S. 273 (1982) 1-37
[2] Y.Félix, S.Halperin and J.C.Thomas, Rational homotopy theory, Springer G.T.M. 205 [2001].
[3] D.H.Gottlieb, Evaluation subgroups of homotopy groups, Amer.J.of Math. 91 (1969) 729-756
[4] S.Halperin, Rational homotopy and torus actions, London math. Lecture Note 93 (1985) 293-306
[5] S.Halperin and J.Stasheff, Obstruction to homtopy equivalences, Advances in Math. 32 (1979) 233-279
[6] G.Lang, Localizations and evaluation subgroups, Proc.Amer.Math.Soc. 50 (1975) 489-494
[7] K.-Y.Lee and M.H.Woo, The G-sequence and ω-homology of a $C W$-pair, Topology and its Applications 52 (3) (1993) 221-236
[8] G.Lupton, Note on a conjecture of Stephen Halperin, Springer L.N.M. 1440 (1990) 148-163
[9] G.Lupton, Variations on a conjecture of Halperin, Homotopy and Geometry Banach Center Publ. 45 (1998) 115-135
[10] G.Lupton and S.B.Smith, Rationalized evaluation subgroups of a map. I. Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra 209 (1) (2007) 159-171
[11] G.Lupton and S.B.Smith, The evaluation subgroup of a fibre inclusion, Topology and its Applications 154 (2007) 1107-1118
[12] H.Shiga and M.Tezuka, Rational fibrations, homogeneous spaces with Positive Euler characteristic and Jacobians, Ann.Inst.Fourier 37 (1987) 81-106
[13] S.B.Smith, Rational evaluation subgroups, Math.Z. 221(3) (1996) 387-400
[14] T.Yamaguchi, A comment on toral rank for a conjecture of Halperin, JP J. Geom. Topol. 3 (2003) 221-224.

Faculty of Education, Kochi University, 2-5-1,
Kochi,780-8520, JAPAN
email: tyamag@cc.kochi-u.ac.jp

[^0]: Received by the editors August 2007.
 Communicated by Y. Félix.
 2000 Mathematics Subject Classification : 55P62,55R05,55Q70.
 Key words and phrases : rational Gottlieb group, Gottlieb sequence of fibration, Gottlieb homology group, Gottlieb type, Sullivan minimal model.

