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Abstract

We establish some conditions under which the differential subordination
of the type p(z) + zp′(z)/p(z) ≺ Q(z) yields p ≺ q in U . Functions Q and
q are chosen so that they map the unit disk onto domains enclosed by conic
sections. Some applications of obtained results are given.

1 Introduction

We denote by H the set of functions of the form

f(z) = z + a2z
2 + · · · , (1.1)

analytic in the unit disk U . By S we denote the subclass of H of univalent functions.
Also let CV, ST , ST (α) (α ∈ [0, 1)), and UCV denote subclasses of S consisting of
convex, starlike, starlike of order α and uniformly convex functions, respectively.

Recently, Kanas and Wísniowska ([7]) introduced subfamilies of univalent func-
tions called k-uniformly convex and k-starlike, with 0 ≤ k <∞, and denoted k-UCV
and k-ST , respectively. The analytic conditions of those classes are following (cf.
[3], [4], [7], [8], [10]):

k-UCV =

{

f ∈ H : Re

(

1 +
zf ′′(z)

f ′(z)

)

> k

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

, z ∈ U
}

, (1.2)
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and

k-ST = {f ∈ H : Re [zf ′(z)/f(z)] > k |zf ′(z)/f(z) − 1| , z ∈ U} . (1.3)

Note that k-UCV and k-ST are connected by the well known Alexander relation, i.e.
f ∈ k-UCV if and only if zf ′(z) ∈ k-ST . Also, we note that geometrically k-UCV
is a subclass of univalent functions that map circular arcs, contained in the unit
disk, with centers contained in the disk of the radius k, (k ∈ [0,∞)), onto convex
arcs. The similar class but only for the case k = 1 was studied by Goodman ([1]).
Observe that in the case k = 0 families k-UCV and k-ST coincide with well known
classes of convex (CV ) and starlike (ST ) functions, respectively.

Let the functions g and G be analytic in the unit disc U . The function g is said
to be subordinate to G, written g ≺ G (or g(z) ≺ G(z), z ∈ U), if G is univalent
in U , g(0) = G(0) and g(U) ⊂ G(U). When g(z) = ψ(p(z), zp′(z); z) with ψ, p
analytic and having appropriate normalization, then the subordination is called the

first-order differential subordination.
The theory of subordination has significant meaning in the theory of univalent

functions; the notion of subordination is also often used for defining classes of func-
tions. For example k-UCV and k-ST can be rewritten in terms of subordination as
1 + zf ′′(z)/f ′(z) ∈ Ωk, where

Ωk =
{

u+ iv : u2 > k2(u− 1)2 + k2v2, u > 0
}

.

The family of plane domains Ωk consists of domains convex, symmetric about real
axis and bounded by conic sections. Denoting by pk the conformal mapping that
maps U onto Ωk, we obtain the family of conformal mappings depending on k (k ∈
[0,∞)). Therefore, for each fixed k, the family k-UCV is the family of all f ∈ H for
which 1 + zf ′′(z)/f ′(z) ≺ pk(z) and k-ST consists of all functions f ∈ H such that
zf ′(z)/f(z) ≺ pk(z), z ∈ U .

We briefly recall one of the problem that characterize the theory of differential
subordinations; for more details the reader should consult the monograph due to
Miller and Mocanu ([13]). Assume that p is a function with positive real part and
such that p(0) = a, p(z) 6≡ a. Also, let ψ : C2 × U −→ U be analytic and such that
ψ(p(0), 0; 0) = a. Given ψ and univalent function q, q(0) = p(0), find the ”largest”
function Q, such that Q(0) = a, and the relation

ψ(p(z), zp′(z); z) ≺ Q(z) =⇒ p(z) ≺ q(z) (1.4)

holds. The second problem of this theory is to find the ”smallest” function q for
given Q, and so that (1.4) holds.

The above mentioned problems were investigated in a numerous papers (cf. e.g.
[2], [11], [12], [13], [14], [15]), for various choice of Q and q. However, authors mostly
consider cases when functions q and Q map the unit disk onto half-plane, sector or
a disk. Thus they can not be strictly applied for k-UCV and k-ST . The aim of the
paper is the study of the relation (1.4) when Q or q is pk. We choose function ψ such
that it provides the containment results for k-UCV and k-ST and related subclasses
of univalent functions. Finally, we compare obtained conclusions with the classical
results from the univalent function theory.
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Now, we recall the lemma basic in the theory of differential subordinations.

Lemma 1.1 ([12]). Let h be an analytic function on U except for at most one

pole on ∂U , and univalent on U , p be an analytic function in U with p(0) = h(0)
and p(z) 6≡ p(0), z ∈ U . If p is not subordinate to h, then there exist points

z0 ∈ U , ζ0 ∈ ∂U and m ≥ 1 for which

p(|z| < |z0|) ⊂ h(U), p(z0) = h(ζ0), z0 p
′(z0) = mζ0 h

′(ζ0).

2 Main results

Theorem 2.1. Let k ∈ [0,∞). Also, let p be an function analytic in the unit disk

such that p(0) = 1. If

Re

(

p(z) +
zp′(z)

p(z)

)

− k

∣

∣

∣

∣

∣

p(z) − 1 +
zp′(z)

p(z)

∣

∣

∣

∣

∣

> 0, (2.1)

then

p(z) ≺ 1 + (1 − 2α)z

1 − z
=: h(z) (2.2)

where α ≥ α(k), and α(k) is given by

α(k) =
1

4







√

√

√

√

(

1 − k

1 + k

)2

+ 8 − 1 − k

1 + k






. (2.3)

Proof. We may assume that α ≥ 1/2 since the condition Re (p+zp′(z)/p(z)) > 0
implies at least Re p(z) > 1/2 (c.f., e.g. [13], p. 60).

Suppose now, on the contrary, that p 6≺ h. Then, by Lemma 1.1 and results of
Miller and Mocanu ([12]), there exists z0 ∈ U , ζ0 ∈ ∂U , and m ≥ 1 such that

p(z0) = α + ix, z0p
′(z0) = my, where y ≤ − (1 − α)2 + x2

2(1 − α)
, x, y ∈ R.

Making use of the above relations, we thus have

Re

(

p(z0) +
z0p

′(z0)

p(z0)

)

− k

∣

∣

∣

∣

∣

p(z0) − 1 +
z0p

′(z0)

p(z0)

∣

∣

∣

∣

∣

= Re
(

α+ ix+
my

α + ix

)

− k
∣

∣

∣

∣

α− 1 + ix+
my

α + ix

∣

∣

∣

∣

= α+
αmy

α2 + x2
− k

√

[α(1 − α) + x2 −my]2 + x2(2α− 1)2

√
α2 + x2
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≤ α− α

2(1 − α)

(1 − α)2 + x2

α2 + x2

− k

√

[

α(1 − α) + x2 + 1−α
2

+ x2

2(1−α)

]2
+ x2(2α− 1)2

√
α2 + x2

= α− α

2(1 − α)

(1 − α)2 + x2

α2 + x2

− k

√

[

(1−α)(2α+1)
2

+ x2 3−2α
2(1−α)

]2
+ x2(2α− 1)2

√
α2 + x2

=: r(x).

The function r(x) is even as regards x, and attains its maximum at x = 0 when
α ≥ 1/2. Indeed, denoting

A =
3 − 2α

2(1 − α)
, B =

(1 − α)(2α + 1)

2
, C = 2α− 1,

we have

r′(x) =
−x

(α2 + x2)3/2

[

α(2α− 1)

(1 − α)
√
α2 + x2

+ k
A2x4 + 2A2α2x2 +B(2A2α2 −B) + C2α2

√

(B + Ax2)2 + C2x2



 .

Then r′(x) = 0 if and only if x = 0, since the expression in the square brackets is
positive (B(2Aα2−B) = 2α+1

4
(−6α3+9α2−1) = 2α+1

4
[3α(1−α)(2α−1)+3α−1] > 0

when α ≥ 1/2), for x ∈ R. Thus r(x) attains its maximum at x = 0, and we have

r(x) ≤ r(0) = α− 1 − α

2α
− k

(1 − α)(2α+ 1)

2α
= 0, (2.4)

for α = α(k), as given by (2.3), that contradicts the assumption.

Now, we consider other form of the function ψ(p(z), zp′(z); z) that provides var-
ious containment results for classes k-UCV and k-ST .

Theorem 2.2. Let δ ∈ (0, 2] and k ∈ [0,∞). Also, let p be the function analytic

in the unit disk such that p(0) = 1. If

Re

(

1 + δ
zp′(z)

p(z)

)

− kδ

∣

∣

∣

∣

∣

zp′(z)

p(z)

∣

∣

∣

∣

∣

> 0, (2.5)

then p(z) ≺ h(z), where h is given by (2.2), and α ≥ α(k, δ) where

α(k, δ) =
δ(k + 1)

2 + δ(k + 1)
. (2.6)
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Proof. As in the proof of Theorem 2.1 we may assume that α ≥ 1/2. Supposing,
on the contrary that p 6≺ h, and making use of Lemma 1.1, we obtain

Re

(

1 + δ
z0p

′(z0)

p(z0)

)

− kδ

∣

∣

∣

∣

∣

z0p
′(z0)

p(z0)

∣

∣

∣

∣

∣

= Re

(

1 +
mδy

α + ix

)

− kδ

∣

∣

∣

∣

my

α + ix

∣

∣

∣

∣

= 1 +
αδmy

α2 + x2
− kδ

m|y|√
α2 + x2

≤ 1 − mαδ

2(1 − α)

(1 − α)2 + x2

α2 + x2
− kmδ

2(1 − α)

(1 − α)2 + x2

√
α2 + x2

≤ 1 − αδ

2(1 − α)

(1 − α)2 + x2

α2 + x2
− kδ

2(1 − α)

(1 − α)2 + x2

√
α2 + x2

=: s(x).

The function s(x) attains its maximum at the point x = 0. Indeed,

s′(x) =
−δ x

2(1 − α)

[

2α(2α− 1)

(α2 + x2)2
+ k

x2 + α2 + 2α− 1

(α2 + x2)3/2

]

= 0

if and only if x = 0 since, for α ≥ 1/2, the expressions α2 + 2α− 1 and 2α− 1 are
nonnegative, and

s′′(0) =
−δ

2(1 − α)

[

2(2α− 1) + k(α2 + 2α− 1)

α3

]

< 0.

Thus, we have

s(x) ≤ s(0) = 1 − δ(1 − α)

2α
− k

δ(1 − α)

2α
= 0

for α = α(k, δ) where α(k, δ) is given by (2.7).

The above Theorems are key results for obtaining some inclusions for k-uniformly
convex and k-starlike functions and its connections with other well known subclasses
of univalent functions. Applying Theorem 2.1 we may formulate the following:

Theorem 2.3. Let k ∈ [0,∞). If f ∈ k-UCV, then f ∈ ST (α), where α ≥ α(k),
with α(k) is given in (2.3).

Proof. Assume f ∈ k-UCV . Then, by (1.2),

Re

(

1 +
zf ′′(z)

f ′(z)

)

> k

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

z ∈ U .

Setting p(z) = zf ′(z)/f(z), p(0) = 1, the above condition can be rewritten as

Re

(

p(z) +
zp′(z)

p(z)

)

> k

∣

∣

∣

∣

∣

p(z) − 1 +
zp′(z)

p(z)

∣

∣

∣

∣

∣

or

Re

(

p(z) +
zp′(z)

p(z)

)

− k

∣

∣

∣

∣

∣

p(z) − 1 +
zp′(z)

p(z)

∣

∣

∣

∣

∣

> 0.
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Now, applying the Theorem 2.1, we obtain the assertion.

Remark. Observe, that in the case, when k = 0, we recover the classical sharp
result that each convex function is at least 1/2 starlike. Also, we have α(1) =√

2/2 ≈ 0.705, that gives related result for uniformly convex functions. It improves
the result concerning the order of starlikeness for uniformly convex functions ([9]).

Using Theorem 2.2 for the case, when δ = 1 we have:

Theorem 2.4. Let 0 ≤ k <∞. If f ∈ k-ST , then

Re f(z)/z >
k + 1

k + 3
.

Similarly, if f ∈ k-UCV, then

Re f ′(z) >
k + 1

k + 3
.

Proof. Setting p(z) = f(z)/z (or p(z) = f ′(z))), under the assumption that
f ∈ k-ST (or f ∈ k-UCV , respectively) and making use of Theorem 2.2 the assertion
follows.

Setting δ = 2 in Theorem 2.2 we obtain:

Theorem 2.5. Let 0 ≤ k <∞. If f ∈ k-UCV, then

Re
√

f ′(z) >
k + 1

k + 2
,

and if f ∈ k-ST , then

Re
√

f(z)/z >
k + 1

k + 2
.

Proof. By putting p(z) =
√

f ′(z) with f ∈ k-UCV (or f ∈ k-ST , respectively)
and using the Theorem 2.2 we conclude the assertion.

Next, we prove some theorems that will be helpful for comparing the obtained
results with the classical ones.

Theorem 2.6. Let p be an analytic function in the unit disk, such that p(0) = 1.
If, for α ∈ [1/2, 1],

Re

(

1 +
zp′(z)

p(z)

)

> α, then Re p(z) > β,

where β ≥ β(α), and

β(α) =
1

3 − 2α
. (2.7)



Subordinations for domains bounded by conic sections 595

Proof. Reasoning along the same line as in the proof of Theorem 2.1 and 2.2,
and supposing Re p ≤ β, we have

Re

(

1 +
zp′(z)

p(z)

)

= 1 +m
βy

β2 + x2

≤ 1 − β[(1 − β)2 + x2]

2(1 − β)(β2 + x2)

where x ∈ R, m ≥ 1 and y ≤ − (1−β)2+x2

2(1−β)
.

It is easy to check that he function u(x) = 1 − β[(1−β)2+x2]
2(1−β)(β2+x2)

attains its only
maximum at x = 0, thus

Re

(

1 +
zp′(z)

p(z)

)

≤ 3

2
− 1

2β

that equals to α when β = 1/(3−2α). This contradicts the assumption, so that the
assertion follows. �

Setting p(z) = f(z)/z in Theorem 2.6 we obtain the following containment result.

Theorem 2.7. If for some α ∈ [1/2, 1] f ∈ ST (α), then

Re
f(z)

z
>

1

3 − 2α
.

Theorem 2.8. Let p be an analytic function in the unit disk, such that p(0) = 1.

If, for α ∈
[

1
2
, 1
]

Re
√

p(z) + zp′(z) > α, then Re p(z) > δ,

where δ ≥ δ(α), and

δ(α) =
2α2 + 1

3
. (2.8)

Proof. Supposing, on the contrary, that Re p ≤ δ, we have

Re 2
√

p(z) + zp′(z) =
1

2

[

δ +my +
√

x2 + (δ +my)2

]

≤ 3

4
δ − 1

2
− x2

4(1 − δ)
+

1

2

√

√

√

√x2 +

(

3δ − 1

2
− x2

2(1 − δ)

)2

,

where x ∈ R, m ≥ 1 and y ≤ − (1−δ)2+x2

2(1−δ)
.

The right hand function v(x) attains its maximum at x = 0. Indeed

v′(x) =
x

2









3−5δ
2(1−δ)

+ x2

2(1−δ)2
√

x2 +
(

3δ−1
2

− x2

2(1−δ)

)2
− 1

1 − δ









,
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and v′(x) = 0 if and only if

x = 0 or

3−5δ
2(1−δ)

+ x2

2(1−δ)2
√

x2 +
(

3δ−1
2

− x2

2(1−δ)

)2
− 1

1 − δ
= 0.

The second equality is satisfied for no x ∈ R, since after some computations, it
reduces to

(2δ − 1)(δ − 1) = 0.

Then v′(x) = 0 if and only if x = 0 and

v′′(0) =
5δ2 − 8δ + 2

(3δ − 1)(1 − δ)
< 0

for δ ∈ [1/2, 1). Thus

Re 2
√

p(z) + zp′(z) = α2

when δ = (2α2 + 1)/3, that contradicts the assumption and the assertion follows.

Substituting p(z) = f(z)/z in Theorem 2.8 gives immediately the following re-
sult.

Theorem 2.9. If Re
√

f ′(z) > α for some α ∈ [1/2, 1], then

Re
f(z)

z
>

2α2 + 1

3
.

Having in view the above results we can compare the classical results concerning
the half-plane with these obtained for domains bounded by conic sections. This
comparison shows that such a substitution provides ”the step to the right”. For
instance classical results give

Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0 =⇒ Re
zf ′(z)

f(z)
>

1

2
=⇒ Re

f(z)

z
>

1

2
,

whereas, by Theorems 2.1 and 2.7 we obtain

Re

(

1 +
zf ′′(z)

f ′(z)

)

> k

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

=⇒ Re
zf ′(z)

f(z)
> α =⇒ Re

f(z)

z
> β,

where α = α(k) = (1/4)
[
√

((1 − k)/(1 + k))2 + 8 − (1 − k)/(1 + k)
]

, and β =

1/(3 − 2α).

Setting k = 1, for example, we obtain from the above the following:

Re

(

1 +
zf ′′(z)

f ′(z)

)

>

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

=⇒ Re
zf ′(z)

f(z)
>

√
2

2

=⇒ Re
f(z)

z
>

3 +
√

2

7
≈ 0.63.
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Also, we know that

Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0 =⇒ Re
√

f ′(z) >
1

2
=⇒ Re

f(z)

z
>

1

2
,

whereas, applying Theorems 2.5 and 2.9 we conclude

Re

(

1 +
zf ′′(z)

f ′(z)

)

> k

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

=⇒ Re
√

f ′(z) >
k + 1

k + 2
=⇒ Re

f(z)

z
> δ,

with δ = [2(k + 1)2/(k + 2)2 + 1]/3, and when k = 1 we obtain

Re

(

1 +
zf ′′(z)

f ′(z)

)

>

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

=⇒ Re
√

f ′(z) >
2

3
=⇒ Re

f(z)

z
>

17

27
.

Moreover

Re
zf ′(z)

f(z)
> k

∣

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

∣

=⇒ Re
f(z)

z
>
k + 1

k + 3
.
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