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Abstract

We study a property of extension of partial isometries in a Banach space.

This property is formulated in game-theoretic language. It is weaker than

transitivity, self-dual for reflexive spaces and it is related to a well-known open

problem in functional analysis and to model-theoretic notions from mathemat-

ical logic.

1 Introduction

In this paper we attempt to relate and compare notions from functional analysis with
notions from model theory in mathematical logic. The latter are in turn inspired by
game theory. To be more precise, we formulate and consider a new property which
is equivalent to transitivity in separable Banach spaces but is weaker in general.
We call this property WS, for having a Winning Strategy in the game of extending
partial isometries. More specifically, suppose from the previous moves of the game,
we have two n−tuples ā and b̄ of vectors in a Banach space, so that between the
subspaces they generate there is a linear isometric isomorphism T taking ai to bi
for all 1 ≤ i ≤ n. Now suppose there is given a new element an+1, we would like
to respond by an element bn+1 so that T extends to a linear isometric isomorphism
that takes an+1 to bn+1.

Property WS may provide more understanding into the following old problem
posed by Banach and Mazur (see [22]): Is every separable transitive Banach space
necessarily a Hilbert space? As far as we know, this problem remains unsolved.

The motivation behind the proposing of WS comes from similar considerations
in model theory of first order logic, as mentioned in [17], and hence it is related to
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the Banach space model theory investigated by Ward Henson and Iovino ([13], [16]),
as well as to Keisler’s BF (Back-and-Forth ) property ([19]) which we investigated
in [4] and [5] in the context of Banach spaces. Actually we will compare WS and
BF.

It is worthwhile to note that rather different notions of games in Banach spaces
are considered in [15], [23] and [10].

Despite the motivation from logic, the current paper, with the exception of the
minor result Theorem 9 (2), can be read without specific knowledge in logic. Al-
though nonstandard hulls are mentioned, they can be replaced by Banach space
ultraproducts given by [9], which are well-known among analysts. (However, for the
interested reader, nonstandard analysis and nonstandard hull constructions can be
found in [1] and [15]). The nonstandard hull construction is also briefly reviewed in
§ 5). We use [6], [20] and [18] as background in Banach space theory.

Here is an outline of the paper. In § 2 we introduce the definitions and notation
(WS and others) and make some elementary observations. We also show that WS is
weaker than transitivity. Then in § 3, we investigate whether there is any relationship
between isometry games and convexity properties. In § 4, we prove our main result
that WS is a self-dual property for reflexive spaces. Section 5 is devoted to the
study of isometry games in classical Banach spaces. Eventually in § 6 we present
some open problems.

2 Preliminaries

From now on, by isometric isomorphism we actually mean linear isometric isomor-
phism.

If X is a Banach space we denote by SX its unit sphere, namely the set of unit
vectors in X.

Recall that in a Banach space X a smooth point is a unit vector x normed by a
unique functional of unit norm, i.e. there is a unique f ∈ X ′ (the dual of X) such
that ‖f‖ = 1 and f(x) = 1. And a space is smooth if every unit vector is smooth.
Equivalently, every point is normed uniquely, i.e. for any nonzero vector x, there is
a unique linear continuous functional f of norm 1 such that ‖x‖ = f(x).

A Banach space X is strictly convex if every point on SX is an extreme point,
namely it cannot be written as midpoint of two distinct unit vectors. X is uniformly
convex if for any ǫ > 0 there is δ > 0 such that, for all x, y ∈ SX , if ‖x − y‖ ≥ ǫ

then ‖x+y

2
‖ < 1 − δ.

We will deal with so called Banach spaces structures of the form X = (X, x̄),
where x̄ is a (possibly empty) sequence of elements from the Banach space X. Some
of the results can be generalized for structures obtained from a Banach space to-
gether with additional constants, functions and relations. Given two Banach space
structures X = (X, x̄) and Y = (Y, ȳ), we write X ≡0 Y if there is an isometric
isomorphism between the subspaces spanned by {xi} and {yi}, respectively, that
maps xi to yi for all i. From a logical viewpoint (see [4]), this is the same as saying
that x̄ and ȳ satisfy the same quantifier-free sentences of an appropriate first order
language for Banach space structures in X and Y respectively, and hence we borrow
this notation from logic.
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We now give definitions of the main properties of our study.

• (Back-and-Forth) A Banach space structure X = (X, x̄) has BFn if whenever
(X , a1, . . . , an) ≡0 (X , b1, . . . , bn) and an+1 ∈ X, there is bn+1 ∈ X such that
(X , a1, . . . , an+1) ≡0 (X , b1, . . . , bn+1).

X has BF if it has BFn for all n.

• (Isometry Game) Given Banach space structures X and Y such that X ≡0 Y
we define a 2-player game Γ = Γ[X ,Y ] by describing the (n+ 1)-th move in a
play of the game.

Suppose that, after n moves, (X , a1, . . . , an) ≡0 (Y , b1, . . . , bn) then player ∀
chooses some an+1 ∈ X and player ∃ responses by choosing some bn+1 ∈ Y or
∀ chooses some bn+1 ∈ Y and ∃ responses by choosing some an+1 ∈ X.

We say that player ∃ wins the play at move n+ 1 if

(X , a1, . . . , an+1) ≡0 (Y , b1, . . . , bn+1).

We say that ∃ has a winning strategy if ∃ can win at every move n, no matter
how ∀ plays.

• (Winning Strategy) The Banach space structure X has WS if for all (unit)
vectors a, b satisfying (X , a) ≡0 (X , b), player ∃ has a winning strategy in
Γ[(X , a), (X , b)].

• (Transitivity) (See [7]) A Banach space X is transitive if, for all a, b ∈ SX ,

there exists an isometric isomorphism of X taking a to b.

• (Almost transitivity) A Banach space X is almost-transitive if the orbits of
the action of isometric isomorphisms of X are dense in SX . Otherwise said,
X is almost-transitive if, for all ǫ > 0 and all unit vectors a, b, there exists an
isometric isomorphism T of X such that ‖T (a) − b‖ ≤ ǫ.

• For given rational λ ≥ 1 we define ā ∼λ b̄ if

λ−1‖
∑

αiai‖ ≤ ‖
∑

αibi‖ ≤ λ‖
∑

αiai‖ for all α ∈ Qn.

So, for a Banach space X, (X, ā) ≡0 (X, b̄) if and only if ā ∼1 b̄.

We now remark some elementary facts about the above properties.

Remark 1. 1. Note the main difference between BF and WS : in the latter,
the partial isometry before the play of a game is not arbitrary; it must be
constructed from previous moves.

2. Let X be a Banach space with WS. Then, for all a, b ∈ SX , there exist a sepa-
rable subspace X0 ⊂ X and an isometric isomorphism T : X0 → X0 such that
T (a) = b. For, from WS we have (X, a1, . . . , an, . . . ) ≡0 (X, b1, . . . , bn, . . . ),
where a1 = a, b1 = b and {ai}i∈ω = {bi}i∈ω. Then we let X0 be the closed linear
span of {ai}, and T : X0 → X0 given by T (ai) = bi.
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3. BF holds for a Banach space structure X if and only if, whenever ā and b̄ are
tuples of the same length such that (X , ā) ≡0 (X , b̄), player ∃ has a winning
strategy in Γ[(X , ā), (X , b̄)].

4. BF ⇒ WS ⇒ BF1.

5. For a Banach space of finite dimension n+ 1, BFn is equivalent to BF.

6. All Hilbert spaces satisfy BF.

7. Let X be a Banach space. It is not difficult to check that, for all unit vectors
a, b ∈ X, the game Γ[(X , a), (X , b)] is closed. Hence a celebrated theorem
of game theory due to Gale and Stewart ensures the existence of a winning
strategy for one of the two players. Consequently a (possibly of little use)
criterion for WS is the non existence of a winning strategy for player ∀ in
Γ[(X , a), (X , b)] for all unit vectors a, b.

8. WS and transitivity are equivalent in separable Banach spaces.

Recall that the only finite dimensional transitive spaces are Hilbert (see [2] or
[7]). Hence a finite dimensional Banach space has WS if and only if it is Hilbert.
Also, properties WS and BF are equivalent in finite dimensional spaces and they
hold precisely in finite dimensional Hilbert spaces.

Recall the following characterization: a Banach space is smooth if and only if its
norm is Gâteaux differentiable. We note the following:

Proposition 2. Let X be a Banach space with norm θ. Suppose that θ satisfies the
following assumption: for all u, v ∈ X such that θ(u) = θ(v) there exists a linear
and continuous mapping T : X → X such that

1. T (u) = v;

2. θT (x) = θ(x) for all x.

Let L : X → X be a linear homeomorphism and let η = θ ◦ L. Then η is a norm on
X that satisfies the same assumption as θ. Moreover, whenever θ is smooth, so is η.

Proof. First note that Gâteaux differentiability of η follows from

η′x(y) = lim
ǫ→0

η(x+ ǫy) − η(x)

ǫ
= lim

ǫ→0

θ(L(x) + ǫL(y)) − θ(L(x))

ǫ
= θ′L(x)(L(y)).

Let u and v be such that η(u) = η(v) and let T : X → X be as in the assumptions
such that TL(u) = L(v). We let S = L−1TL. Clearly, S is linear and continuous.

Moreover, S(u) = L−1TL(u) = L−1L(v) = v and, for all x,

η(S(x)) = θL(S(x)) = θTL(x) = θL(x) = η(x).
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Remark 3. Condition 2 in the statement of the previous proposition implies that
θ′x(y) = θ′T (x)(T (y)) for all x and y.

Notice also that if θ as above is Hilbertian, then so is η.

We prove now thatWS and BF, although not preserved by equivalent renorming,
behave well with respect to certain renorming.

Corollary 4. Let L : X → X be a linear homeomorphism of a Banach space X
with norm ‖ · ‖ and let ||| · ||| be the norm defined by |||x||| = ‖L(x)‖. Then

1. (X, ‖ · ‖) has WS if and only if (X, ||| · |||) has WS.

2. (X, ‖ · ‖) has BF if and only if (X, ||| · |||) has BF.

Proof. Follows from Proposition 2.

We remark that no finite dimensional vector space X can be equipped with a
unique norm ‖ · ‖ such that (X, ‖ · ‖) has BF : without loss of generality, let X = Rn

and let ‖ · ‖ be the euclidean norm. Then (Rn, ‖ · ‖) has BF (being a Hilbert space).
Let L be any linear isomorphism of Rn and let ||| · ||| be as in Corollary 4. Then
(Rn, ||| · |||) has BF.

We now prove that WS is weaker than transitivity.

Proposition 5. WS does not imply transitivity.

Proof. In the sequel [0, 1]I is always equipped with the product measure of the
Lebesgue measure on [0, 1], for all sets I.

Let
X = Lp([0, 1]ω1) Y =

⊕

α<ω1

Lp([0, 1]ω2) Z = X
⊕

Y,

where by
⊕

we denote p-sum and 1 ≤ p < ∞, p 6= 2. It is proved in [12] that Z is
not transitive. Nevertheless we claim that it has WS.

Note that each element [θ] ∈ Lp([0, 1]κ), as an equivalence class of measurable
functions, is determined by a countable set of coordinates. More precisely, for A ⊂ κ,

let πA denote the projection of [0, 1]κ onto [0, 1]A via (xi)i<κ 7→ (xi)i∈A. Then for
all [θ] ∈ Lp([0, 1]κ), there is a countable A ⊆ κ and [ψ] ∈ Lp([0, 1]A) such that
[θ] = [ψ ◦ πA].

Note also that X ⊂ Lp([0, 1]ω2) as a subspace via [θ] 7→ [θ ◦ πω1
]. In particular,

as a subspace, Z ⊂ Y ≃ Lp([0, 1]ω2)
⊕
Y.

We denote by G(Y ) the group of isometric isomorphisms of Y onto itself. Again
by [12], we have that G(Y ) acts transitively on the unit sphere of Y.

In order to prove that Z has WS let a1, b1 ∈ Z (denoting both functions and
equivalence classes) with a1 ∼1 b1 and let T1 ∈ G(Y ) be such that T1(a1) = b1.

Assume now inductively that (a1, . . . , an) ∼1 (b1, . . . , bn) and T1, . . . , Tn in G(Y )
are constructed with ai, bi ∈ Z and Tj(ai) = bi, i ≤ j ≤ n. Write ai = a1

i ⊕ a2
i and

bi = b1i ⊕ b2i , where a1
i , b

1
i ∈ X ⊂ Lp([0, 1]ω2) and a2

i , b
2
i ∈ Y. Now let an+1 ∈ Z ⊂ Y

be given and let b = Tn(an+1). Regard b ∈ Lp([0, 1]ω2)
⊕
Y, i.e. we decompose b as

c⊕ d, where c ∈ Lp([0, 1]ω2) and d ∈ Y. Let A ⊂ ω2 be a countable set of coordinate
indices on which c depends on.
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Let B ⊂ ω1 be a countable set of coordinate indices on which a1
1, . . . , a

1
n, b

1
1, . . . , b

1
n

depend on and let ρ : ω2 → ω2 be a bijection that fixes B pointwise and ρ(A) ⊂ ω1.

Let ρ̂ : [0, 1]ω2 → [0, 1]ω2 be the corresponding bijection.
Let Tn+1 ∈ G(Y ) be defined as follows: for all a ∈ Y, regarding Tn(a) as an

element of Lp([0, 1]ω2)
⊕
Y, with Tn(a) = r ⊕ s, where r ∈ Lp([0, 1]ω2) and s ∈ Y,

define Tn+1(a) = r ◦ ρ̂−1 ⊕ s.

Define bn+1 = c◦ ρ̂−1⊕d. Since c◦ ρ̂−1 depends on ρ(A) ⊂ ω1, we have: bn+1 ∈ Z,

Tn+1(ai) = bi for i ≤ n + 1, and therefore (a1, . . . , an+1) ∼1 (b1, . . . , bn+1).

3 Isometry games, convexity and smoothness

Hilbert spaces are uniformly convex and uniformly smooth. At the same time they
have good isometry game properties, so it is natural to consider the connections
between these properties.

The following shows that convexity does not necessarily imply good behavior in
isometry games.

Remark 6. (A uniformly convex but not BF1 space.) Let R2 be normed so that it
is strictly convex (equivalently uniformly convex) but not Hilbert. Such norm can
be obtained by using a sufficiently rounded but not symmetric convex set as the unit
disc. Then BF1 cannot be satisfied in this space, for otherwise it satisfies BF and
so it has to be Hilbert (see the remarks in the previous section).

Notice that by rotating the above 2−dimensional unit disc in Rn along an axis,
we have example of an n−dimensional space which is uniformly convex but BF1

fails.

Along the lines of the proof of [8, Theorem 2.1], we can prove the following

Theorem 7. For a Banach space X with BF1 the following are equivalent:

1. X has the Radon-Nikodým property;

2. X is reflexive;

3. X is superreflexive;

4. X is uniformly convex.

Proof. By well-known results, every reflexive space has Radon-Nikodým property
and every uniformly convex space is superreflexive. Therefore it remains to prove
that 1. implies 4. For 0 ≤ ǫ ≤ 1 and x ∈ X let

∆(x, ǫ) = inf{1 − λ : there exists y ∈ X such that ‖λx± y‖ ≤ 1 and ‖y‖ ≥ ǫ}.

It is known that if inf{∆(x, ǫ) : x ∈ SX} > 0 for all 0 < ǫ ≤ 1, then X is
uniformly convex (see [8] and [11]).

By Radon-Nikodým property there exists x0 ∈ SX such that ∆(x0, ǫ) > 0 for all
0 < ǫ ≤ 1 (see [8]). An easy calculation shows that BF1 implies ∆(x0, ǫ) = ∆(x, ǫ)
for all x ∈ SX and all 0 < ǫ ≤ 1. Then X is uniformly convex.
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Corollary 8. Properties (1) to (4) in the statement of Theorem 7 are equivalent for
Banach spaces with WS.

Proof. WS implies BF1.

The following gives dichotomy results with respect to smoothness and convexity
property.

Theorem 9. Let X be a Banach space.

1. If X has WS then either all points on SX are smooth or none is smooth;

2. If X has BF1 then either all points on SX are extreme or none is extreme.

Proof. 1. For sake of contradiction, suppose u, v are unit vectors, such that u is
smooth but v is not. Let w be a unit vector witnessing the nonsmoothness of
v. (By this we mean that there exist two unit functionals φ and θ both norming
v but φ(w) 6= θ(w).) Using WS we can find a closed separable subspace X0

of X including elements u, v, w, and an isometric isomorphism T : X0 → X0

such that T (u) = v. (See Remark 1(2).)

By Hahn-Banach, u is a smooth point inX0 and, by including the witness w,we
conclude that v is nonsmooth in X0. We thus get a contradiction since there
can be no isometric isomorphism mapping a smooth point to a nonsmooth
point.

2. (This is the only part of the paper where we use a little bit of logic. See [4]
for background.) Notice that BF1 is equivalent to saying that whenever two
vectors of X have the same qfpb-type (i.e. the same norm), they also satisfy
the same existential pb formulas with one existential quantifier.

Now we can prove the dichotomy by noticing that, for some ǫ > 0, either all
unit vectors satisfy the existential pb formula

∃y(‖x‖ = ‖y‖ = ‖2x− y‖ = 1 ∧ ‖x− y‖ ≥ ǫ)

or none does.

4 Isometry games in dual spaces

The following shows that, for reflexive Banach spaces, WS is a self-dual property.

Theorem 10. Let X be a reflexive Banach space. Then X has WS if and only if
the dual space X ′ has WS.

Proof. Suppose X has WS. Then, by Theorem 7, it is strictly convex and super-
reflexive. It follows from the results in [11] (see Definition 7 and Proposition 9) that
there are smooth points on the unit sphere of X (Fréchet differentiability is stronger
than Gâteux differentiability). So, by Theorem 9, X is smooth.

Recall also that, for a reflexive space, strict convexity is equivalent to smoothness
of its dual.
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Let φ1, θ1 be unit functionals in X ′: we want to show that player ∃ has a winning
strategy in the game Γ[(X ′, φ1), (X

′, θ1)].
Let a1 and b1 be unit vectors in X such that ‖a1‖ = ‖φ1‖ = φ1(a1) = 1 and

‖b1‖ = ‖θ1‖ = φ1(b1) = 1.
The main idea of the proof is that, for each play in the game Γ[(X ′, φ1), (X

′, θ1)],
we keep track of a simultaneous play in the game Γ[(X, a1), (X, b1)].

Suppose that, for some φ̄, θ̄ ∈ (X ′)n and some ā, b̄ ∈ Xn, we already have the
following from the first n− 1 moves of a play in the game Γ[(X ′, φ1), (X

′, θ1)]:

• (X ′, φ1, . . . , φn) ≡0 (X ′, θ1, . . . , θn);

• (X, a1, . . . , an) ≡0 (X, b1, . . . , bn);

• (norming) ‖ai‖ = ‖φi‖ = φi(ai) = 1, ‖bi‖ = ‖θi‖ = θi(bi) = 1, i ≤ n.

Let φn+1 ∈ X ′ with ‖φn+1‖ = 1. We are going to respond by producing θn+1 ∈ X ′

such that the above properties extend to some (n + 1)-tuples.
By smoothness and reflexivity of X ′, let an+1 ∈ X be the unique vector so that

‖an+1‖ = φn+1(an+1) = 1. By WS in X, choose bn+1 ∈ X so that

(X, a1, . . . , an+1) ≡0 (X, b1, . . . , bn+1).

Now, by smoothness and reflexivity of X, there is θn+1 ∈ X ′ so that

‖bn+1‖ = ‖θn+1‖ = θn+1(bn+1) = 1.

Claim : (X ′, φ1, . . . , φn+1) ≡0 (X ′, θ1, . . . , θn+1).
First we construct a closed separable subspace X0 ⊂ X and an isometric isomor-

phism T : X0 → X0 so that

(i) T (ai) = bi, i ≤ n + 1;

(ii) φi = θi ◦ T on X0, i ≤ n+ 1;

(iii) ‖
∑n+1

i=1 αiφi‖X0
= ‖

∑n+1
i=1 αiφi‖X and ‖

∑n+1
i=1 αiθi‖X0

= ‖
∑n+1

i=1 αiθi‖X , for
all α ∈ Rn+1 (i.e. the norms are the same whether one views the functionals
as functionals on X or as functionals on the subspace X0).

Define A = {α ∈ Qn+1 :
∑n+1

i=1 αi = 1 }. Enumerate A as α(m), m < ω. Using
norming property on X ′, for each α = α(m) ∈ A, let xm, ym ∈ X be unit vectors
such that

‖
n+1∑

i=1

αiφi‖ =
n+1∑

i=1

αiφi(xm), ‖
n+1∑

i=1

αiθi‖ =
n+1∑

i=1

αiθi(ym).

Next we define a bijection T0 whose domain is a countable subset of X as follows:
step 0: Define k0 = n+ 1, ci = ai, T0(ci) = bi, i ≤ k0.

step m+ 1: Suppose we have (X, c1, . . . , ckm
) ≡0 (X, T0(c1), . . . , T0(ckm

)).
Let ckm+1, . . . , ckm+1

be a list consisting of xm, ym and images from previous
steps T0(ci), i ≤ km, which are distinct from cj , j ≤ km. By WS we can find vectors
T0(ci), km < i ≤ km+1 so that

(X, c1, . . . , ckm+1
) ≡0 (X, T0(c1), . . . , T0(ckm+1

)).
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Let the domain of T0 be {ci : i < ω}. Since (X, ci)i<ω ≡0 (X, T0(ci))i<ω, T0 is a
bijection. Now let X0 = Span{ci : i < ω}, the closed linear span. Extend T0 to an
isometric isomorphism T : X0 → X0 by linearity and continuity.

Conditions (i) and (iii) follow from the construction.
For (ii), note that, for i ≤ n + 1, φi(ai) = 1 = θi(bi) and bi = T (ai), therefore

φi(ai) = θi(T (ai)). So ai is normed by both φi and θi ◦ T. Hence φi = θi ◦ T on X0

by uniqueness. (X0 is smooth and φi, θi ◦ T are unit vectors in X ′
0.)

Now, to prove the claim, it suffices to let α = α(m) ∈ A and show that

‖
n+1∑

i=1

αiφi‖ = ‖
n+1∑

i=1

αiθi‖.

But

‖
∑n+1

i=1 αiφi‖ = sup‖x‖=1, x∈X0

∑n+1
i=1 αiφi(x) (by (iii))

= sup‖x‖=1, x∈X0

∑n+1
i=1 αiθi ◦ T (x) (by (ii))

= sup‖x‖=1, x∈X0

∑n+1
i=1 αiθi(x) (by isometric isomorphism T )

= ‖
∑n+1

i=1 αiθi‖ (by (iii)).

The same arguments apply to prove that WS is inherited from X ′ to X.

The following is a consequence of the previous theorem and of the equivalence
of WS and transitivity for separable spaces.

Corollary 11. Let X be a reflexive, separable Banach space. Then X is transitive
if and only if X ′ is transitive.

Proof. We notice that reflexivity and separability of X imply separability of X ′.

(Indeed, it is known that a separable Banach space has separable dual if and only if
the dual has Radon-Nikodým property, and, as already noticed, reflexivity implies
the Radon-Nikodým property.) Therefore one can apply the previous theorem.

Remark 12. The previous corollary is indeed strengthened in [8] where it is proved
that transitivity is a self-dual property for reflexive spaces.

5 Isometry games in some classical spaces

In this section we discuss whether some classical spaces have the property WS.
Let us consider first the Lp spaces, where 1 ≤ p ≤ ∞.

For 1 ≤ p < ∞, p 6= 2, the only transitive infinite dimensional Lp spaces are of
the form ⊕

α<λ

Lp([0, 1]κ),

where
⊕

stands for p-sum, κ and λ are infinite cardinals and λ is uncountable (see
[12]).

Recall that two elements of an Lp space are said to be disjoint if they have
disjoint supports. We denote by supp(f) the support of element f.
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Remark 13. For p 6= 2,∞ a characterization of disjointness is the following (see
[3], page 175): elements f, g of Lp[0, 1] or of ℓp(N) are disjoint if and only if

‖αf + βg‖p = |α|p‖f‖p + |β|p‖f‖p for all α, β ∈ R.

By using the previous characterization, we can give an easy proof of the following:

Proposition 14. Let X be either Lp[0, 1] or Lp(R). Then X does not have WS for
1 ≤ p <∞, p 6= 2.

Proof. In X consider unit vectors f1, g1, g2, where f1 is given by a constant function
on [0, 1], g1 a constant function on [0, 1

2
], zero elsewhere, g2 a constant function on

(1
2
, 1], zero elsewhere. Then, by the previous remark, there is no f2 in X such that

(f1, f2) ∼1 (g1, g2).

Note that the Hilbert spaces L2[0, 1] and ℓ2(N) are transitive, hence they have
WS.

Remark 15. Similarly to Proposition 14, one can prove that the following do not
have WS:

1. ℓp(X), where X is any set with at least two elements, and where 1 ≤ p ≤ ∞
and p 6= 2.

For p in the finite range, p 6= 2, let u 6= v be elements of X and let a1 =
1{u} + 1{v}, a2 = 1{u}, b1 = ‖a1‖1{u}. There is no b2 ∈ ℓp(X) such that
(a1, a2) ∼1 (b1, b2) : from supp(a1 − a2) ∩ supp(a2) = ∅ we have that b2 must
satisfy supp(b1 − b2) ∩ supp(b2) = ∅. Then ∅ 6= supp(b2) ⊂ supp(b1), which is
impossible.

For p = ∞, let a be the constant function 1 and b, c unit vectors with disjoint
support. For every unit vector d we have ‖αb+ βc‖ = max(|α|, |β|) but ‖αa+
βd‖ = max(|α+β|, |α−β|). So ‖αb+βc‖ = ‖αa+βd‖ fails for some α, β ∈ Q.

2. The space C(X) of bounded real valued continuous functions on a compact
Hausdorff topological space X which has at least two isolated points, equipped
with supremum norm.

Note that the above argument can be used to prove in ℓp(X) that, under the as-
sumption (a1, . . . , an) ∼1 (b1, . . . , bn), the boolean algebra generated by {supp(ai)}i≤n

is isomorphic to the boolean algebra generated by {supp(bi)}i≤n. Furthermore, if
‖ai‖ = ‖bi‖, i = 1, . . . , n, then the converse implication also holds.

Now we briefly recall the construction of nonstandard hull of a Banach space
due to Luxemburg [21]. (See [1] for a more updated reference. One can also replace
nonstandard hulls with the Banach space ultraproducts - due to Krivine, Dacunha-
Castelle and Stern - introduced in [9].) The nonstandard hull construction takes
place in a nonstandard universe that is at least ω1-saturated.

Once fixed a nonstandard universe, let X be an internal Banach space with
norm ‖ ‖ and let fin(X) be the R-vector subspace of norm-finite elements of X. The
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nonstandard hull X̂ ofX is, as R-vector space, the quotient of fin(X) by the R-vector
subspace of elements having infinitesimal norm. We let ◦ : fin(∗R) → R denote the
standard part map. Then norm of the equivalence class [a] of a ∈ fin(X) is given
by ◦‖a‖. This turns X̂ into a Banach space (completeness is ensured by saturation,
even if we start from an internal normed space only).

IfX is a Banach space, we write X̂ for ∗̂X, where ∗X is the nonstandard extension
of X. As customary, we say that X̂ is the nonstandard hull of the Banach space X.

There is a canonical isometric embedding of a Banach space X as closed subspace
of its nonstandard hull X̂. In general X is a proper subspace of X̂ (for, unless X is
finite-dimensional, X̂ is nonseparable).

The following is indeed an easy remark:

Proposition 16. The nonstandard hull X̂ of an almost-transitive Banach space X
is transitive.

Proof. Let a, b be unit vectors in ∗X and let ǫ be a positive infinitesimal. By Transfer
there exists *-linear isometric isomorphism T : ∗X → ∗X such that ‖T (a)− b‖ ≤ ǫ.

Let ◦T : X̂ → X̂ be defined by ◦T ([x]) = [T (x)]. It is straightforward to see that
◦T is a well-defined linear isometric isomorphism such that T ([a]) = [b].

Corollary 17. Let µ be a homogeneous measure and 1 ≤ p < ∞. Then L̂p[µ] is
transitive.

Proof. Lp[µ] is almost-transitive (see [12]).

Note that Proposition 14 and Corollary 17 together with the isometric embed-
dability of a Banach space into its nonstandard hull imply that WS is not a super-
property. It also shows that WS is not preserved under subspace.

6 Open problems

The main open problem, of course, is the one posed by Banach and Mazur over 60
years ago, which we restated equivalently as
(1) Is every separable WS Banach space a Hilbert space?

Here are some weakenings of this problem:
(2) Is a (separable) WS Banach space reflexive?
(3) Is WS a self-dual property for (separable) Banach spaces? I.e. does the state-
ment of Theorem 10 hold without the additional assumption of reflexivity?
(4) Is a (separable) transitive Banach space reflexive?

Finally, it would be of interest to clarify further the properties in this paper.
(5) Is WS the same as BF ?
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