A new characterization of the generalized Hermite linear form

A. Ghressi
L. Khériji

Abstract

We show that the Generalized Hermite linear form $\mathcal{H}(\mu)$, which is symmetric D-semiclassical of class one, is the unique \mathcal{D}_{θ}-Appell classical where \mathcal{D}_{θ} is the Dunkl operator.

1 Introduction and Preliminaries

The (MOPS) $\left\{\widetilde{H}_{n}^{(\mu)}\right\}_{n \geq 0}$ of generalized Hermite was introduced by G. Szegö (see [2]) who also gave the differential equation, for $n \geq 0$

$$
x^{2} \widetilde{H}_{n+1}^{(\mu)^{\prime \prime}}(x)+2 x\left(\mu-x^{2}\right) \widetilde{H}_{n+1}^{(\mu)^{\prime}}(x)+\left(2(n+3) x^{2}-\mu\left(1+(-1)^{n}\right)\right) \widetilde{H}_{n+1}^{(\mu)}(x)=0
$$

Some other characterizations such that the recurrence formula

$$
\left\{\begin{array}{l}
\widetilde{H}_{0}^{(\mu)}(x)=1, \widetilde{H}_{1}^{(\mu)}(x)=x \tag{1.1}\\
\widetilde{H}_{n+2}^{(\mu)}(x)=x \widetilde{H}_{n+1}^{(\mu)}(x)-\frac{1}{2}\left(n+1+\mu\left(1+(-1)^{n}\right)\right) \widetilde{H}_{n}^{(\mu)}(x), n \geq 0
\end{array}\right.
$$

the structure relation

$$
x \widetilde{H}_{n+1}^{(\mu)^{\prime}}(x)=-\mu\left(1+(-1)^{n}\right) \widetilde{H}_{n+1}^{(\mu)}(x)+\left(n+1+\mu\left(1+(-1)^{n}\right)\right) x \widetilde{H}_{n}^{(\mu)}(x), n \geq 0
$$

[^0]were recovered by T. S. Chihara in [2,3]. He also established a sort of Rodrigues' type formula by using the Kummer's transformation [3]. Also in [3], the same author showed that the generalized Hermite polynomials of the odd and even degrees are expressed in a simple manner through the classical Laguerre polynomials. Indeed, we have
$$
\widetilde{H}_{2 n}^{(\mu)}(x)=\widetilde{L}_{n}^{\left(\mu-\frac{1}{2}\right)}\left(x^{2}\right) ; \widetilde{H}_{2 n+1}^{(\mu)}(x)=x \widetilde{L}_{n}^{\left(\mu+\frac{1}{2}\right)}\left(x^{2}\right), \mu \neq-n-\frac{1}{2}, n \geq 0
$$
where $\left\{\widetilde{L}_{n}^{(\alpha)}\right\}_{n \geq 0}$ is the D-classical (MOPS) of Laguerre ($\alpha \neq-n-1, n \geq 0$).
The generalized Hermite polynomials have been mentioned in connection with Gauss quadrature formulas in [12] and with the heat equation for Dunkl operator in [11]. This sequence appears as a solution of polynomials sequences having generating functions of the Brenke type in [4]. Moreover, all technique of the one dimensional Dunkl operator with respect to generalized Hermite polynomials was developed extensively in [10].

In [7] and from another point of view, P. Maroni observed that the linear form $\mathcal{H}(\mu)$ associated with the generalized Hermite polynomials is symmetric D-semiclassical of class one for $\mu \neq 0, \mu \neq-n-\frac{1}{2}, n \geq 0$ (see also [1]) satisfying the functional equation

$$
(x \mathcal{H}(\mu))^{\prime}+\left(2 x^{2}-1-2 \mu\right) \mathcal{H}(\mu)=0
$$

from which he derived an integral representation and the moments

$$
\begin{aligned}
\langle\mathcal{H}(\mu), f\rangle & =\frac{1}{\Gamma\left(\mu+\frac{1}{2}\right)} \int_{-\infty}^{+\infty}|x|^{2 \mu} \exp \left(-x^{2}\right) f(x) d x, f \in \mathcal{P}, \Re \mu>-\frac{1}{2} \\
(\mathcal{H}(\mu))_{2 n} & =\frac{1}{2^{2 n}} \frac{\Gamma(\mu+1) \Gamma(2 n+2 \mu+1)}{\Gamma(2 \mu+1) \Gamma(n+\mu+1)} ;(\mathcal{H}(\mu))_{2 n+1}=0, n \geq 0
\end{aligned}
$$

In that work, it was proved that any polynomial $\widetilde{H}_{n+1}^{(\mu)}$ have simple zeros.
Lastly, it is an old result that the D-classical sequence of Hermite polynomials $\left\{\widetilde{H}_{n}^{(0)}\right\}_{n \geq 0}$ is the unique D-Appell classical one. So the aim of this contribution is to give another characterization of the generalized Hermite sequence based on the \mathcal{D}_{θ}-Appell classical character where \mathcal{D}_{θ} is the Dunkl operator [5]. This first section contains preliminary results and notations used in the sequel. In the second section we determine all symmetric \mathcal{D}_{θ}-Appell classical orthogonal polynomials; there's a unique solution, up to affine transformations, it is the sequence of generalized Hermite orthogonal polynomials.

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}^{\prime} be its topological dual. We denote by $\langle u, f\rangle$ the effect of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$. Let us introduce some useful operations in \mathcal{P}^{\prime}. For any linear form u, any $a \in \mathbb{C}-\{0\}$ and any $q \neq 1$, we let $D u=u^{\prime}, h_{a} u$ and $H_{q} u$, be the linear forms defined by duality $[6,8,9]$

$$
\begin{gathered}
\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle, f \in \mathcal{P}, \\
\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle=\langle u, f(a x)\rangle, u \in \mathcal{P}^{\prime}, f \in \mathcal{P}
\end{gathered}
$$

and

$$
\left\langle H_{q} u, f\right\rangle:=-\left\langle u, H_{q} f\right\rangle, f \in \mathcal{P}
$$

where $\left(H_{q} f\right)(x)=\frac{f(q x)-f(x)}{(q-1) x}$.
The linear form u is called regular if we can associate with it a sequence of polynomials $\left\{P_{n}\right\}_{n \geq 0}$ such that $\left\langle u, P_{m} P_{n}\right\rangle=r_{n} \delta_{n, m}, n, m \geq 0 ; r_{n} \neq 0, n \geq 0$. The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is then said orthogonal with respect to u. Therefore $\left\{P_{n}\right\}_{n \geq 0}$ is an (OPS) such that any polynomial can be supposed monic (MOPS). The (MOPS) $\left\{P_{n}\right\}_{n \geq 0}$ fulfils the recurrence relation

$$
\left\{\begin{array}{l}
P_{0}(x)=1, P_{1}(x)=x-\beta_{0} \tag{1.2}\\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), \gamma_{n+1} \neq 0, n \geq 0
\end{array}\right.
$$

The (MOPS) $\left\{P_{n}\right\}_{n \geq 0}$ is symmetric if and only if $\beta_{n}=0, n \geq 0$. Furthermore, the orthogonality is kept by shifting. In fact, let

$$
\begin{equation*}
\left\{\widetilde{P}_{n}:=a^{-n}\left(h_{a} P_{n}\right)\right\}_{n \geq 0}, a \neq 0 \tag{1.3}
\end{equation*}
$$

then the recurrence elements $\widetilde{\beta}_{n}, \widetilde{\gamma}_{n+1}, n \geq 0$ of the sequence $\left\{\widetilde{P}_{n}\right\}_{n \geq 0}$ are

$$
\begin{equation*}
\widetilde{\beta}_{n}=\frac{\beta_{n}}{a}, \widetilde{\gamma}_{n+1}=\frac{\gamma_{n+1}}{a^{2}}, n \geq 0 \tag{1.4}
\end{equation*}
$$

Lastly, let us recall the following result useful for our work [1]
Lemma 1.1. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a (MOPS) and $M(x, n), N(x, n)$ two polynomials such that

$$
M(x, n) P_{n+1}(x)=N(x, n) P_{n}(x), n \geq 0
$$

Then, for any index n for which $\operatorname{deg} N(x, n) \leq n$, we have

$$
N(x, n)=0 \text { and } M(x, n)=0 .
$$

Let us introduce the Dunkl operator in \mathcal{P} by [5]

$$
\mathcal{D}_{\theta}=D+\theta H_{-1}: f \mapsto f^{\prime}(x)+\theta \frac{f(-x)-f(x)}{-2 x}, \theta \neq 0, f \in \mathcal{P}
$$

We have $\mathcal{D}_{\theta}^{\mathrm{T}}=-D-\theta H_{-1}$ where $\mathcal{D}_{\theta}^{\mathrm{T}}$ denotes the transposed of \mathcal{D}_{θ}. We can define \mathcal{D}_{θ} from \mathcal{P}^{\prime} to \mathcal{P}^{\prime} by $\mathcal{D}_{\theta}=-\mathcal{D}_{\theta}^{\mathrm{T}}$ so that

$$
\left\langle\mathcal{D}_{\theta} u, f\right\rangle=-\left\langle u, \mathcal{D}_{\theta} f\right\rangle, u \in \mathcal{P}^{\prime}, f \in \mathcal{P}
$$

In particular this yields

$$
\left(\mathcal{D}_{\theta} u\right)_{n}=-\theta_{n}(u)_{n-1}, n \geq 0
$$

where $(u)_{-1}:=0$ and

$$
\begin{equation*}
\theta_{n}=n+\theta \frac{1-(-1)^{n}}{2}, n \geq 0 \tag{1.5}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
\theta_{2 n}=2 n, \theta_{2 n+1}=2 n+1+\theta, n \geq 0 \tag{1.6}
\end{equation*}
$$

It is easy to see that $[6,9]$

$$
\begin{equation*}
\mathcal{D}_{\theta}(f g)=\left(h_{-1} f\right)\left(\mathcal{D}_{\theta} g\right)+g\left(\mathcal{D}_{\theta} f\right)+\left(f-h_{-1} f\right) g^{\prime}, f, g \in \mathcal{P} \tag{1.7}
\end{equation*}
$$

Now consider a (PS) $\left\{P_{n}\right\}_{n \geq 0}$ as above and let

$$
P_{n}^{[1]}(x ; \theta)=\frac{1}{\theta_{n+1}}\left(\mathcal{D}_{\theta} P_{n+1}\right)(x), \theta \neq-2 n-1, n \geq 0
$$

Definition 1.2. The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called \mathcal{D}_{θ}-Appell classical if $P_{n}^{[1]}(. ; \theta)=$ $P_{n}, n \geq 0$ and $\left\{P_{n}\right\}_{n \geq 0}$ is orthogonal.

2 Determination of all symmetric \mathcal{D}_{θ}-Appell classical orthogonal polynomials

Lemma 2.1. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a symmetric \mathcal{D}_{θ}-Appell classical sequence. The following formulas hold

$$
\begin{equation*}
\theta\left(h_{-1} P_{n+1}\right)(x)=\left\{\theta_{n+2}-\frac{\gamma_{n+1}}{\gamma_{n}} \theta_{n}-1\right\} P_{n+1}(x)+\left(\frac{\gamma_{n+1}}{\gamma_{n}} \theta_{n}-\theta_{n+1}\right) x P_{n}(x), n \geq 1 \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{2}=\frac{2}{1+\theta} \gamma_{1} . \tag{2.2}
\end{equation*}
$$

Proof. From (1.2) and the fact that $\left\{P_{n}\right\}_{n \geq 0}$ is symmetric we have

$$
\begin{equation*}
P_{n+2}(x)=x P_{n+1}(x)-\gamma_{n+1} P_{n}(x), \quad n \geq 0 . \tag{2.3}
\end{equation*}
$$

Applying the operator \mathcal{D}_{θ} in (2.3), using (1.7) and in accordance of the \mathcal{D}_{θ}-Appell classical character we obtain
$\theta_{n+2} P_{n+1}(x)=-\theta_{n+1} x P_{n}(x)+(1+\theta) P_{n+1}(x)+2 x P_{n+1}^{\prime}(x)-\gamma_{n+1} \theta_{n} P_{n-1}(x), n \geq 1$.
From definition of the operator \mathcal{D}_{θ} and the recurrence relation in (1.2), formula (2.4) becomes

$$
\begin{aligned}
\theta_{n+2} P_{n+1}(x)=\theta_{n+1} x & P_{n}(x)+P_{n+1}(x)+ \\
& +\theta\left(h_{-1} P_{n+1}\right)(x)-\frac{\gamma_{n+1}}{\gamma_{n}} \theta_{n}\left(x P_{n}-P_{n+1}(x)\right), n \geq 1 .
\end{aligned}
$$

Consequently (2.1) is proved.
On the other hand, taking $n=1$ in (2.1) and on account of $P_{1}(x)=x$ and $P_{2}(x)=$ $x^{2}-\gamma_{1}$, we get (2.2) after identification.

Now, we are able to give the system satisfied by $\gamma_{n+1}, n \geq 0$ written in terms of $r_{n+1}, n \geq 0$ where r_{n+1} is given by

$$
\begin{equation*}
r_{n+1}=\frac{\theta_{n+1}}{\gamma_{n+1}}, n \geq 0 \tag{2.5}
\end{equation*}
$$

Proposition 2.2. The sequence $\left\{r_{n+1}\right\}_{n \geq 0}$ fulfils the following system

$$
\begin{equation*}
\frac{r_{1}}{r_{2}}=1 \tag{2.8}
\end{equation*}
$$

Proof. Applying the dilatation h_{-1} for (2.3) and multiplying by θ, according to (2.1), we get successively

$$
\begin{aligned}
& \quad\left(h_{-1} P_{n+2}\right)(x)=-x\left(h_{-1} P_{n+1}\right)(x)-\gamma_{n+1}\left(h_{-1} P_{n}\right)(x), n \geq 0, \\
& \theta\left(h_{-1} P_{n+2}\right)(x)=-x \theta\left(h_{-1} P_{n+1}\right)(x)-\gamma_{n+1} \theta\left(h_{-1} P_{n}\right)(x), n \geq 0, \\
& \left(\theta_{n+3}-\frac{\gamma_{n+2}}{\gamma_{n+1}} \theta_{n+1}-1\right) P_{n+2}(x)+\left(\frac{\gamma_{n+2}}{\gamma_{n+1}} \theta_{n+1}-\theta_{n+2}\right) x P_{n+1}(x) \\
& =-x\left\{\left(\theta_{n+2}-\frac{\gamma_{n+1}}{\gamma_{n}} \theta_{n}-1\right) P_{n+1}(x)+\left(\frac{\gamma_{n+1}}{\gamma_{n}} \theta_{n}-\theta_{n+1}\right) x P_{n}(x)\right\} \\
& -\gamma_{n+1}\left\{\left(\theta_{n+1}-\frac{\gamma_{n}}{\gamma_{n-1}} \theta_{n-1}-1\right) P_{n}(x)+\left(\frac{\gamma_{n}}{\gamma_{n-1}} \theta_{n-1}-\theta_{n}\right) x P_{n-1}(x)\right\}, \\
& n \geq 2 .
\end{aligned}
$$

But from (2.3) another time we obtain

$$
\begin{equation*}
M(x, n) P_{n+1}(x)=N(x, n) P_{n}(x), \quad n \geq 2 \tag{2.9}
\end{equation*}
$$

where for $n \geq 2$

$$
\begin{gathered}
M(x, n)=\left(\theta_{n+3}-\gamma_{n+1} \frac{\theta_{n-1}}{\gamma_{n-1}}-2\right) x, \\
N(x, n)=\left(\theta_{n+1}-\gamma_{n+1} \frac{\theta_{n-1}}{\gamma_{n-1}}\right) x^{2}+\gamma_{n+1}\left(\theta_{n+3}-\theta_{n+1}\right)-\gamma_{n+2} \theta_{n+1}+\gamma_{n+1} \gamma_{n} \frac{\theta_{n-1}}{\gamma_{n-1}} .
\end{gathered}
$$

Next, according to Lemma 1.1., for $n \geq 2, M(x, n)=0, N(x, n)=0$, that is to say

$$
\begin{equation*}
\gamma_{n+1}\left(\theta_{n+3}-\theta_{n+1}\right)-\gamma_{n+2} \theta_{n+1}+\gamma_{n+1} \gamma_{n} \frac{\theta_{n-1}}{\gamma_{n-1}}=0, \quad n \geq 2 \tag{2.11}
\end{equation*}
$$

According to (2.5) relations (2.10)-(2.11) give the desired results (2.6)-(2.7).
Also, from (2.5) and (1.6) we get

$$
r_{1}=\frac{1+\theta}{\gamma_{1}} \quad, \quad r_{2}=\frac{2}{\gamma_{2}} .
$$

Therefore, taking into account (2.2) we obtain (2.8).

Now we are going to solve the system (2.6)-(2.8).
By virtue of (2.6) and (1.5), (2.7) becomes

$$
\frac{r_{n-1}}{r_{n}}=1, \quad n \geq 2
$$

Consequently

$$
\begin{equation*}
r_{n+1}=r_{1}, \quad n \geq 0 \tag{2.12}
\end{equation*}
$$

and (2.6), (2.8) are valid.
From (2.5) and (1.5) (2.12) give

$$
\begin{equation*}
\gamma_{n+1}=\frac{\gamma_{1}}{1+\theta}\left(n+1+\theta \frac{1+(-1)^{n}}{2}\right), n \geq 0 \tag{2.13}
\end{equation*}
$$

Corollary 2.3. The unique symmetric \mathcal{D}_{θ}-Appell classical linear form, up to affine transformations, is the generalized Hermite $\mathcal{H}(\mu)\left(\mu \neq 0, \mu \neq-n-\frac{1}{2}, \quad n \geq 0\right)$.

Proof. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a symmetric \mathcal{D}_{θ}-Appell classical sequence. By virtue of (2.13) and (2.2) we get

$$
\left\{\begin{array}{l}
\beta_{n}=0, n \geq 0 \tag{2.14}\\
\gamma_{n+1}=\frac{\gamma_{1}}{1+\theta}\left(n+1+\theta \frac{1+(-1)^{n}}{2}\right), n \geq 0
\end{array}\right.
$$

With the choice $a=\sqrt{\frac{2 \gamma_{1}}{1+\theta}}$ in (1.3)-(1.4), and putting $\mu:=\frac{\theta}{2}$ we are led to the following canonical case

$$
\left\{\begin{array}{l}
\widetilde{\beta}_{n}=0, n \geq 0 \tag{2.15}\\
\widetilde{\gamma}_{n+1}=\frac{1}{2}\left(n+1+\mu\left(1+(-1)^{n}\right)\right), n \geq 0
\end{array}\right.
$$

Thus (see (1.1))

$$
\widetilde{P}_{n}=\widetilde{H}_{n}^{(\mu)}, \mu \neq 0, \mu \neq-n-\frac{1}{2}, n \geq 0
$$

Acknowledgment. We would like to thank the referee for his valuable review and for calling our attention to a certain reference.

References

[1] J. Alaya and P. Maroni, Symmetric Laguerre-Hahn forms of class $s=1$, Int. Transf. and Spc. Funct. 4, (1996), pp. 301-320.
[2] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
[3] T. S. Chihara, Generalized Hermite polynomials, Thesis, Purdue, 1955.
[4] T. S. Chihara, Orthogonal polynomials with Brenke type generating function, Duke. Math. J., 35(1968) pp. 505-518.
[5] C. F. Dunkl, Differential-difference operators associated to reflection groups Trans. Amer. Math. Soc. 311, (1989), pp. 167-183.
[6] L. Khérijı and P. Maroni, The $H_{q}-$ Classical Orthogonal Polynomials Acta Applicandae Mathematicae 71(2002), pp. 49-115.
[7] P. Maroni, Sur la suite de polynômes orthogonaux associée à la forme $u=$ $\delta_{c}+\lambda(x-c)^{-1} L$. Period. Math. Hung. 21 (3), (1990), pp.223-248.
[8] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications, (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math. 9 (Baltzer, Basel, 1991) pp. 95-130.
[9] P. Maroni, Variations around classical orthogonal polynomials.Connected problems. J. Comput. Appl. Math. 48 (1993), pp. 133-155.
[10] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus. In: Operator Theory: Advances and Applications. Vol. 73, Basel: Birkhauser Verlag,(1994), pp. 369-396.
[11] M. Rösler Generalized Hermite polynomials and the Heat equation for Dunkl operators Comm. Math. Phys. 192(3), (1998), pp. 519-542.
[12] T. S. Shao, T. C. Chen and R. M. Frank Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials Math. Comp., XVIII(1964), pp. 598-616.

Faculté des Sciences de Gabès
Route de Mednine 6029-Gabès, Tunisia.
email:Abdallah.Ghrissi@fsg.rnu.tn

Corresponding author

Institut Supérieur des Sciences Appliquées et de Technologie de Gabès
Rue Omar Ibn El Khattab 6072-Gabès, Tunisia.
email:ililtkil@voila.fr

[^0]: Received by the editors January 2007 - In revised form in June 2007.
 Communicated by A. Bultheel.
 1991 Mathematics Subject Classification : 42C05, 33C45.
 Key words and phrases : semiclassical orthogonal polynomials. Dunkl operator. Appell orthogonal polynomials.

